#include #include #include #include #include #include #include #include #include #include #include "matrix.hpp" #include "timer.hpp" namespace sycl = cl::sycl; #define stream_hex(_val) std::hex << _val << std::dec #define print_pair(_desc, _chksm, _time) \ std::cout << _desc << "\n\t" \ << "\t-> Check: 0x" << stream_hex(_chksm) \ << "\tRuntime: " << _time << " us\n\n" using data_type = int; /** * Straightforward matrix multiplication using one single CPU core and 3 nested * loops. * * @param matA Matrix A * @param matB Matrix B * * @return returns the checksum of the result produced by multiplication of * matrix A and B */ template auto matrixMultCPU(const Matrix &matA, const Matrix &matB) { Matrix res(matA.rows, matB.cols); for (std::uint32_t i = 0; i < res.rows; i++) { for (std::uint32_t j = 0; j < res.cols; j++) { auto &res_val = res(i, j) = 0; for (std::uint32_t k = 0; k < matA.cols; k++) { res_val += matA(i, k) * matB(k, j); } } } return res.chksum(); } /** * Also a straightforward solution, but before dive into the three nested loop, * transpose matrix B. This allows faster access to the second factor using as * CPU caching is more utilized. * * @param matA Matrix A * @param matB Matrix B * * @return returns the checksum of the result produced by multiplication of * matrix A and B */ template auto matrixMultTransposeCPU(const Matrix &matA, const Matrix &matB) { Matrix matB_t = matB.t(); Matrix res(matA.rows, matB.cols); for (std::uint32_t i = 0; i < res.rows; i++) { for (std::uint32_t j = 0; j < res.cols; j++) { auto &res_val = res(i, j) = 0; for (std::uint32_t k = 0; k < matA.cols; k++) { res_val += matA(i, k) * matB_t(j, k); } } } return res.chksum(); } /** * The naive implementation of the matrix multiplication using sycl. The actual * implementation (OpenMP CPU parallelization, GPU oflloading) is done by the * compiler. * * @param q Passing the desired SYCL queue. If you want to utilize GPU, * initialize the queue with a gpu selector. * @param matA Matrix A * @param matB Matrix B * * @return returns the checksum of the result produced by multiplication of * matrix A and B */ template auto matrixMultSYCL(sycl::queue &q, const Matrix &matA, const Matrix &matB) { // allocate memory for the result matrix on the host Matrix matRes(matA.rows, matB.cols); // define the size of our problem - here we want each task to calculate one // cell of the product. Thus, leading to a problem size of N x M sycl::range<2> global_range(matRes.rows, matRes.cols); { // defining 2 dimensional buffers which can then be exposed to the device. // It also possible to use 1D buffers here, but then we have to manually // calculate the index to access the matrices for each thread in the kernel // code. Solving it this way will ask the compiler to do the work. sycl::buffer b_matA(matA.mem.data(), sycl::range<2>(matA.rows, matA.cols)); sycl::buffer b_matB(matB.mem.data(), sycl::range<2>(matB.rows, matB.cols)); sycl::buffer b_matRes(matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols)); // submit work to the device. this is done by using a lambda function which // references all values known to the scope i.e. the previously defined // buffers. q.submit([&](sycl::handler &h) { // create accessors and expose/copy the data to the device or mark them to // be written back after successfull execution of the kernel. Access can // be controlled by access modes. // // Here, we only the matrix A and B to be read from and the matrix C to be // written to. auto acc_matA = b_matA.template get_access(h); auto acc_matB = b_matB.template get_access(h); auto acc_matRes = b_matRes.template get_access(h); // For the parallelized loop another lambda function is used, but all // known values are passed by value, as host and device doesn't share the // same address room. // // Additionally to the lambda function, the parallel_for function is given // the global range we defined earlier to provide the size of the problem // and launch the count of tasks accordingly. The identifier of the task // is then passed to the lambda function as a parameter. h.parallel_for(global_range, [=](sycl::id<2> ID) { const auto i = ID[0]; const auto j = ID[1]; T