Checkout files from age

This commit is contained in:
Max Luebke 2022-04-20 09:34:32 +02:00
parent 7b36225bd6
commit 777d75baa5
2 changed files with 94 additions and 0 deletions

View File

@ -1,6 +1,7 @@
#+TITLE: Adi 2D Scheme
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
#+LATEX_HEADER: \usepackage{fullpage}
#+LATEX_HEADER: \usepackage{amsmath}
#+OPTIONS: toc:nil
* Input
@ -104,3 +105,96 @@ bc(i,j).\text{value} & \text{if } bc(i,N-1) = \text{constant} \\
\end{cases}$
[fn:1] $p$ is called =t0_c= inside code
** Finite differences with nodes as cells' centres
*** The explicit FTCS scheme as in PHREEQC
The 1D diffusion equation is:
#+NAME: eqn:1
\begin{align}
\frac{\partial C }{\partial t} & = \frac{\partial}{\partial x} \left(\alpha \frac{\partial C }{\partial x} \right) \nonumber \\
& = \alpha \frac{\partial^2 C}{\partial x^2}
\end{align}
We discretize it following a Forward Time, Centered Space finite
difference scheme where the nodes correspond to the centers of a grid
such as:
[[./grid_pqc.pdf]]
The left boundary is defined on $x=0$ while the center of the first
cell is in $x=dx/2$, with $dx=L/n$.
We discretize [[eqn:1]] as following, for each index i in 1, \dots, n-1
and assuming constant $\alpha$:
#+NAME: eqn:2
\begin{equation}\displaystyle
\frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
\end{equation}
In practice, we evaluate the first derivatives of $C$ w.r.t. $x$ on
the boundaries of each cell (i.e., $(C_{i+1}-C_i)/\Delta x$ on the
right boundary of the i-th cell and $(C_{i}-C_{i-1})/\Delta x$ on its
left cell boundary) and then repeat the differentiation to get the
second derivative of $C$ on the the cell centre $i$.
This discretization works for all internal cells, but not for the
boundaries. To properly treat them, we need to account for the
discrepancy in the discretization.
For the first (left) cell, whose center is at $x=dx/2$, we can
evaluate the left gradient with the left boundary using such distance,
calling $l$ the numerical value of a constant boundary condition:
#+NAME: eqn:3
\begin{equation}\displaystyle
\frac{C_0^{j+1} -C_0^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{1}-C^{j+1}_{0}}{\Delta x}-
\frac{C^{j+1}_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
\end{equation}
This expression, once developed, yields:
#+NAME: eqn:4
\begin{align}\displaystyle
C_0^{j+1} & = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}-C^{j+1}_{0}- 2 C^{j+1}_{0}+2l \right) \nonumber \\
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}- 3 C^{j+1}_{0} +2l \right)
\end{align}
Which leads to the following term applicable to our approach:
#+NAME: eqn:5
\begin{equation}\displaystyle
-C^j_0} = \left[\frac{\alpha \cdot \Delta t}{\Delta x^2}\right] \cdot \left(C^{j+1}_1 + 2l \right) + \left[ -1 - 3 \cdot \frac{\alpha \cdot \Delta t}{\Delta x^2} \right] \cdot C^{j+1}_0
\end{equation}
In case of constant right boundary, the finite difference of point
$C_n$ - calling $r$ the right boundary value - is:
#+NAME: eqn:6
\begin{equation}\displaystyle
\frac{C_n^{j+1} -C_n^j}{\Delta t} = \alpha\frac{\frac{r - C^j_{n}}{\frac{\Delta x}{2}}-
\frac{C^j_{n}-C^j_{n-1}}{\Delta x}}{\Delta x}
\end{equation}
Which, developed, gives
#+NAME: eqn:7
\begin{align}\displaystyle
C_n^{j+1} & = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 2 C^j_{n} -C^j_{n} + C^j_{n-1} \right) \nonumber \\
& = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 3 C^j_{n} + C^j_{n-1} \right)
\end{align}
If on the right boundary we have closed or Neumann condition, the left derivative in eq. [[eqn:5]]
becomes zero and we are left with:
#+NAME: eqn:8
\begin{equation}\displaystyle
C_n^{j+1} = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot (C^j_{n-1} - C^j_n)
\end{equation}
A similar treatment can be applied to the BTCS implicit scheme.

BIN
doc/grid_pqc.pdf Normal file

Binary file not shown.