feat: add naaice/NAAICE_dble_vs_float.cpp

This commit is contained in:
Marco De Lucia 2023-10-16 17:31:43 +02:00
parent 9a3fc67885
commit 8cfb61587d
2 changed files with 250 additions and 0 deletions

View File

@ -1,9 +1,12 @@
add_executable(naaice BTCS_2D_NAAICE.cpp)
add_executable(NAAICE_dble_vs_float NAAICE_dble_vs_float.cpp)
get_filename_component(IN_CONC_FILE "init_conc.csv" REALPATH)
get_filename_component(IN_ALPHAX_FILE "alphax.csv" REALPATH)
configure_file(files.hpp.in files.hpp)
target_include_directories(naaice PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
target_include_directories(NAAICE_dble_vs_float PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
target_link_libraries(naaice PUBLIC tug)
target_link_libraries(NAAICE_dble_vs_float PUBLIC tug)

View File

@ -0,0 +1,247 @@
#include <Eigen/Eigen>
#include <cstdint>
#include <fstream>
#include <iostream>
#include <ostream>
#include <stdexcept>
#include <string>
#include <string_view>
#include <tug/Simulation.hpp>
#include <vector>
#include <chrono>
#include "files.hpp"
using namespace tug;
/**
* Try to parse an input string into a given template type.
*/
template <typename T> inline T parseString(const std::string &str) {
T result;
std::istringstream iss(str);
if (!(iss >> result)) {
throw std::invalid_argument("Invalid input for parsing.");
}
return result;
}
/**
* Splits a given string into a vector by using a delimiter character.
*/
template <typename T>
std::vector<T> tokenize(const std::string &input, char delimiter) {
std::vector<T> tokens;
std::istringstream tokenStream(input);
std::string token;
while (std::getline(tokenStream, token, delimiter)) {
tokens.push_back(parseString<T>(token));
}
return tokens;
}
/**
* Opens a file containing CSV and transform it into row-major 2D STL vector.
*/
template <typename T>
std::vector<std::vector<T>> CSVToVector(const char *filename) {
std::ifstream in_file(filename);
if (!in_file.is_open()) {
throw std::runtime_error("Error opening file \'" + std::string(filename) +
"\'.");
}
std::vector<std::vector<T>> csv_data;
std::string line;
while (std::getline(in_file, line)) {
csv_data.push_back(tokenize<T>(line, ','));
}
in_file.close();
return csv_data;
}
/**
* Converts a 2D STL vector, where values are stored row-major into a
* column-major Eigen::Matrix.
*/
template <typename T>
Eigen::MatrixXd rmVecTocmMatrix(const std::vector<std::vector<T>> &vec,
std::uint32_t exp_rows,
std::uint32_t exp_cols) {
if (exp_rows != vec.size()) {
throw std::runtime_error(
"Mismatch in y dimension while converting to Eigen::Matrix.");
}
Eigen::MatrixXd out_mat(exp_rows, exp_cols);
for (std::uint32_t ri = 0; ri < exp_rows; ri++) {
const auto &vec_row = vec[ri];
if (vec[ri].size() != exp_cols) {
throw std::runtime_error(
"Mismatch in x dimension while converting to Eigen::Matrix.");
}
for (std::uint32_t cj = 0; cj < exp_cols; cj++) {
out_mat(ri, cj) = vec_row[cj];
}
}
return out_mat;
}
int DoDble(int ngrid, APPROACH approach) {
constexpr double dt = 10;
// create a grid
std::cout << "DOUBLE grid: " << ngrid << std::endl;
Grid64 grid64(ngrid, ngrid);
// (optional) set the domain, e.g.:
grid64.setDomain(0.1, 0.1);
Eigen::MatrixXd initConc64 = Eigen::MatrixXd::Constant(ngrid, ngrid, 0);
initConc64(50, 50) = 1E-6;
grid64.setConcentrations(initConc64);
const double sum_init64 = initConc64.sum();
constexpr double alphax_val = 5e-10;
Eigen::MatrixXd alphax = Eigen::MatrixXd::Constant(ngrid, ngrid, alphax_val); // row,col,value
constexpr double alphay_val = 1e-10;
