Merge branch 'spatial_fix' into 'main'

Fix spatial discretization on outer cells of inlet

See merge request mluebke/diffusion!13
This commit is contained in:
Max Lübke 2022-04-27 14:26:04 +02:00
commit 065a30eb76
10 changed files with 460 additions and 79 deletions

View File

@ -19,7 +19,7 @@ build:
expire_in: 100s
script:
- mkdir build && cd build
- cmake ..
- cmake -DCMAKE_BUILD_TYPE=Debug ..
- make
run_1D:
@ -41,7 +41,7 @@ lint:
script:
- mkdir lint && cd lint
- cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_CLANG_TIDY="clang-tidy;-checks=cppcoreguidelines-*,clang-analyzer-*,performance-*,readability-*, modernize-*" ..
- make
- make diffusion
memcheck_1D:
stage: dynamic_analyze

View File

@ -6,3 +6,6 @@ target_link_libraries(2D PUBLIC diffusion)
add_executable(Comp2D main_2D_mdl.cpp)
target_link_libraries(Comp2D PUBLIC diffusion)
add_executable(Const2D main_2D_const.cpp)
target_link_libraries(Const2D PUBLIC diffusion)

View File

@ -20,7 +20,7 @@ int main(int argc, char *argv[]) {
// create input + diffusion coefficients for each grid cell
std::vector<double> alpha(n, 1 * pow(10, -1));
std::vector<double> field(n, 1 * std::pow(10, -6));
std::vector<boundary_condition> bc(n, {0,0});
std::vector<boundary_condition> bc(n + 2, {0, 0});
// create instance of diffusion module
BTCSDiffusion diffu(dim);
@ -28,7 +28,7 @@ int main(int argc, char *argv[]) {
diffu.setXDimensions(1, n);
// set the boundary condition for the left ghost cell to dirichlet
bc[0] = {Diffusion::BC_CONSTANT, 5*std::pow(10,-6)};
bc[0] = {Diffusion::BC_CONSTANT, 5 * std::pow(10, -6)};
// diffu.setBoundaryCondition(1, 0, BTCSDiffusion::BC_CONSTANT,
// 5. * std::pow(10, -6));
@ -44,7 +44,7 @@ int main(int argc, char *argv[]) {
cout << "Iteration: " << i << "\n\n";
for (auto & cell : field) {
for (auto &cell : field) {
cout << cell << "\n";
}

View File

@ -1,7 +1,7 @@
#include <algorithm> // for copy, max
#include <cmath>
#include <diffusion/BTCSDiffusion.hpp>
#include <diffusion/BoundaryCondition.hpp>
#include <algorithm> // for copy, max
#include <cmath>
#include <iomanip>
#include <iostream> // for std
#include <vector> // for vector
@ -20,7 +20,7 @@ int main(int argc, char *argv[]) {
// create input + diffusion coefficients for each grid cell
std::vector<double> alpha(n * m, 1 * pow(10, -1));
std::vector<double> field(n * m, 1 * std::pow(10, -6));
std::vector<boundary_condition> bc(n*m, {0,0});
std::vector<boundary_condition> bc((n + 2) * (m + 2), {0, 0});
// create instance of diffusion module
BTCSDiffusion diffu(dim);
@ -28,8 +28,8 @@ int main(int argc, char *argv[]) {
diffu.setXDimensions(1, n);
diffu.setYDimensions(1, m);
//set inlet to higher concentration without setting bc
field[12] = 5*std::pow(10,-3);
// set inlet to higher concentration without setting bc
field[12] = 5 * std::pow(10, -3);
// set timestep for simulation to 1 second
diffu.setTimestep(1.);

