use private datatypes to adress solver matrix
This commit is contained in:
parent
c3e886bb07
commit
8d27274101
@ -6,12 +6,6 @@
|
|||||||
#include <Eigen/src/Core/Matrix.h>
|
#include <Eigen/src/Core/Matrix.h>
|
||||||
#include <Eigen/src/Core/util/Constants.h>
|
#include <Eigen/src/Core/util/Constants.h>
|
||||||
#include <Eigen/src/OrderingMethods/Ordering.h>
|
#include <Eigen/src/OrderingMethods/Ordering.h>
|
||||||
#include <Eigen/src/SparseCholesky/SimplicialCholesky.h>
|
|
||||||
#include <Eigen/src/SparseCore/SparseMap.h>
|
|
||||||
#include <Eigen/src/SparseCore/SparseMatrix.h>
|
|
||||||
#include <Eigen/src/SparseCore/SparseMatrixBase.h>
|
|
||||||
#include <Eigen/src/SparseLU/SparseLU.h>
|
|
||||||
#include <Eigen/src/SparseQR/SparseQR.h>
|
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <iomanip>
|
#include <iomanip>
|
||||||
@ -32,8 +26,8 @@ BTCSDiffusion::BTCSDiffusion(int x, int y) : dim_x(x), dim_y(y) {
|
|||||||
// this->grid_dim = 2;
|
// this->grid_dim = 2;
|
||||||
|
|
||||||
// this->bc.reserve(x * 2 + y * 2);
|
// this->bc.reserve(x * 2 + y * 2);
|
||||||
// // per default use Neumann condition with gradient of 0 at the end of the grid
|
// // per default use Neumann condition with gradient of 0 at the end of the
|
||||||
// std::fill(this->bc.begin(), this->bc.end(), -1);
|
// grid std::fill(this->bc.begin(), this->bc.end(), -1);
|
||||||
}
|
}
|
||||||
BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
|
BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
|
||||||
: dim_x(x), dim_y(y), dim_z(z) {
|
: dim_x(x), dim_y(y), dim_z(z) {
|
||||||
@ -42,16 +36,20 @@ BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
|
|||||||
// TODO: reserve memory for boundary conditions
|
// TODO: reserve memory for boundary conditions
|
||||||
}
|
}
|
||||||
|
|
||||||
void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
|
void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
|
||||||
double timestep) {
|
double bc_right, std::vector<double> &alpha) {
|
||||||
// calculate dx
|
// calculate dx
|
||||||
double dx = 1. / (this->dim_x - 1);
|
double dx = 1. / (this->dim_x - 1);
|
||||||
|
|
||||||
// calculate size needed for A matrix and b,x vectors
|
// calculate size needed for A matrix and b,x vectors
|
||||||
int size = this->dim_x + 2;
|
int size = this->dim_x + 2;
|
||||||
|
|
||||||
Eigen::VectorXd b = Eigen::VectorXd::Constant(size, 0);
|
// set sizes of private and yet allocated vectors
|
||||||
Eigen::VectorXd x_out(size);
|
b_vector.resize(size);
|
||||||
|
x_vector.resize(size);
|
||||||
|
|
||||||
|
// Eigen::VectorXd b = Eigen::VectorXd::Constant(size, 0);
|
||||||
|
// Eigen::VectorXd x_out(size);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Initalization of matrix A
|
* Initalization of matrix A
|
||||||
@ -59,42 +57,42 @@ void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
|
|||||||
* https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
|
* https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
|
||||||
*/
|
*/
|
||||||
|
|
||||||
std::vector<T> tripletList;
|
// std::vector<T> tripletList;
|
||||||
tripletList.reserve(c.size() * 3 + bc.size());
|
// tripletList.reserve(c.size() * 3 + bc.size());
|
||||||
|
|
||||||
int A_line = 0;
|
// int A_line = 0;
|
||||||
|
|
||||||
// For all concentrations create one row in matrix A
|
// // For all concentrations create one row in matrix A
|
||||||
for (int i = 1; i < this->dim_x + 1; i++) {
|
// for (int i = 1; i < this->dim_x + 1; i++) {
|
||||||
double sx = (alpha[i - 1] * timestep) / (dx * dx);
|
// double sx = (alpha[i - 1] * timestep) / (dx * dx);
|
||||||
|
|
||||||
tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
|
// tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
