diff --git a/doc/ADI_scheme.org b/doc/ADI_scheme.org index dac13bd..50544fe 100644 --- a/doc/ADI_scheme.org +++ b/doc/ADI_scheme.org @@ -253,23 +253,57 @@ yields: -C^{t + 1/2}_{i,j} - s_x (C^{t + 1/2}_{i-1,j} - 2C^{t + 1/2}_{i,j} + C^{t + 1/2}_{i+1,j}) = - C^{t+1}_{i,j} + s_y (C^{t+1}_{i,j-1} - 2C^{t+1}_{i,j} + C^{t+1}_{i,j+1}) \end{equation} -This scheme only applies to inlet cells without a relation to -boundaries. Fortunately we already derived both cases of outer left -and right inlet cell respectively. Hence we are able to redefine each -$\delta^2$ case in x and y direction, assuming $l_x$ and $l_y$ the be -the left boundary value and $r_x$ and $r_y$ the right one for each -direction $x$ and $y$. The equations are exemplary for time level -$t+1/2$: +This scheme only applies to inner cells, or else $\forall i,j \in [1, +n-1] \times [1, n-1]$. Following an analogous treatment as for the 1D +case, and noting $l_x$ and $l_y$ the constant left boundary values and +$r_x$ and $r_y$ the right ones for each direction $x$ and $y$, we can +modify equations [[eqn:sweepX]] for $i=0, j \in [1, n-1]$ + +#+NAME: eqn:boundXleft +\begin{equation}\displaystyle +-C^t_{0,j} - s_y (C^{t}_{0,j-1} - 2C^{t}_{0,j} + C^{t}_{0,j+1}) = - C^{t+1/2}_{0,j} + s_x (C^{t+1/2}_{1,j} - 3C^{t+1/2}_{0,j} + 2 l_x) +\end{equation} + +\noindent Similarly for $i=n, j \in [1, n-1]$: +#+NAME: eqn:boundXright +\begin{equation}\displaystyle +-C^t_{n,j} - s_y (C^{t}_{n,j-1} - 2C^{t}_{n,j} + C^{t}_{n,j+1}) = - C^{t+1/2}_{n,j} + s_x (C^{t+1/2}_{n-1,j} - 3C^{t+1/2}_{n,j} + 2 r_x) +\end{equation} + +\noindent For $i=j=0$: +#+NAME: eqn:bound00 +\begin{equation}\displaystyle +-C^t_{0,0} - s_y (C^{t}_{0,1} - 3C^{t}_{0,0} + 2l_y) = - C^{t+1/2}_{0,0} + s_x (C^{t+1/2}_{1,0} - 3C^{t+1/2}_{0,0} + 2 l_x) +\end{equation} + +Analogous expressions are readily derived for all possible +combinations of $i,j \in 0\times n$. In practice, wherever an index +$i$ or $j$ is $0$ or $n$, the centered spatial derivatives in $x$ or +$y$ directions must be substituted in relevant parts of the sweeping +equations \textbf{in both the implicit or the explicit sides} of +equations [[eqn:sweepX]] and [[eqn:sweepY]] by a term + +#+NAME: eqn:bound00 +\begin{equation}\displaystyle + s(C_{forw} - 3C + 2 bc) +\end{equation} +\noindent where $bc$ is the boundary condition in the given direction, +$s$ is either $s_x$ or $s_y$, and $C_{forw}$ indicates the contiguous +cell opposite to the boundary. Alternatively, noting the second +derivative operator as $\partial_{dir}^2$, we can write in compact +form: \begin{equation} \systeme{ - \displaystyle \delta^2_d C^{t+1/2}_{0,j} = 2l_x - 3C^{t+1/2}_{0,j} + C^{t+1/2}_{1,j} , - \displaystyle \delta^2_d C^{t+1/2}_{n,j} = 2r_x - 3C^{t+1/2}_{n,j} + C^{t+1/2}_{n-1,j} , - \displaystyle \delta^2_d C^{t+1/2}_{i,0} = 2l_y - 3C^{t+1/2}_{i,0} + C^{t+1/2}_{i,1} , - \displaystyle \delta^2_d C^{t+1/2}_{i,n} = 2r_y - 3C^{t+1/2}_{i,n} + C^{t+1/2}_{i,n-1} + \displaystyle \partial_x^2 C_{0,j} = 2l_x - 3C_{0,j} + C_{1,j} , + \displaystyle \partial_x^2 C_{n,j} = 2r_x - 3C_{n,j} + C_{n-1,j} , + \displaystyle \partial_y^2 C_{i,0} = 2l_y - 3C_{i,0} + C_{i,1} , + \displaystyle \partial_y^2 C_{i,n} = 2r_y - 3C_{i,n} + C_{i,n-1} } \end{equation} + + #+LATEX: \clearpage * Old stuff