57
app/main_2D_const.cpp Normal file
View File

@ -0,0 +1,57 @@
#include <algorithm> // for copy, max
#include <cmath>
#include <diffusion/BTCSDiffusion.hpp>
#include <diffusion/BoundaryCondition.hpp>
#include <iomanip>
#include <iostream> // for std
#include <vector> // for vector
using namespace std;
using namespace Diffusion;
int main(int argc, char *argv[]) {
// dimension of grid
int dim = 2;
int n = 5;
int m = 5;
// create input + diffusion coefficients for each grid cell
std::vector<double> alpha(n * m, 1 * pow(10, -1));
std::vector<double> field(n * m, 1 * std::pow(10, -6));
std::vector<boundary_condition> bc((n + 2) * (m + 2), {0, 0});
// create instance of diffusion module
BTCSDiffusion diffu(dim);
diffu.setXDimensions(1, n);
diffu.setYDimensions(1, m);
for (int i = 1; i <= n; i++) {
bc[(n + 2) * i] = {Diffusion::BC_CONSTANT, 5 * std::pow(10, -6)};
}
// set timestep for simulation to 1 second
diffu.setTimestep(1.);
cout << setprecision(12);
for (int t = 0; t < 10; t++) {
diffu.simulate(field.data(), alpha.data(), bc.data());
cout << "Iteration: " << t << "\n\n";
// iterate through rows
for (int i = 0; i < m; i++) {
// iterate through columns
for (int j = 0; j < n; j++) {
cout << left << std::setw(20) << field[i * n + j];
}
cout << "\n";
}
cout << "\n" << endl;
}
return 0;
}

View File

@ -1,7 +1,7 @@
#include <algorithm> // for copy, max
#include <cmath>
#include <diffusion/BTCSDiffusion.hpp>
#include <diffusion/BoundaryCondition.hpp>
#include <algorithm> // for copy, max
#include <cmath>
#include <iomanip>
#include <iostream> // for std
#include <vector> // for vector
@ -20,7 +20,7 @@ int main(int argc, char *argv[]) {
// create input + diffusion coefficients for each grid cell
std::vector<double> alpha(n * m, 1 * pow(10, -1));
std::vector<double> field(n * m, 0.);
std::vector<boundary_condition> bc(n*m, {0,0});
std::vector<boundary_condition> bc((n + 2) * (m + 2), {0, 0});
field[125500] = 1;
@ -31,13 +31,13 @@ int main(int argc, char *argv[]) {
diffu.setYDimensions(1., m);
// set the boundary condition for the left ghost cell to dirichlet
//diffu.setBoundaryCondition(250, 250, BTCSDiffusion::BC_CONSTANT, 1);
// diffu.setBoundaryCondition(250, 250, BTCSDiffusion::BC_CONSTANT, 1);
// for (int d=0; d<5;d++){
// diffu.setBoundaryCondition(d, 0, BC_CONSTANT, .1);
// }
// diffu.setBoundaryCondition(1, 1, BTCSDiffusion::BC_CONSTANT, .1);
// diffu.setBoundaryCondition(1, 1, BTCSDiffusion::BC_CONSTANT, .1);
// set timestep for simulation to 1 second
diffu.setTimestep(1.);
@ -45,9 +45,9 @@ int main(int argc, char *argv[]) {
// First we output the initial state
cout << 0;
for (int i=0; i < m*n; i++) {
cout << "," << field[i];
for (int i = 0; i < m * n; i++) {
cout << "," << field[i];
}
cout << endl;
@ -58,9 +58,9 @@ int main(int argc, char *argv[]) {
cerr << "time elapsed: " << time << " seconds" << endl;
cout << t;
for (int i=0; i < m*n; i++) {
cout << "," << field[i];
for (int i = 0; i < m * n; i++) {
cout << "," << field[i];
}
cout << endl;
}