|
||||||
|
|
||||||
tripletList.push_back(T(A_line, i - 1, sx));
|
// tripletList.push_back(T(A_line, i - 1, sx));
|
||||||
tripletList.push_back(T(A_line, i + 1, sx));
|
// tripletList.push_back(T(A_line, i + 1, sx));
|
||||||
|
|
||||||
b[A_line] = -c[i - 1];
|
// b[A_line] = -c[i - 1];
|
||||||
A_line++;
|
// A_line++;
|
||||||
}
|
// }
|
||||||
|
|
||||||
// append left and right boundary conditions/ghost zones
|
// // append left and right boundary conditions/ghost zones
|
||||||
tripletList.push_back(T(A_line, 0, 1));
|
// tripletList.push_back(T(A_line, 0, 1));
|
||||||
|
|
||||||
// if value is -1 apply Neumann condition with given gradient
|
// // if value is -1 apply Neumann condition with given gradient
|
||||||
// TODO: set specific gradient
|
// // TODO: set specific gradient
|
||||||
if (bc[0] == -1)
|
// if (bc[0] == -1)
|
||||||
b[A_line] = c[0];
|
// b[A_line] = c[0];
|
||||||
// else apply given Dirichlet condition
|
// // else apply given Dirichlet condition
|
||||||
else
|
// else
|
||||||
b[A_line] = this->bc[0];
|
// b[A_line] = this->bc[0];
|
||||||
|
|
||||||
A_line++;
|
// A_line++;
|
||||||
tripletList.push_back(T(A_line, size - 1, 1));
|
// tripletList.push_back(T(A_line, size - 1, 1));
|
||||||
// b[A_line] = bc[1];
|
// // b[A_line] = bc[1];
|
||||||
if (bc[1] == -1)
|
// if (bc[1] == -1)
|
||||||
b[A_line] = c[c.size() - 1];
|
// b[A_line] = c[c.size() - 1];
|
||||||
else
|
// else
|
||||||
b[A_line] = this->bc[1];
|
// b[A_line] = this->bc[1];
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Begin to solve the equation system
|
* Begin to solve the equation system
|
||||||
@ -103,22 +101,71 @@ void BTCSDiffusion::simulate(std::vector<double> &c, std::vector<double> &alpha,
|
|||||||
* TODO: remove output
|
* TODO: remove output
|
||||||
*/
|
*/
|
||||||
|
|
||||||
Eigen::SparseMatrix<double> A(size, size);
|
A_matrix.resize(size, size);
|
||||||
A.setFromTriplets(tripletList.begin(), tripletList.end());
|
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
|
||||||
|
|
||||||
|
A_matrix.insert(0, 0) = bc_left;
|
||||||
|
A_matrix.insert(size - 1, size - 1) = bc_right;
|
||||||
|
|
||||||
|
for (int i = 1; i < this->dim_x + 1; i++) {
|
||||||
|
double sx = (alpha[i - 1] * time_step) / (dx * dx);
|
||||||
|
|
||||||
|
A_matrix.insert(i, i) = -1. - 2. * sx;
|
||||||
|
A_matrix.insert(i, i - 1) = sx;
|
||||||
|
A_matrix.insert(i, i + 1) = sx;
|
||||||
|
|
||||||
|
b_vector[i] = -c[i - 1];
|
||||||
|
|
||||||
|
// tripletList.push_back(T(A_line, i, (-1. - 2. * sx)));
|
||||||
|
|
||||||
|
// tripletList.push_back(T(A_line, i - 1, sx));
|
||||||
|
// tripletList.push_back(T(A_line, i + 1, sx));
|
||||||
|
|
||||||
|
// b[A_line] = -c[i - 1];
|
||||||
|
// A_line++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Eigen::SparseMatrix<double> A(size, size);
|
||||||
|
// A.setFromTriplets(tripletList.begin(), tripletList.end());
|
||||||
|
|
||||||
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
|
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
|
||||||
solver;
|
solver;
|
||||||
solver.analyzePattern(A);
|
solver.analyzePattern(A_matrix);
|
||||||
|
|
||||||
solver.factorize(A);
|
solver.factorize(A_matrix);
|
||||||
|
|
||||||
std::cout << solver.lastErrorMessage() << std::endl;
|
std::cout << solver.lastErrorMessage() << std::endl;
|
||||||
|
|
||||||
x_out = solver.solve(b);
|
x_vector = solver.solve(b_vector);
|
||||||
|
|
||||||
std::cout << std::setprecision(10) << x_out << std::endl << std::endl;
|
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
|
||||||
|
|
||||||
for (int i = 0; i < c.size(); i++) {
|
for (int i = 0; i < c.size(); i++) {
|
||||||
c[i] = x_out[i + 1];
|