sum = 0; for (auto k = 0; k < matA.cols; k++) { sum += acc_matA[i][k] * acc_matB[k][j]; } acc_matRes[i][j] = sum; }); }); } // As buffers are destroyed after the scope, ensuring to copy the data back // from the device, no need to call a barrier here. // // We are able to return the cksum of matrix C. return matRes.chksum(); } /** * The implementation of the matrix multiplication using sycl with transposing * matrix B beforehand. The actual implementation (OpenMP CPU parallelization, * GPU oflloading) is done by the compiler. * * For inline comments please refer to matrixMultSYCL(). Nothing changes unless * a buffer to the transposed matrix B is created. * * @param q Passing the desired SYCL queue. If you want to utilize GPU, * initialize the queue with a gpu selector. * @param matA Matrix A * @param matB Matrix B * * @return returns the checksum of the result produced by multiplication of * matrix A and B */ template auto matrixMultTransposeSYCL(sycl::queue &q, const Matrix &matA, const Matrix &matB) { Matrix matB_t = matB.t(); Matrix matRes(matA.rows, matB.cols); sycl::range<2> global_range(matRes.rows, matRes.cols); { sycl::buffer b_matA(matA.mem.data(), sycl::range<2>(matA.rows, matA.cols)); sycl::buffer b_matB(matB_t.mem.data(), sycl::range<2>(matB_t.rows, matB_t.cols)); sycl::buffer b_matRes(matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols)); q.submit([&](sycl::handler &h) { auto acc_matA = b_matA.template get_access(h); auto acc_matB = b_matB.template get_access(h); auto acc_matRes = b_matRes.template get_access(h); h.parallel_for(global_range, [=](sycl::id<2> ID) { auto i = ID[0]; auto j = ID[1]; T sum = 0; for (auto k = 0; k < matA.cols; k++) { sum += acc_matA[i][k] * acc_matB[j][k]; } acc_matRes[i][j] = sum; }); }); } q.wait(); return matRes.chksum(); } /* * Obtained from * https://github.com/codeplaysoftware/computecpp-sdk/blob/master/samples/matrix-multiply.cpp * * Obtains the previous power of two from the given integer. * It works by masking out all ones after the first one bit, * then leaves the first one bit intact, effectively * yielding the first power of two < x. */ inline int prevPowerOfTwo(int x) { if (x < 0) { return 0; } --x; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x - (x >> 1); } /** * The implementation of the matrix multiplication using sycl using tiling. * * Each task fills a field in the local memory of the device with values from * the global memory. For this tasks are grouped to a work group. The size of * the work group is given by the maximum value defined by the device * description. All tasks from one work group share the same local memory. * * As the tile might be smaller than the actual matrix A and B sizes, the tile * is 'moved' along the x-axis and the y-axis of those matrices resp. * * By using tiling, each task only performs N/TILE_SIZE global memory operations * and utilizing way faster local memory, speeding up multiplication on most * devices. * * Keep in mind that this function is intended to only be executed on GPUs, as * nd_range paradigm with parallel_for is not efficiently implementable on CPUs. * See: Compilation * model of AdaptiveCpp * * @param q Passing the desired SYCL queue. If you want to utilize GPU, * initialize the queue with a gpu selector. * @param matA Matrix A * @param matB Matrix B * * @return returns the checksum of the result produced by multiplication of * matrix A and B */ template auto matrixMultTiledSYCL(sycl::queue &q, const Matrix &matA, const Matrix &matB) { Matrix matRes(matA.rows, matB.cols); // obtain the maximum work group size for the given device std::size_t max_group_size = q.get_device().get_info(); // each tile should not exceed the max_group_size -> T x T <= max_group_size const std::uint32_t max_tile_size = static_cast(prevPowerOfTwo(std::sqrt(max_group_size))); // maybe the problem size of the multiplication is smaller than the maximum // tile size const std::uint32_t block_size = std::min(matA.cols, max_tile_size); // define the global range ... sycl::range<2> global_range(matRes.rows, matRes.cols); // ... and the local_range (one tile per work group) sycl::range<2> tile_range(block_size, block_size); { // allocate