View File

@ -1,9 +1,314 @@
#+TITLE: Adi 2D Scheme
#+TITLE: Numerical solution of diffusion equation in 2D with ADI Scheme
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
#+LATEX_HEADER: \usepackage{fullpage}
#+LATEX_HEADER: \usepackage{amsmath, systeme}
#+OPTIONS: toc:nil
* Input
* Diffusion in 1D
** Finite differences with nodes as cells' centres
The 1D diffusion equation is:
#+NAME: eqn:1
\begin{align}
\frac{\partial C }{\partial t} & = \frac{\partial}{\partial x} \left(\alpha \frac{\partial C }{\partial x} \right) \nonumber \\
& = \alpha \frac{\partial^2 C}{\partial x^2}
\end{align}
We aim at numerically solving [[eqn:1]] on a spatial grid such as:
[[./grid_pqc.pdf]]
The left boundary is defined on $x=0$ while the center of the first
cell - which are the points constituting the finite difference nodes -
is in $x=dx/2$, with $dx=L/n$.
** The explicit FTCS scheme (as in PHREEQC)
We start by discretizing [[eqn:1]] following an explicit Euler scheme and
specifically a Forward Time, Centered Space finite difference.
For each cell index $i \in 1, \dots, n-1$ and assuming constant
$\alpha$, we can write:
#+NAME: eqn:2
\begin{equation}\displaystyle
\frac{C_i^{t+1} -C_i^{t}}{\Delta t} = \alpha\frac{\frac{C^t_{i+1}-C^t_{i}}{\Delta x}-\frac{C^t_{i}-C^t_{i-1}}{\Delta x}}{\Delta x}
\end{equation}
In practice, we evaluate the first derivatives of $C$ w.r.t. $x$ on
the boundaries of each cell (i.e., $(C_{i+1}-C_i)/\Delta x$ on the
right boundary of the i-th cell and $(C_{i}-C_{i-1})/\Delta x$ on its
left cell boundary) and then repeat the differentiation to get the
second derivative of $C$ on the the cell centre $i$.
This discretization works for all internal cells, but not for the
domain boundaries ($i=0$ and $i=n$). To properly treat them, we need
to account for the discrepancy in the discretization.
For the first (left) cell, whose center is at $x=dx/2$, we can
evaluate the left gradient with the left boundary using such distance,
calling $l$ the numerical value of a constant boundary condition:
#+NAME: eqn:3
\begin{equation}\displaystyle
\frac{C_0^{t+1} -C_0^{t}}{\Delta t} = \alpha\frac{\frac{C^t_{1}-C^t_{0}}{\Delta x}-
\frac{C^t_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
\end{equation}
This expression, once developed, yields:
#+NAME: eqn:4
\begin{align}\displaystyle
C_0^{t+1} & = C_0^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^t_{1}-C^t_{0}- 2 C^t_{0}+2l \right) \nonumber \\
& = C_0^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^t_{1}- 3 C^t_{0} +2l \right)
\end{align}
In case of constant right boundary, the finite difference of point
$C_n$ - calling $r$ the right boundary value - is:
#+NAME: eqn:5
\begin{equation}\displaystyle
\frac{C_n^{t+1} -C_n^t}{\Delta t} = \alpha\frac{\frac{r - C^t_{n}}{\frac{\Delta x}{2}}-
\frac{C^t_{n}-C^t_{n-1}}{\Delta x}}{\Delta x}
\end{equation}
Which, developed, gives
#+NAME: eqn:6
\begin{align}\displaystyle
C_n^{t+1} & = C_n^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 2 C^t_{n} -C^t_{n} + C^t_{n-1} \right) \nonumber \\
& = C_n^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 3 C^t_{n} + C^t_{n-1} \right)
\end{align}
If on the right boundary we have closed or Neumann condition, the left derivative in eq. [[eqn:5]]