Eigen::MatrixXd alphay = Eigen::MatrixXd::Constant(ngrid, ngrid, alphay_val); // row,col,value
grid64.setAlpha(alphax, alphay);
// create a boundary with constant values
Boundary bc64 = Boundary(grid64);
bc64.setBoundarySideClosed(BC_SIDE_LEFT);
bc64.setBoundarySideClosed(BC_SIDE_RIGHT);
bc64.setBoundarySideClosed(BC_SIDE_TOP);
bc64.setBoundarySideClosed(BC_SIDE_BOTTOM);
// set up a simulation environment
Simulation Sim64 =
Simulation(grid64, bc64, approach); // grid_64,boundary,simulation-approach
//Sim64.setSolver(THOMAS_ALGORITHM_SOLVER);
// set the timestep of the simulation
Sim64.setTimestep(dt); // timestep
// set the number of iterations
Sim64.setIterations(2);
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
Sim64.setOutputCSV(CSV_OUTPUT_ON);
// set output to the console to 'ON'
Sim64.setOutputConsole(CONSOLE_OUTPUT_OFF);
// // **** RUN SIM64 ****
auto begin64 = std::chrono::high_resolution_clock::now();
Sim64.run();
auto end64 = std::chrono::high_resolution_clock::now();
auto ms64 = std::chrono::duration_cast<std::chrono::milliseconds>(end64 - begin64);
const double sum_after64 = grid64.getConcentrations().sum();
std::cout << "Sum of init field: " << std::setprecision(15) << sum_init64
<< "\nSum after 2 iterations: " << sum_after64
<< "\nMilliseconds: " << ms64.count() << std::endl << std::endl;
return 0;
}
int DoFloat(int ngrid, APPROACH approach) {
constexpr double dt = 10;
// create a grid
std::cout << "FLOAT grid: " << ngrid << std::endl;
Grid32 grid32(ngrid, ngrid);
// (optional) set the domain, e.g.:
grid32.setDomain(0.1, 0.1);
Eigen::MatrixXf initConc32 = Eigen::MatrixXf::Constant(ngrid, ngrid, 0);
initConc32(50, 50) = 1E-6;
grid32.setConcentrations(initConc32);
const float sum_init32 = initConc32.sum();
constexpr float alphax_val = 5e-10;
Eigen::MatrixXf alphax = Eigen::MatrixXf::Constant(ngrid, ngrid, alphax_val); // row,col,value
constexpr float alphay_val = 1e-10;
Eigen::MatrixXf alphay = Eigen::MatrixXf::Constant(ngrid, ngrid, alphay_val); // row,col,value
grid32.setAlpha(alphax, alphay);
// create a boundary with constant values
Boundary bc32 = Boundary(grid32);
bc32.setBoundarySideClosed(BC_SIDE_LEFT);
bc32.setBoundarySideClosed(BC_SIDE_RIGHT);
bc32.setBoundarySideClosed(BC_SIDE_TOP);
bc32.setBoundarySideClosed(BC_SIDE_BOTTOM);
// set up a simulation environment
Simulation Sim32 =
Simulation(grid32, bc32, approach); // grid_32,boundary,simulation-approach
// Sim32.setSolver(THOMAS_ALGORITHM_SOLVER);
// set the timestep of the simulation
Sim32.setTimestep(dt); // timestep
// set the number of iterations
Sim32.setIterations(2);
// set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON,
// CSV_OUTPUT_VERBOSE]
Sim32.setOutputCSV(CSV_OUTPUT_ON);
// set output to the console to 'ON'
Sim32.setOutputConsole(CONSOLE_OUTPUT_OFF);
// // **** RUN SIM32 ****
auto begin32 = std::chrono::high_resolution_clock::now();
Sim32.run();
auto end32 = std::chrono::high_resolution_clock::now();
auto ms32 = std::chrono::duration_cast<std::chrono::milliseconds>(end32 - begin32);
const float sum_after32 = grid32.getConcentrations().sum();
std::cout << "Sum of init field: " << std::setprecision(15) << sum_init32
<< "\nSum after 2 iteration: " << sum_after32
<< "\nMilliseconds: " << ms32.count() << std::endl << std::endl;
return 0;
}
int main(int argc, char *argv[]) {
int n[] = {101, 201, 501, 1001, 2001};
for (int i = 0; i < std::size(n); i++) {
DoFloat(n[i], BTCS_APPROACH);
DoDble(n[i], BTCS_APPROACH);
DoFloat(n[i], FTCS_APPROACH);
DoDble(n[i], FTCS_APPROACH);
}
return 0;
}