refactor!: modify constructors to use keyword arguments

This commit is contained in:
nebmit 2023-12-05 18:36:55 +01:00
parent d436811e1c
commit d27917781c
No known key found for this signature in database
7 changed files with 71 additions and 140 deletions

View File

@ -118,7 +118,7 @@ struct Boundary{T}
rows::UInt32
boundaries::Vector{Vector{BoundaryElement{T}}}
function Boundary(grid::Grid{T})::Boundary{T} where {T}
function Boundary{T}(grid::Grid{T})::Boundary{T} where {T}
dim = grid.dim
cols = grid.cols
rows = grid.rows

View File

@ -15,7 +15,7 @@ Allows the manipulation and running of simulations on different grid states in p
- `timestep::T`: The timestep for each iteration.
# Constructor
- `DynamicSimulation(grid, bc, approach, timestep)` creates a new dynamic simulation with specified parameters.
- `DynamicSimulation(grid, bc; approach, timestep, workers)` creates a new dynamic simulation with specified parameters.
"""
struct DynamicSimulation{T} <: AbstractSimulation{T}
grid::Grid{T}
@ -28,11 +28,11 @@ struct DynamicSimulation{T} <: AbstractSimulation{T}
workerPool::WorkerPool
function DynamicSimulation(
function DynamicSimulation{T}(
grid::Grid{T},
bc::Boundary{T},
approach::APPROACH,
timestep::T,
bc::Boundary{T};
approach::APPROACH = BTCS,
timestep::T = 0.1,
workers::Vector{Int} = workers(),
)::DynamicSimulation{T} where {T}
timestep, iterations = adjustTimestep(grid, approach, timestep, 1, false)

View File

@ -21,7 +21,7 @@ of iterations, output options, and simulation approach.
- `csvOutput::CSV_OUTPUT`: Option for CSV file output level.
# Constructor
- `Simulation(grid, bc, approach, iterations, timestep, consoleOutput, csvOutput)` creates a new simulation with specified parameters.
- `Simulation(grid, bc; approach, iterations, timestep, consoleOutput, csvOutput)` creates a new simulation with specified parameters.
"""
struct Simulation{T} <: AbstractSimulation{T}
grid::Grid{T}
@ -34,9 +34,9 @@ struct Simulation{T} <: AbstractSimulation{T}
consoleOutput::CONSOLE_OUTPUT
csvOutput::CSV_OUTPUT
function Simulation(
function Simulation{T}(
grid::Grid{T},
bc::Boundary{T},
bc::Boundary{T};
approach::APPROACH = BTCS,
iterations::Int = 1,
timestep::T = 0.1,
@ -115,105 +115,3 @@ function run(simulation::Simulation{T})::Nothing where {T}
end
end
end
"""
setIterations(simulation::Simulation{T}, iterations::Int)::Simulation{T} where {T}
Sets the number of iterations for the given simulation.
# Arguments
- `simulation::Simulation{T}`: The simulation object.
- `iterations::Int`: The new number of iterations to be set.
# Returns
A new `Simulation` object with updated iterations.
"""
function setIterations(simulation::Simulation{T}, iterations::Int)::Simulation{T} where {T}
return Simulation(
simulation.grid,
simulation.bc,
simulation.approach,
iterations,
simulation.timestep,
simulation.consoleOutput,
simulation.csvOutput,
)
end
"""
setOutputConsole(simulation::Simulation{T}, consoleOutput::CONSOLE_OUTPUT)::Simulation{T} where {T}
Sets the console output level for the simulation.
# Arguments
- `simulation::Simulation{T}`: The simulation object.
- `consoleOutput::CONSOLE_OUTPUT`: The new console output level.
# Returns
A new `Simulation` object with updated console output setting.
"""
function setOutputConsole(
simulation::Simulation{T},
consoleOutput::CONSOLE_OUTPUT,
)::Simulation{T} where {T}
return Simulation(
simulation.grid,
simulation.bc,
simulation.approach,
simulation.iterations,
simulation.timestep,
consoleOutput,
simulation.csvOutput,
)
end
"""
setOutputCSV(simulation::Simulation{T}, csvOutput::CSV_OUTPUT)::Simulation{T} where {T}
Sets the CSV output level for the simulation.
# Arguments
- `simulation::Simulation{T}`: The simulation object.
- `csvOutput::CSV_OUTPUT`: The new CSV output level.
# Returns
A new `Simulation` object with updated CSV output setting.
"""
function setOutputCSV(
simulation::Simulation{T},
csvOutput::CSV_OUTPUT,
)::Simulation{T} where {T}
return Simulation(
simulation.grid,
simulation.bc,
simulation.approach,
simulation.iterations,
simulation.timestep,
simulation.consoleOutput,
csvOutput,
)
end
"""
setTimestep(simulation::Simulation{T}, timestep::T)::Simulation{T} where {T}
Sets the timestep for the simulation.
# Arguments
- `simulation::Simulation{T}`: The simulation object.
- `timestep::T`: The new timestep to be set.
# Returns
A new `Simulation` object with updated timestep.
"""
function setTimestep(simulation::Simulation{T}, timestep::T)::Simulation{T} where {T}
return Simulation(
simulation.grid,
simulation.bc,
simulation.approach,
simulation.iterations,
timestep,
simulation.consoleOutput,
simulation.csvOutput,
)
end