becomes zero and we are left with:
#+NAME: eqn:7
\begin{equation}\displaystyle
C_n^{t+1} = C_n^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot (C^t_{n-1} - C^t_n)
\end{equation}
A similar treatment can be applied to the BTCS implicit scheme.
** Implicit BTCS scheme
First, we define the Backward Time difference:
\begin{equation}
\frac{\partial C^{t+1} }{\partial t} = \frac{C^{t+1}_i - C^{t}_i}{\Delta t}
\end{equation}
Second the spatial derivative approximation, evaluated at time level $t+1$:
#+NAME: eqn:secondderivative
\begin{equation}
\frac{\partial^2 C^{t+1} }{\partial x^2} = \frac{\frac{C^{t+1}_{i+1}-C^{t+1}_{i}}{\Delta x}-\frac{C^{t+1}_{i}-C^{t+1}_{i-1}}{\Delta x}}{\Delta x}
\end{equation}
Taking the 1D diffusion equation from [[eqn:1]] and substituting each term by the
equations given above leads to the following equation:
# \begin{equation}\displaystyle
# \frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
# \end{equation}
# Since we are not able to solve this system w.r.t unknown values in $C^{j-1}$ we
# are shifting each j by 1 to $j \to (j+1)$ and $(j-1) \to j$ which leads to:
#+NAME: eqn:1DBTCS
\begin{align}\displaystyle
\frac{C_i^{t+1} - C_i^{t}}{\Delta t} & = \alpha\frac{\frac{C^{t+1}_{i+1}-C^{t+1}_{i}}{\Delta x}-\frac{C^{t+1}_{i}-C^{t+1}_{i-1}}{\Delta x}}{\Delta x} \nonumber \\
& = \alpha\frac{C^{t+1}_{i-1} - 2C^{t+1}_{i} + C^{t+1}_{i+1}}{\Delta x^2}
\end{align}
This only applies to inlet cells with no ghost node as neighbor. For the left
cell with its center at $\frac{dx}{2}$ and the constant concentration on the
left ghost node called $l$ the equation goes as followed:
\begin{equation}\displaystyle
\frac{C_0^{t+1} -C_0^{t}}{\Delta t} = \alpha\frac{\frac{C^{t+1}_{1}-C^{t+1}_{0}}{\Delta x}-
\frac{C^{t+1}_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
\end{equation}
This expression, once developed, yields:
\begin{align}\displaystyle
C_0^{t+1} & = C_0^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{t+1}_{1}-C^{t+1}_{0}- 2 C^{t+1}_{0}+2l \right) \nonumber \\
& = C_0^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{t+1}_{1}- 3 C^{t+1}_{0} +2l \right)
\end{align}
Now we define variable $s_x$ as followed:
\begin{equation}
s_x = \frac{\alpha \cdot \Delta t}{\Delta x^2}
\end{equation}
Substituting with the new variable $s_x$ and reordering of terms leads to the equation applicable to our model:
\begin{equation}\displaystyle
-C^t_0 = (2s_x) \cdot l + (-1 - 3s_x) \cdot C^{t+1}_0 + s_x \cdot C^{t+1}_1
\end{equation}
The right boundary follows the same scheme. We now want to show the equation for the rightmost inlet cell $C_n$ with right boundary value $r$:
\begin{equation}\displaystyle
\frac{C_n^{t+1} -C_n^{t}}{\Delta t} = \alpha\frac{\frac{r-C^{t+1}_{n}}{\frac{\Delta x}{2}}-
\frac{C^{t+1}_{n}-C^{t+1}_{n-1}}{\Delta x}}{\Delta x}
\end{equation}
This expression, once developed, yields:
\begin{align}\displaystyle
C_n^{t+1} & = C_n^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 2C^{t+1}_{n} - C^{t+1}_{n} + C^{t+1}_{n-1} \right) \nonumber \\
& = C_0^{t} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 3C^{t+1}_{n} + C^{t+1}_{n-1} \right)
\end{align}
Now rearrange terms and substituting with $s_x$ leads to:
\begin{equation}\displaystyle