c[i] = x_vector[i + 1];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void BTCSDiffusion::setTimestep(double time_step) {
|
||||||
|
this->time_step = time_step;
|
||||||
|
}
|
||||||
|
|
||||||
|
void BTCSDiffusion::simulate(std::vector<double> &c,
|
||||||
|
std::vector<double> &alpha) {
|
||||||
|
if (this->grid_dim == 1) {
|
||||||
|
double bc_left = getBCFromTuple(0);
|
||||||
|
double bc_right = getBCFromTuple(1);
|
||||||
|
|
||||||
|
simulate1D(c, bc_left, bc_right, alpha);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
double BTCSDiffusion::getBCFromTuple(int index) {
|
||||||
|
double val = std::get<1>(bc[index]);
|
||||||
|
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void BTCSDiffusion::setBoundaryCondition(int index, double val, int type) {
|
||||||
|
std::get<0>(bc[index]) = val;
|
||||||
|
std::get<1>(bc[index]) = type;
|
||||||
|
}
|
||||||
|
|||||||
@ -2,6 +2,7 @@
|
|||||||
#define BTCSDIFFUSION_H_
|
#define BTCSDIFFUSION_H_
|
||||||
|
|
||||||
#include <Eigen/Sparse>
|
#include <Eigen/Sparse>
|
||||||
|
#include <Eigen/src/SparseCore/SparseMatrixBase.h>
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
@ -20,7 +21,6 @@ typedef std::vector<std::tuple<int,double>> boundary_condition;
|
|||||||
class BTCSDiffusion {
|
class BTCSDiffusion {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
static const int BC_NEUMANN;
|
static const int BC_NEUMANN;
|
||||||
static const int BC_DIRICHLET;
|
static const int BC_DIRICHLET;
|
||||||
|
|
||||||
@ -56,13 +56,28 @@ public:
|
|||||||
* @param alpha Vector of diffusioncoefficients for each grid element.
|
* @param alpha Vector of diffusioncoefficients for each grid element.
|
||||||
* @param timestep Time (in seconds ?) to simulate.
|
* @param timestep Time (in seconds ?) to simulate.
|
||||||
*/
|
*/
|
||||||
void simulate(std::vector<double> &c, std::vector<double> &alpha,
|
void simulate(std::vector<double> &c, std::vector<double> &alpha);
|
||||||
double timestep);
|
|
||||||
|
void setTimestep(double time_step);
|
||||||
|
|
||||||
|
void setBoundaryCondition(int index, double val, int type);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
void simulate1D(std::vector<double> &c, double bc_left, double bc_right,
|
||||||
|
std::vector<double> &alpha);
|
||||||
|
void simulate2D(std::vector<double> &c);
|
||||||
|
void simulate3D(std::vector<double> &c);
|
||||||
|
|
||||||
|
double getBCFromTuple(int index);
|
||||||
|
|
||||||
boundary_condition bc;
|
boundary_condition bc;
|
||||||
|
|
||||||
|
Eigen::SparseMatrix<double> A_matrix;
|
||||||
|
Eigen::VectorXd b_vector;
|
||||||
|
Eigen::VectorXd x_vector;
|
||||||
|
|
||||||
|
double time_step;
|
||||||
|
|
||||||
int grid_dim;
|
int grid_dim;
|
||||||
int dim_x;
|
int dim_x;
|
||||||
int dim_y;
|
int dim_y;
|
||||||
|
|||||||
@ -18,13 +18,16 @@ int main(int argc, char *argv[]) {
|
|||||||
|
|
||||||
BTCSDiffusion diffu(x);
|
BTCSDiffusion diffu(x);
|
||||||
|
|
||||||
diffu.setBoundaryCondition(bc_left, BTCSDiffusion::LEFT);
|
diffu.setBoundaryCondition(0, 5. * std::pow(10, -6), BTCSDiffusion::BC_DIRICHLET);
|
||||||
|
diffu.setTimestep(1.);
|
||||||
|
|
||||||
|
// diffu.setBoundaryCondition(bc_left, BTCSDiffusion::LEFT);
|
||||||
// we don't need this since Neumann condition with gradient of 0 is set per
|
// we don't need this since Neumann condition with gradient of 0 is set per
|
||||||
// default
|
// default
|
||||||
// diffu.setBoundaryCondition(bc_right, BTCSDiffusion::RIGHT);
|
// diffu.setBoundaryCondition(bc_right, BTCSDiffusion::RIGHT);
|
||||||
|
|
||||||
for (int i = 0; i < 100; i++) {
|
for (int i = 0; i < 100; i++) {
|
||||||
diffu.simulate(input, alpha, 1.);
|
diffu.simulate(input, alpha);
|
||||||
}
|
}
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user