reintroduce template functions

This commit is contained in:
Max Lübke 2023-10-05 08:32:43 +02:00
parent c9c0daa098
commit 45e621f2b3

View File

@ -23,9 +23,9 @@ namespace sycl = cl::sycl;
using data_type = int;
auto matrixMultCPU(const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> res(matA.rows, matB.cols);
template <class T>
auto matrixMultCPU(const Matrix<T> &matA, const Matrix<T> &matB) {
Matrix<T> res(matA.rows, matB.cols);
for (std::uint32_t i = 0; i < res.rows; i++) {
for (std::uint32_t j = 0; j < res.cols; j++) {
auto &res_val = res(i, j) = 0;
@ -38,10 +38,11 @@ auto matrixMultCPU(const Matrix<data_type> &matA,
return res.chksum();
}
auto matrixMultTransposeCPU(const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> matB_t = matB.t();
Matrix<data_type> res(matA.rows, matB.cols);
template <class T>
auto matrixMultTransposeCPU(const Matrix<T> &matA,
const Matrix<T> &matB) {
Matrix<T> matB_t = matB.t();
Matrix<T> res(matA.rows, matB.cols);
for (std::uint32_t i = 0; i < res.rows; i++) {
for (std::uint32_t j = 0; j < res.cols; j++) {
auto &res_val = res(i, j) = 0;
@ -54,30 +55,31 @@ auto matrixMultTransposeCPU(const Matrix<data_type> &matA,
return res.chksum();
}
auto matrixMultSYCL(sycl::queue &q, const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> matRes(matA.rows, matB.cols);
template <class T>
auto matrixMultSYCL(sycl::queue &q, const Matrix<T> &matA,
const Matrix<T> &matB) {
Matrix<T> matRes(matA.rows, matB.cols);
sycl::range<2> global_range(matRes.rows, matRes.cols);
{
sycl::buffer<data_type, 2> b_matA(matA.mem.data(),
sycl::buffer<T, 2> b_matA(matA.mem.data(),
sycl::range<2>(matA.rows, matA.cols));
sycl::buffer<data_type, 2> b_matB(matB.mem.data(),
sycl::buffer<T, 2> b_matB(matB.mem.data(),
sycl::range<2>(matB.rows, matB.cols));
sycl::buffer<data_type, 2> b_matRes(
sycl::buffer<T, 2> b_matRes(
matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols));
q.submit([&](sycl::handler &h) {
auto acc_matA = b_matA.get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.get_access<sycl::access::mode::write>(h);
auto acc_matA = b_matA.template get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.template get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.template get_access<sycl::access::mode::write>(h);
h.parallel_for(global_range, [=](sycl::id<2> ID) {
auto i = ID[0];
auto j = ID[1];
data_type sum = 0;
T sum = 0;
for (auto k = 0; k < matA.cols; k++) {
sum += acc_matA[i][k] * acc_matB[k][j];
@ -92,32 +94,33 @@ auto matrixMultSYCL(sycl::queue &q, const Matrix<data_type> &matA,
return matRes.chksum();
}
auto matrixMultTransposeSYCL(sycl::queue &q, const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
template <class T>
auto matrixMultTransposeSYCL(sycl::queue &q, const Matrix<T> &matA,
const Matrix<T> &matB) {
Matrix<data_type> matB_t = matB.t();
Matrix<data_type> matRes(matA.rows, matB.cols);
Matrix<T> matB_t = matB.t();
Matrix<T> matRes(matA.rows, matB.cols);
sycl::range<2> global_range(matRes.rows, matRes.cols);
{
sycl::buffer<data_type, 2> b_matA(matA.mem.data(),
sycl::buffer<T, 2> b_matA(matA.mem.data(),
sycl::range<2>(matA.rows, matA.cols));
sycl::buffer<data_type, 2> b_matB(matB_t.mem.data(),
sycl::buffer<T, 2> b_matB(matB_t.mem.data(),
sycl::range<2>(matB_t.rows, matB_t.cols));
sycl::buffer<data_type, 2> b_matRes(
sycl::buffer<T, 2> b_matRes(
matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols));
q.submit([&](sycl::handler &h) {
auto acc_matA = b_matA.get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.get_access<sycl::access::mode::write>(h);
auto acc_matA = b_matA.template get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.template get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.template get_access<sycl::access::mode::write>(h);
h.parallel_for(global_range, [=](sycl::id<2> ID) {
auto i = ID[0];
auto j = ID[1];
data_type sum = 0;
T sum = 0;
for (auto k = 0; k < matA.cols; k++) {
sum += acc_matA[i][k] * acc_matB[j][k];
@ -246,32 +249,32 @@ auto main(int argc, char **argv) -> int {
assert(matA.rows == matB.cols);
#ifdef SEQ_BENCH
auto cpu_chksum = measure<>::duration(matrixMultCPU, matA, matB);
auto cpu_chksum = measure<>::duration(matrixMultCPU<data_type>, matA, matB);
print_pair("CPU - naive", cpu_chksum.first, cpu_chksum.second.count());
auto cpu_transp_chksum =
measure<>::duration(matrixMultTransposeCPU, matA, matB);
measure<>::duration(matrixMultTransposeCPU<data_type>, matA, matB);
print_pair("CPU - transposed", cpu_transp_chksum.first,
cpu_transp_chksum.second.count());
#endif
sycl::queue cpu_queue(sycl::cpu_selector_v);
auto omp_chksum = measure<>::duration(matrixMultSYCL, cpu_queue, matA, matB);
auto omp_chksum = measure<>::duration(matrixMultSYCL<data_type>, cpu_queue, matA, matB);
print_pair("OMP - naive", omp_chksum.first, omp_chksum.second.count());
auto omp_transp_chksum =
measure<>::duration(matrixMultTransposeSYCL, cpu_queue, matA, matB);
measure<>::duration(matrixMultTransposeSYCL<data_type>, cpu_queue, matA, matB);
print_pair("OMP - transposed", omp_transp_chksum.first,
omp_transp_chksum.second.count());
sycl::queue gpu_queue(sycl::gpu_selector_v);
auto gpu_chksum = measure<>::duration(matrixMultSYCL, gpu_queue, matA, matB);
auto gpu_chksum = measure<>::duration(matrixMultSYCL<data_type>, gpu_queue, matA, matB);
print_pair("GPU - naive", gpu_chksum.first, gpu_chksum.second.count());
auto gpu_transp_chksum =
measure<>::duration(matrixMultTransposeSYCL, gpu_queue, matA, matB);
measure<>::duration(matrixMultTransposeSYCL<data_type>, gpu_queue, matA, matB);
print_pair("GPU - transposed", gpu_transp_chksum.first,
gpu_transp_chksum.second.count());