-C^t_n = s_x \cdot C^{t+1}_{n-1} + (-1 - 3s_x) \cdot C^{t+1}_n + (2s_x) \cdot r
\end{equation}
*TODO*
- Tridiagonal matrix filling
#+LATEX: \clearpage
* Diffusion in 2D: the Alternating Direction Implicit scheme
In 2D, the diffusion equation (in absence of source terms) and
assuming homogeneous but anisotropic diffusion coefficient
$\alpha=(\alpha_x,\alpha_y)$ becomes:
#+NAME: eqn:2d
\begin{equation}
\displaystyle \frac{\partial C}{\partial t} = \alpha_x \frac{\partial^2 C}{\partial x^2} + \alpha_y\frac{\partial^2 C}{\partial y^2}
\end{equation}
** 2D ADI using BTCS scheme
The Alternating Direction Implicit method consists in splitting the
integration of eq. [[eqn:2d]] in two half-steps, each of which represents
implicitly the derivatives in one direction, and explicitly in the
other. Therefore we make use of second derivative operator defined in
equation [[eqn:secondderivative]] in both $x$ and $y$ direction for half
the time step $\Delta t$.
Denoting $i$ the grid cell index along $x$ direction, $j$ the index in
$y$ direction and $t$ as the time level, the spatially centered second
derivatives can be written as:
\begin{align}\displaystyle
\frac{\partial^2 C^t_{i,j}}{\partial x^2} &= \frac{C^{t}_{i-1,j} - 2C^{t}_{i,j} + C^{t}_{i+1,j}}{\Delta x^2} \\
\frac{\partial^2 C^t_{i,j}}{\partial y^2} &= \frac{C^{t}_{i,j-1} - 2C^{t}_{i,j} + C^{t}_{i,j+1}}{\Delta y^2}
\end{align}
The ADI scheme is formally defined by the equations:
#+NAME: eqn:genADI
\begin{equation}
\systeme{
\displaystyle \frac{C^{t+1/2}_{i,j}-C^t_{i,j}}{\Delta t/2} = \displaystyle \alpha_x \frac{\partial^2 C^{t+1/2}_{i,j}}{\partial x^2} + \alpha_y \frac{\partial^2 C^{t}_{i,j}}{\partial y^2},
\displaystyle \frac{C^{t+1}_{i,j}-C^{t+1/2}_{i,j}}{\Delta t/2} = \displaystyle \alpha_x \frac{\partial^2 C^{t+1/2}_{i,j}}{\partial x^2} + \alpha_y \frac{\partial^2 C^{t+1}_{i,j}}{\partial y^2}
}
\end{equation}
\noindent The first of equations [[eqn:genADI]], which writes implicitly
the spatial derivatives in $x$ direction, after bringing the $\Delta t
/ 2$ terms on the right hand side and substituting $s_x=\frac{\alpha_x
\cdot \Delta t}{2 \Delta x^2}$ and $s_y=\frac{\alpha_y\cdot\Delta
t}{2\Delta y^2}$ reads:
\begin{equation}\displaystyle
C^{t+1/2}_{i,j}-C^t_{i,j} = s_x (C^{t+1/2}_{i-1,j} - 2C^{t+1/2}_{i,j} + C^{t+1/2}_{i+1,j}) + s_y (C^{t}_{i,j-1} - 2C^{t}_{i,j} + C^{t}_{i,j+1})
\end{equation}
\noindent Separating the known terms (at time level $t$) on the left
hand side and the implicit terms (at time level $t+1/2$) on the right
hand side, we get:
#+NAME: eqn:sweepX
\begin{equation}\displaystyle
-C^t_{i,j} - s_y (C^{t}_{i,j-1} - 2C^{t}_{i,j} + C^{t}_{i,j+1}) = - C^{t+1/2}_{i,j} + s_x (C^{t+1/2}_{i-1,j} - 2C^{t+1/2}_{i,j} + C^{t+1/2}_{i+1,j})
\end{equation}
\noindent Equation [[eqn:sweepX]] can be solved with a BTCS scheme since
it corresponds to a tridiagonal system of equations, and resolves the
$C^{t+1/2}$ at each inner grid cell.
The second of equations [[eqn:genADI]] can be treated the same way and
yields:
#+NAME: eqn:sweepY
\begin{equation}\displaystyle
-C^{t + 1/2}_{i,j} - s_x (C^{t + 1/2}_{i-1,j} - 2C^{t + 1/2}_{i,j} + C^{t + 1/2}_{i+1,j}) = - C^{t+1}_{i,j} + s_y (C^{t+1}_{i,j-1} - 2C^{t+1}_{i,j} + C^{t+1}_{i,j+1})
\end{equation}