the buffers sycl::buffer b_matA(matA.mem.data(), sycl::range<2>(matA.rows, matA.cols)); sycl::buffer b_matB(matB.mem.data(), sycl::range<2>(matB.rows, matB.cols)); sycl::buffer b_matRes(matRes.mem.data(), sycl::range<2>(matRes.rows, matRes.cols)); q.submit([&](sycl::handler &h) { // provide access to the buffers and ... auto acc_matA = b_matA.template get_access(h); auto acc_matB = b_matB.template get_access(h); auto acc_matRes = b_matRes.template get_access(h); // ... allocate memory in the local device memory which should be // accessble to each thread per matrix A ... sycl::accessor tileA(tile_range, h); // ... and matrix B sycl::accessor tileB(tile_range, h); // We define a kernel function by passing the global_range and the // tile_range to the parallel_for function of the handler. Secondly, // another lambda is passed as the kernel function, also with // passed-by-value lambda captures. As a parameter serves a nd_item, which // can be used to extract all relevant data linked to the running task. h.parallel_for( sycl::nd_range{global_range, tile_range}, [=](sycl::nd_item<2> &ID) { // extract all relevant information const int i = ID.get_global_id(0); const int j = ID.get_global_id(1); const int local_i = ID.get_local_id(0); const int local_j = ID.get_local_id(1); const int max_tile = ID.get_group_range(0); T sum = 0; // 'move' the tile over the A and B matrix for (int tile_i = 0; tile_i < max_tile; tile_i++) { // each thread copy 'its' value to the local memory from the // global memory. tileA[local_i][local_j] = acc_matA[i][tile_i * block_size + local_j]; // here we will also transpose the B matrix tileB[local_j][local_i] = acc_matB[block_size * tile_i + local_i][j]; // we need an explicit barrier to ensure all threads of the // working group succeeded to write their value into the local // memory ID.barrier(sycl::access::fence_space::local_space); // build the 'local' sum over the part of matrix A and B stored in // the local memory for (auto k = 0; k < block_size; k++) { sum += tileA[local_i][k] * tileB[local_j][k]; } // ensure all threads finished the multiplication, allowing to // rewrite the local memory ID.barrier(sycl::access::fence_space::local_space); } // each thread stores its sum in their resulting matrix C acc_matRes[i][j] = sum; }); }); } return matRes.chksum(); } auto main(int argc, char **argv) -> int { if (argc != 3) { std::cerr << "Provide 2 arguments to the program!\n" << "Usage: .txt .txt\n"; return EXIT_FAILURE; } Matrix matA(argv[1]); Matrix matB(argv[2]); assert(matA.rows == matB.cols); #ifdef SEQ_BENCH auto cpu_chksum = measure<>::duration(matrixMultCPU, matA, matB); print_pair("CPU - naive", cpu_chksum.first, cpu_chksum.second.count()); auto cpu_transp_chksum = measure<>::duration(matrixMultTransposeCPU, matA, matB); print_pair("CPU - transposed", cpu_transp_chksum.first, cpu_transp_chksum.second.count()); #endif sycl::queue cpu_queue(sycl::cpu_selector_v); std::cout << "Starting CPU benchmarks with device: " << cpu_queue.get_device().get_info() << "\n"; auto omp_chksum = measure<>::duration(matrixMultSYCL, cpu_queue, matA, matB); print_pair("OMP - naive", omp_chksum.first, omp_chksum.second.count()); auto omp_transp_chksum = measure<>::duration( matrixMultTransposeSYCL, cpu_queue, matA, matB); print_pair("OMP - transposed", omp_transp_chksum.first, omp_transp_chksum.second.count()); sycl::queue gpu_queue(sycl::gpu_selector_v); if (!gpu_queue.get_device().is_gpu()) { std::cout << "No GPU found, skipping GPU benchmarks\n"; return EXIT_SUCCESS; } std::cout << "Starting GPU benchmarks with device: " << gpu_queue.get_device().get_info() << "\n"; auto gpu_chksum = measure<>::duration(matrixMultSYCL, gpu_queue, matA, matB); print_pair("GPU - naive", gpu_chksum.first, gpu_chksum.second.count()); auto gpu_transp_chksum = measure<>::duration( matrixMultTransposeSYCL, gpu_queue, matA, matB); print_pair("GPU - transposed", gpu_transp_chksum.first, gpu_transp_chksum.second.count()); auto gpu_tiled_chksum = measure<>::duration(matrixMultTiledSYCL, gpu_queue, matA, matB); print_pair("GPU - tiled", gpu_tiled_chksum.first, gpu_tiled_chksum.second.count()); return EXIT_SUCCESS; }