add omp/gpu naive and transposed code

This commit is contained in:
Max Lübke 2023-10-04 09:54:15 +02:00
parent d8e4d200f0
commit d0673e61ca
2 changed files with 158 additions and 49 deletions

View File

@ -28,7 +28,7 @@ template <class T> struct Matrix {
}
matfs >> this->rows >> this->cols;
this->data.resize(this->rows * this->cols);
this->mem.resize(this->rows * this->cols);
for (std::uint32_t i = 0; i < rows; i++) {
for (std::uint32_t j = 0; j < cols; j++) {
@ -67,7 +67,7 @@ template <class T> struct Matrix {
XXH32_hash_t chksum() const {
constexpr XXH32_hash_t HASH_SEED = 42;
return XXH32(this->data.data(), mem.size(), HASH_SEED);
return XXH32(this->mem.data(), mem.size(), HASH_SEED);
}
std::size_t bytes() const { return this->mem.size() * sizeof(T); }

View File

@ -18,9 +18,11 @@ namespace sycl = cl::sycl;
<< "\t-> Check: 0x" << stream_hex(_chksm) \
<< "\tRuntime: " << _time << " us\n\n"
template <class T>
auto matrixMultCPU(const Matrix<T> &matA, const Matrix<T> &matB) {
Matrix<T> res(matA.rows, matB.cols);
using data_type = int;
auto matrixMultCPU(const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> res(matA.rows, matB.cols);
for (std::uint32_t i = 0; i < res.rows; i++) {
for (std::uint32_t j = 0; j < res.cols; j++) {
auto &res_val = res(i, j) = 0;
@ -33,10 +35,10 @@ auto matrixMultCPU(const Matrix<T> &matA, const Matrix<T> &matB) {
return res.chksum();
}
template <class T>
auto matrixMultTransposeCPU(const Matrix<T> &matA, const Matrix<T> &matB) {
Matrix<T> matB_t = matB.t();
Matrix<T> res(matA.rows, matB.cols);
auto matrixMultTransposeCPU(const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> matB_t = matB.t();
Matrix<data_type> res(matA.rows, matB.cols);
for (std::uint32_t i = 0; i < res.rows; i++) {
for (std::uint32_t j = 0; j < res.cols; j++) {
auto &res_val = res(i, j) = 0;
@ -49,6 +51,126 @@ auto matrixMultTransposeCPU(const Matrix<T> &matA, const Matrix<T> &matB) {
return res.chksum();
}
auto matrixMultSYCL(sycl::queue &q, const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
// auto d_matA = static_cast<T *>(sycl::malloc_device(matA.bytes(), q));
// q.memcpy(d_matA, matA.mem.data(), matA.bytes());
// auto d_matB = static_cast<T *>(sycl::malloc_device(matB_t.bytes(), q));
// q.memcpy(d_matB, matB_t.mem.data(), matB_t.bytes());
Matrix<data_type> matRes(matA.rows, matB.cols);
// auto d_matRes = static_cast<T *>(sycl::malloc_device(matRes.bytes(), q));
// std::size_t max_group_size =
// q.get_device().get_info<sycl::info::device::max_work_group_size>();
// lets assume we always have a maximum group size with a power of 2
// const std::uint32_t local_one_dim =
// std::pow(2, static_cast<std::uint32_t>(std::log2(max_group_size) / 2));
sycl::range<2> global_range(matRes.rows, matRes.cols);
// sycl::range<2> local_range(
// local_one_dim > matRes.rows ? matRes.rows : local_one_dim,
// local_one_dim > matRes.cols ? matRes.cols : local_one_dim);
q.wait();
{
sycl::buffer<data_type, 2> b_matA(matA.mem.data(),
sycl::range<2>(matA.rows, matA.cols));
sycl::buffer<data_type, 2> b_matB(matB.mem.data(),
sycl::range<2>(matB.rows, matB.cols));
sycl::buffer<data_type, 2> b_matRes(
matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols));
q.submit([&](sycl::handler &h) {
auto acc_matA = b_matA.get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.get_access<sycl::access::mode::write>(h);
h.parallel_for(global_range, [=](sycl::id<2> ID) {
auto i = ID[0];
auto j = ID[1];
data_type sum = 0;
if (i < global_range.get(0) && j < global_range.get(1)) {
for (auto k = 0; k < matA.cols; k++) {
sum += acc_matA[i][k] * acc_matB[k][j];
}
acc_matRes[i][j] = sum;
}
});
});
}
q.wait();
return matRes.chksum();
}
auto matrixMultTransposeSYCL(sycl::queue &q, const Matrix<data_type> &matA,
const Matrix<data_type> &matB) {
Matrix<data_type> matB_t = matB.t();
Matrix<data_type> matRes(matA.rows, matB.cols);