View File

@ -49,7 +49,7 @@ export APPROACH,
include("Simulation.jl")
export Simulation
export run, setTimestep, setIterations, setOutputConsole, setOutputCSV
export run
include("DynamicSimulation.jl")

View File

@ -14,7 +14,7 @@
@testset "Boundary" begin
grid = TUG.Grid{Float64}(25, 20, zeros(25, 20), ones(25, 20))
boundary = TUG.Boundary(grid)
boundary = TUG.Boundary{Float64}(grid)
@test boundary.dim == 2
@test boundary.rows == 25

View File

@ -1,8 +1,8 @@
@testset "DynamicSimulation.jl" begin
@testset "Constructor" begin
grid = TUG.Grid{Float64}(5, ones(1, 5))
boundary = TUG.Boundary(grid)
simulation = TUG.DynamicSimulation(grid, boundary, BTCS, 0.1)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.DynamicSimulation{Float64}(grid, boundary; timestep = 0.1)
@test simulation.grid == grid
@test simulation.bc == boundary
@test simulation.approach == BTCS
@ -10,8 +10,9 @@
@test simulation.timestep == 0.1
grid = TUG.Grid{Float64}(5, ones(1, 5))
boundary = TUG.Boundary(grid)
simulation = TUG.DynamicSimulation(grid, boundary, FTCS, 0.01)
boundary = TUG.Boundary{Float64}(grid)
simulation =
TUG.DynamicSimulation{Float64}(grid, boundary; approach = FTCS, timestep = 0.01)
@test simulation.grid == grid
@test simulation.bc == boundary
@test simulation.approach == FTCS
@ -19,8 +20,9 @@
@test simulation.timestep == 0.01
grid = TUG.Grid{Float64}(5, ones(1, 5))
boundary = TUG.Boundary(grid)
simulation = TUG.DynamicSimulation(grid, boundary, FTCS, 2.33)
boundary = TUG.Boundary{Float64}(grid)
simulation =
TUG.DynamicSimulation{Float64}(grid, boundary; approach = FTCS, timestep = 2.33)
@test simulation.grid == grid
@test simulation.bc == boundary
@test simulation.approach == FTCS
@ -30,8 +32,8 @@
@testset "1D-Run" begin
grid = TUG.Grid{Float64}(5, ones(1, 5))
TUG.setConcentrations!(grid, [1.0 1.0 20.0 1.0 1.0])
boundary = TUG.Boundary(grid)
simulation = TUG.DynamicSimulation(grid, boundary, BTCS, 0.01)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.DynamicSimulation{Float64}(grid, boundary; timestep = 0.01)
TUG.createGrid(simulation)
for _ = 1:20
TUG.next(simulation)
@ -46,9 +48,9 @@
grid = TUG.Grid{Float64}(5, ones(1, 5))
TUG.setConcentrations!(grid, [1.0 1.0 20.0 1.0 1.0])
boundary = TUG.Boundary(grid)
boundary = TUG.Boundary{Float64}(grid)
TUG.setBoundarySideConstant!(boundary, LEFT, 5.0)
simulation = TUG.DynamicSimulation(grid, boundary, BTCS, 0.01)
simulation = TUG.DynamicSimulation{Float64}(grid, boundary; timestep = 0.01)
TUG.createGrid(simulation)
for _ = 1:20
TUG.next(simulation)
@ -73,8 +75,8 @@
1.0 1.0 20.0 1.0 1.0
],
)
boundary = TUG.Boundary(grid)
simulation = TUG.DynamicSimulation(grid, boundary, BTCS, 0.01)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.DynamicSimulation{Float64}(grid, boundary; timestep = 0.01)
TUG.createGrid(simulation)
for _ = 1:20
TUG.next(simulation)
@ -103,9 +105,9 @@
1.0 1.0 20.0 1.0 1.0
],
)
boundary = TUG.Boundary(grid)
boundary = TUG.Boundary{Float64}(grid)
TUG.setBoundarySideConstant!(boundary, LEFT, 5.0)
simulation = TUG.DynamicSimulation(grid, boundary, BTCS, 0.01)
simulation = TUG.DynamicSimulation{Float64}(grid, boundary; timestep = 0.01)
TUG.createGrid(simulation)
for _ = 1:20
TUG.next(simulation)