This scheme only applies to inner cells, or else $\forall i,j \in [1,
n-1] \times [1, n-1]$. Following an analogous treatment as for the 1D
case, and noting $l_x$ and $l_y$ the constant left boundary values and
$r_x$ and $r_y$ the right ones for each direction $x$ and $y$, we can
modify equations [[eqn:sweepX]] for $i=0, j \in [1, n-1]$
#+NAME: eqn:boundXleft
\begin{equation}\displaystyle
-C^t_{0,j} - s_y (C^{t}_{0,j-1} - 2C^{t}_{0,j} + C^{t}_{0,j+1}) = - C^{t+1/2}_{0,j} + s_x (C^{t+1/2}_{1,j} - 3C^{t+1/2}_{0,j} + 2 l_x)
\end{equation}
\noindent Similarly for $i=n, j \in [1, n-1]$:
#+NAME: eqn:boundXright
\begin{equation}\displaystyle
-C^t_{n,j} - s_y (C^{t}_{n,j-1} - 2C^{t}_{n,j} + C^{t}_{n,j+1}) = - C^{t+1/2}_{n,j} + s_x (C^{t+1/2}_{n-1,j} - 3C^{t+1/2}_{n,j} + 2 r_x)
\end{equation}
\noindent For $i=j=0$:
#+NAME: eqn:bound00
\begin{equation}\displaystyle
-C^t_{0,0} - s_y (C^{t}_{0,1} - 3C^{t}_{0,0} + 2l_y) = - C^{t+1/2}_{0,0} + s_x (C^{t+1/2}_{1,0} - 3C^{t+1/2}_{0,0} + 2 l_x)
\end{equation}
Analogous expressions are readily derived for all possible
combinations of $i,j \in 0\times n$. In practice, wherever an index
$i$ or $j$ is $0$ or $n$, the centered spatial derivatives in $x$ or
$y$ directions must be substituted in relevant parts of the sweeping
equations \textbf{in both the implicit or the explicit sides} of
equations [[eqn:sweepX]] and [[eqn:sweepY]] by a term
#+NAME: eqn:bound00
\begin{equation}\displaystyle
s(C_{forw} - 3C + 2 bc)
\end{equation}
\noindent where $bc$ is the boundary condition in the given direction,
$s$ is either $s_x$ or $s_y$, and $C_{forw}$ indicates the contiguous
cell opposite to the boundary. Alternatively, noting the second
derivative operator as $\partial_{dir}^2$, we can write in compact
form:
\begin{equation}
\systeme{
\displaystyle \partial_x^2 C_{0,j} = 2l_x - 3C_{0,j} + C_{1,j} ,
\displaystyle \partial_x^2 C_{n,j} = 2r_x - 3C_{n,j} + C_{n-1,j} ,
\displaystyle \partial_y^2 C_{i,0} = 2l_y - 3C_{i,0} + C_{i,1} ,
\displaystyle \partial_y^2 C_{i,n} = 2r_y - 3C_{i,n} + C_{i,n-1}
}
\end{equation}
#+LATEX: \clearpage
* Old stuff
** Input
- =c= $\rightarrow c$
- containing current concentrations at each grid cell for species
@ -18,7 +323,7 @@
- size: $N \times M$
- row-major
* Internals
** Internals
- =A_matrix= $\rightarrow A$
- coefficient matrix for linear equation system implemented as sparse matrix
@ -34,7 +339,7 @@
- size: $(N+2) \cdot M$
- column-major (not relevant)
* Calculation for $\frac{1}{2}$ timestep
** Calculation for $\frac{1}{2}$ timestep
** Symbolic addressing of grid cells
[[./grid.png]]
@ -77,9 +382,6 @@ s_x(i,j) & \text{else}
- Adressing would look like this: $(i,j) = b(i \cdot (N+2) + j)$
- $\rightarrow$ for simplicity we will write $b(i,j)$
*** Rules
**** Ghost nodes
@ -96,11 +398,11 @@ c(i,N-1) & \text{else}
*** Inlet
$p(i,j) = \frac{\Delta t}{2}\alpha(i,j)\frac{c(i-1,j) - 2\cdot c(i,j) + c(i+1,j)}{\Delta x^2}$[fn:1]
$p(i,j) = \frac{\Delta t}{2}\alpha(i,j)\frac{c(i-1,j) - 2\cdot c(i,j) + c(i+1,j)}{\Delta x^2}$
\noindent $p$ is called =t0_c= inside code
$b(i,j) = \begin{cases}
bc(i,j).\text{value} & \text{if } bc(i,N-1) = \text{constant} \\
-c(i,j)-p(i,j) & \text{else}
\end{cases}$
[fn:1] $p$ is called =t0_c= inside code