// auto d_matRes = static_cast<T *>(sycl::malloc_device(matRes.bytes(), q));
// std::size_t max_group_size =
// q.get_device().get_info<sycl::info::device::max_work_group_size>();
// lets assume we always have a maximum group size with a power of 2
// const std::uint32_t local_one_dim =
// std::pow(2, static_cast<std::uint32_t>(std::log2(max_group_size) / 2));
sycl::range<2> global_range(matRes.rows, matRes.cols);
// sycl::range<2> local_range(
// local_one_dim > matRes.rows ? matRes.rows : local_one_dim,
// local_one_dim > matRes.cols ? matRes.cols : local_one_dim);
q.wait();
{
sycl::buffer<data_type, 2> b_matA(matA.mem.data(),
sycl::range<2>(matA.rows, matA.cols));
sycl::buffer<data_type, 2> b_matB(matB_t.mem.data(),
sycl::range<2>(matB_t.rows, matB_t.cols));
sycl::buffer<data_type, 2> b_matRes(
matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols));
q.submit([&](sycl::handler &h) {
auto acc_matA = b_matA.get_access<sycl::access::mode::read>(h);
auto acc_matB = b_matB.get_access<sycl::access::mode::read>(h);
auto acc_matRes = b_matRes.get_access<sycl::access::mode::write>(h);
h.parallel_for(global_range, [=](sycl::id<2> ID) {
auto i = ID[0];
auto j = ID[1];
data_type sum = 0;
if (i < global_range.get(0) && j < global_range.get(1)) {
for (auto k = 0; k < matA.cols; k++) {
sum += acc_matA[i][k] * acc_matB[j][k];
}
acc_matRes[i][j] = sum;
}
});
});
}
q.wait();
return matRes.chksum();
}
auto main(int argc, char **argv) -> int {
if (argc != 3) {
@ -57,51 +179,38 @@ auto main(int argc, char **argv) -> int {
return EXIT_FAILURE;
}
Matrix<int> matA(argv[1]);
Matrix<int> matB(argv[2]);
Matrix<data_type> matA(argv[1]);
Matrix<data_type> matB(argv[2]);
assert(matA.rows == matB.cols);
auto cpu_chksum = measure<>::duration(matrixMultCPU<int>, matA, matB);
std::cout << "CPU only \n\t->"
<< "Check: 0x" << stream_hex(cpu_chksum.first)
<< "\tRuntime: " << cpu_chksum.second.count() << " us\n\n";
auto cpu_chksum = measure<>::duration(matrixMultCPU, matA, matB);
print_pair("CPU - naive", cpu_chksum.first, cpu_chksum.second.count());
auto cpu_transp_chksum =
measure<>::duration(matrixMultTransposeCPU<int>, matA, matB);
std::cout << "CPU only - transposed \n\t->"
<< "Check: 0x" << stream_hex(cpu_transp_chksum.first)
<< "\tRuntime: " << cpu_transp_chksum.second.count() << " us\n\n";
measure<>::duration(matrixMultTransposeCPU, matA, matB);
print_pair("CPU - transposed", cpu_transp_chksum.first,
cpu_transp_chksum.second.count());
sycl::queue cpu_queue(sycl::cpu_selector_v);
auto omp_chksum = measure<>::duration(matrixMultSYCL, cpu_queue, matA, matB);
print_pair("OMP - naive", omp_chksum.first, omp_chksum.second.count());
auto omp_transp_chksum =
measure<>::duration(matrixMultTransposeSYCL, cpu_queue, matA, matB);
print_pair("OMP - transposed", omp_transp_chksum.first,
omp_transp_chksum.second.count());
sycl::queue gpu_queue(sycl::gpu_selector_v);
auto gpu_chksum = measure<>::duration(matrixMultSYCL, gpu_queue, matA, matB);
print_pair("GPU - naive", gpu_chksum.first, gpu_chksum.second.count());
auto gpu_transp_chksum =
measure<>::duration(matrixMultTransposeSYCL, gpu_queue, matA, matB);
print_pair("GPU - transposed", gpu_transp_chksum.first,
gpu_transp_chksum.second.count());
return EXIT_SUCCESS;
// sycl::queue q;
// std::cout << "Using device: "
// << q.get_device().get_info<sycl::info::device::name>() << "\n";
// int hostArray[42];
// auto deviceArray = static_cast<int *>(malloc_device(42 * sizeof(int), q));
// for (int i = 0; i < 42; i++) {
// hostArray[i] = i;
// }
// q.memcpy(deviceArray, hostArray, 42 * sizeof(int));
// q.wait();
// q.submit([&](sycl::handler &h) {
// h.parallel_for(sycl::range<1>(42), [=](auto ID) { deviceArray[ID]++; });
// });
// q.wait();
// q.memcpy(hostArray, deviceArray, 42 * sizeof(int));
// q.wait();
// for (int i = 0; i < 42; i++) {
// std::cout << hostArray[i] << " ";
// }
// std::cout << "\n";
}