View File

@ -1,8 +1,8 @@
@testset "Simulation.jl" begin
@testset "Constructor" begin
grid = TUG.Grid{Float64}(5, ones(1, 5))
boundary = TUG.Boundary(grid)
simulation = TUG.Simulation(grid, boundary)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.Simulation{Float64}(grid, boundary)
@test simulation.grid == grid
@test simulation.bc == boundary
@test simulation.approach == BTCS
@ -12,9 +12,16 @@
@test simulation.csvOutput == CSV_OUTPUT_OFF
grid = TUG.Grid{Float64}(5, ones(1, 5))
boundary = TUG.Boundary(grid)
simulation =
TUG.Simulation(grid, boundary, FTCS, 2, 0.2, CONSOLE_OUTPUT_ON, CSV_OUTPUT_ON)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.Simulation{Float64}(
grid,
boundary;
approach = FTCS,
iterations = 2,
timestep = 0.2,
consoleOutput = CONSOLE_OUTPUT_ON,
csvOutput = CSV_OUTPUT_ON,
)
@test simulation.grid == grid
@test simulation.bc == boundary
@test simulation.approach == FTCS
@ -26,8 +33,14 @@
@testset "1D-Run" begin
grid = TUG.Grid{Float64}(5, ones(1, 5))
TUG.setConcentrations!(grid, [1.0 1.0 20.0 1.0 1.0])
boundary = TUG.Boundary(grid)
simulation = TUG.Simulation(grid, boundary, BTCS, 20, 0.01)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.Simulation{Float64}(
grid,
boundary;
approach = BTCS,
iterations = 20,
timestep = 0.01,
)
TUG.run(simulation)
expected_concentrations =
[1.281106278320615 3.5643693033301567 14.309048836698485 3.5643693033301598 1.281106278320616]
@ -35,9 +48,15 @@
grid = TUG.Grid{Float64}(5, ones(1, 5))
TUG.setConcentrations!(grid, [1.0 1.0 20.0 1.0 1.0])
boundary = TUG.Boundary(grid)
boundary = TUG.Boundary{Float64}(grid)
TUG.setBoundarySideConstant!(boundary, LEFT, 5.0)
simulation = TUG.Simulation(grid, boundary, BTCS, 20, 0.01)
simulation = TUG.Simulation{Float64}(
grid,
boundary;
approach = BTCS,
iterations = 20,
timestep = 0.01,
)
TUG.run(simulation)
expected_concentrations =
[2.4416160635284823 3.6810808789967466 14.317333805802393 3.5648326408458035 1.2811288426376255]
@ -55,8 +74,14 @@
1.0 1.0 20.0 1.0 1.0
],
)
boundary = TUG.Boundary(grid)
simulation = TUG.Simulation(grid, boundary, BTCS, 20, 0.01)
boundary = TUG.Boundary{Float64}(grid)
simulation = TUG.Simulation{Float64}(
grid,
boundary;
approach = BTCS,
iterations = 20,
timestep = 0.01,
)
TUG.run(simulation)
expected_concentrations = [
1.141904802011076 3.591390417498421 14.249599956958917 3.5913904174984217 1.1419048020110782
@ -78,9 +103,15 @@
1.0 1.0 20.0 1.0 1.0
],
)
boundary = TUG.Boundary(grid)
boundary = TUG.Boundary{Float64}(grid)
TUG.setBoundarySideConstant!(boundary, LEFT, 5.0)
simulation = TUG.Simulation(grid, boundary, BTCS, 20, 0.01)
simulation = TUG.Simulation{Float64}(
grid,
boundary;
approach = BTCS,
iterations = 20,
timestep = 0.01,
)
TUG.run(simulation)
expected_concentrations = [
1.9866377371338924 3.67421468453773 14.255058363518529 3.5916629034159486 1.1419105589005596