BIN
doc/grid_pqc.pdf Normal file

Binary file not shown.

View File

@ -135,16 +135,17 @@ private:
const BCMatrixRowMajor &bc, double time_step, double dx)
-> DMatrixRowMajor;
void fillMatrixFromRow(Eigen::SparseMatrix<double> &A_matrix,
const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc, int size, double dx,
double time_step);
static void fillMatrixFromRow(Eigen::SparseMatrix<double> &A_matrix,
const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc, int size, double dx,
double time_step);
void fillVectorFromRow(Eigen::VectorXd &b_vector, const DVectorRowMajor &c,
const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc,
const DVectorRowMajor &t0_c, int size, double dx,
double time_step);
static void fillVectorFromRow(Eigen::VectorXd &b_vector,
const DVectorRowMajor &c,
const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc,
const DVectorRowMajor &t0_c, int size,
double dx, double time_step);
void simulate3D(std::vector<double> &c);
inline static auto getBCFromFlux(Diffusion::boundary_condition bc,

View File

@ -28,8 +28,6 @@
constexpr int BTCS_MAX_DEP_PER_CELL = 3;
constexpr int BTCS_2D_DT_SIZE = 2;
constexpr double center_eq(double sx) { return -1. - 2. * sx; }
Diffusion::BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
grid_cells.resize(dim, 1);
@ -104,7 +102,7 @@ void Diffusion::BTCSDiffusion::simulate_base(DVectorRowMajor &c,
b_vector.resize(size + 2);
x_vector.resize(size + 2);
fillMatrixFromRow(A_matrix, alpha.row(0), bc.row(0), size, dx, time_step);
fillMatrixFromRow(A_matrix, alpha, bc, size, dx, time_step);
fillVectorFromRow(b_vector, c, alpha, bc, Eigen::VectorXd::Constant(size, 0),
size, dx, time_step);
@ -143,17 +141,16 @@ void Diffusion::BTCSDiffusion::simulate2D(
int n_rows = this->grid_cells[1];
int n_cols = this->grid_cells[0];
double dx = this->deltas[0];
DMatrixRowMajor t0_c;
double local_dt = this->time_step / BTCS_2D_DT_SIZE;
t0_c = calc_t0_c(c, alpha, bc, local_dt, dx);
DMatrixRowMajor t0_c = calc_t0_c(c, alpha, bc, local_dt, dx);
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < n_rows; i++) {
DVectorRowMajor input_field = c.row(i);
simulate_base(input_field, bc.row(i), alpha.row(i), dx, local_dt, n_cols,
t0_c.row(i));
simulate_base(input_field, bc.row(i + 1), alpha.row(i), dx, local_dt,
n_cols, t0_c.row(i));
c.row(i) << input_field;
}
@ -165,8 +162,8 @@ void Diffusion::BTCSDiffusion::simulate2D(
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < n_cols; i++) {
DVectorRowMajor input_field = c.col(i);
simulate_base(input_field, bc.col(i), alpha.col(i), dx, local_dt, n_rows,
t0_c.row(i));
simulate_base(input_field, bc.col(i + 1), alpha.col(i), dx, local_dt,
n_rows, t0_c.row(i));
c.col(i) << input_field.transpose();
}
}
@ -182,16 +179,22 @@ auto Diffusion::BTCSDiffusion::calc_t0_c(const DMatrixRowMajor &c,
DMatrixRowMajor t0_c(n_rows, n_cols);
std::array<double, 3> y_values;
std::array<double, 3> y_values{};
// first, iterate over first row
for (int j = 0; j < n_cols; j++) {
y_values[0] = getBCFromFlux(bc(0, j), c(0, j), alpha(0, j));
boundary_condition tmp_bc = bc(0, j + 1);
if (tmp_bc.type == Diffusion::BC_CLOSED){
continue;
}
y_values[0] = getBCFromFlux(tmp_bc, c(0, j), alpha(0, j));
y_values[1] = c(0, j);
y_values[2] = c(1, j);
t0_c(0, j) = time_step * alpha(0, j) *
(y_values[0] - 2 * y_values[1] + y_values[2]) / (dx * dx);
(2 * y_values[0] - 3 * y_values[1] + y_values[2]) / (dx * dx);
}
// then iterate over inlet
@ -212,12 +215,19 @@ auto Diffusion::BTCSDiffusion::calc_t0_c(const DMatrixRowMajor &c,
// and finally over last row
for (int j = 0; j < n_cols; j++) {
boundary_condition tmp_bc = bc(end + 1, j + 1);
if (tmp_bc.type == Diffusion::BC_CLOSED) {
continue;
}
y_values[0] = c(end - 1, j);
y_values[1] = c(end, j);
y_values[2] = getBCFromFlux(bc(end, j), c(end, j), alpha(end, j));
y_values[2] = getBCFromFlux(tmp_bc, c(end, j), alpha(end, j));
t0_c(end, j) = time_step * alpha(end, j) *
(y_values[0] - 2 * y_values[1] + y_values[2]) / (dx * dx);
(y_values[0] - 3 * y_values[1] + 2 * y_values[2]) /
(dx * dx);
}
return t0_c;
@ -227,8 +237,8 @@ void Diffusion::BTCSDiffusion::fillMatrixFromRow(
Eigen::SparseMatrix<double> &A_matrix, const DVectorRowMajor &alpha,
const BCVectorRowMajor &bc, int size, double dx, double time_step) {
Diffusion::boundary_condition left = bc[0];
Diffusion::boundary_condition right = bc[size - 1];
Diffusion::boundary_condition left = bc[1];
Diffusion::boundary_condition right = bc[size];
bool left_constant = (left.type == Diffusion::BC_CONSTANT);
bool right_constant = (right.type == Diffusion::BC_CONSTANT);
@ -239,27 +249,36 @@ void Diffusion::BTCSDiffusion::fillMatrixFromRow(
if (left_constant) {
A_matrix.insert(1, 1) = 1;
} else {
double sx = (alpha[0] * time_step) / (dx * dx);
A_matrix.insert(1, 1) = -1. - 3. * sx;
A_matrix.insert(1, 0) = 2. * sx;
A_matrix.insert(1, 2) = sx;
}
A_matrix.insert(A_size - 1, A_size - 1) = 1;
if (right_constant) {
A_matrix.insert(A_size - 2, A_size - 2) = 1;
}
for (int j = 1 + (int)left_constant, k = j - 1;
k < size - (int)right_constant; j++, k++) {
for (int j = 2, k = j - 1; k < size - 1; j++, k++) {
double sx = (alpha[k] * time_step) / (dx * dx);
if (bc[k].type == Diffusion::BC_CONSTANT) {
if (bc[k + 1].type == Diffusion::BC_CONSTANT) {
A_matrix.insert(j, j) = 1;
continue;
}
A_matrix.insert(j, j) = center_eq(sx);
A_matrix.insert(j, j) = -1. - 2. * sx;
A_matrix.insert(j, (j - 1)) = sx;
A_matrix.insert(j, (j + 1)) = sx;
}
if (right_constant) {
A_matrix.insert(A_size - 2, A_size - 2) = 1;
} else {
double sx = (alpha[size - 1] * time_step) / (dx * dx);
A_matrix.insert(A_size - 2, A_size - 2) = -1. - 3. * sx;
A_matrix.insert(A_size - 2, A_size - 3) = sx;
A_matrix.insert(A_size - 2, A_size - 1) = 2. * sx;
}
A_matrix.insert(A_size - 1, A_size - 1) = 1;
}
void Diffusion::BTCSDiffusion::fillVectorFromRow(
@ -268,7 +287,7 @@ void Diffusion::BTCSDiffusion::fillVectorFromRow(
const DVectorRowMajor &t0_c, int size, double dx, double time_step) {
Diffusion::boundary_condition left = bc[0];
Diffusion::boundary_condition right = bc[size - 1];
Diffusion::boundary_condition right = bc[size + 1];
bool left_constant = (left.type == Diffusion::BC_CONSTANT);
bool right_constant = (right.type == Diffusion::BC_CONSTANT);
@ -276,7 +295,7 @@ void Diffusion::BTCSDiffusion::fillVectorFromRow(
int b_size = b_vector.size();
for (int j = 0; j < size; j++) {
boundary_condition tmp_bc = bc[j];
boundary_condition tmp_bc = bc[j + 1];
if (tmp_bc.type == Diffusion::BC_CONSTANT) {
b_vector[j + 1] = tmp_bc.value;
@ -287,15 +306,14 @@ void Diffusion::BTCSDiffusion::fillVectorFromRow(
b_vector[j + 1] = -c[j] - t0_c_j;
}
if (!left_constant) {
// this is not correct currently.We will fix this when we are able to define
// FLUX boundary conditions
b_vector[0] = getBCFromFlux(left, c[0], alpha[0]);
}
// this is not correct currently.We will fix this when we are able to define
// FLUX boundary conditions
b_vector[0] =
(left_constant ? left.value : getBCFromFlux(left, c[0], alpha[0]));
if (!right_constant) {
b_vector[b_size - 1] = getBCFromFlux(right, c[size - 1], alpha[size - 1]);
}
b_vector[b_size - 1] =
(right_constant ? right.value
: getBCFromFlux(right, c[size - 1], alpha[size - 1]));
}
void Diffusion::BTCSDiffusion::setTimestep(double time_step) {
@ -312,7 +330,7 @@ auto Diffusion::BTCSDiffusion::simulate(double *c, double *alpha,
if (this->grid_dim == 1) {
Eigen::Map<DVectorRowMajor> c_in(c, this->grid_cells[0]);
Eigen::Map<const DVectorRowMajor> alpha_in(alpha, this->grid_cells[0]);
Eigen::Map<const BCVectorRowMajor> bc_in(bc, this->grid_cells[0]);
Eigen::Map<const BCVectorRowMajor> bc_in(bc, this->grid_cells[0] + 2);
simulate1D(c_in, alpha_in, bc_in);
}
@ -323,8 +341,8 @@ auto Diffusion::BTCSDiffusion::simulate(double *c, double *alpha,
Eigen::Map<const DMatrixRowMajor> alpha_in(alpha, this->grid_cells[1],
this->grid_cells[0]);
Eigen::Map<const BCMatrixRowMajor> bc_in(bc, this->grid_cells[1],
this->grid_cells[0]);
Eigen::Map<const BCMatrixRowMajor> bc_in(bc, this->grid_cells[1] + 2,
this->grid_cells[0] + 2);
simulate2D(c_in, alpha_in, bc_in);
}