MDL updating docs and docs_sphinx
This commit is contained in:
parent
2294922a3e
commit
eb2a9774a5
@ -1,6 +1,7 @@
|
|||||||
#+TITLE: Finite Difference Schemes for the numerical solution of heterogeneous diffusion equation in 2D
|
#+TITLE: Finite Difference Schemes for the numerical solution of heterogeneous diffusion equation in 2D
|
||||||
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
|
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
|
||||||
#+LATEX_HEADER: \usepackage{fullpage}
|
#+LATEX_HEADER: \usepackage{fullpage}
|
||||||
|
#+LATEX_HEADER: \usepackage{charter}
|
||||||
#+LATEX_HEADER: \usepackage{amsmath, systeme, cancel, xcolor}
|
#+LATEX_HEADER: \usepackage{amsmath, systeme, cancel, xcolor}
|
||||||
#+OPTIONS: toc:nil
|
#+OPTIONS: toc:nil
|
||||||
|
|
||||||
|
|||||||
Binary file not shown.
@ -1,12 +1,12 @@
|
|||||||
#+TITLE: 2D Validation Examples
|
#+TITLE: Validation Examples for 2D Heterogeneous Diffusion
|
||||||
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
|
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
|
||||||
#+DATE: 2023-07-31
|
#+DATE: 2023-08-26
|
||||||
#+STARTUP: inlineimages
|
#+STARTUP: inlineimages
|
||||||
#+LATEX_CLASS_OPTIONS: [a4paper,9pt]
|
#+LATEX_CLASS_OPTIONS: [a4paper,9pt]
|
||||||
#+LATEX_HEADER: \usepackage{fullpage}
|
#+LATEX_HEADER: \usepackage{fullpage}
|
||||||
#+LATEX_HEADER: \usepackage{amsmath, systeme}
|
#+LATEX_HEADER: \usepackage{amsmath, systeme}
|
||||||
#+LATEX_HEADER: \usepackage{graphicx}
|
#+LATEX_HEADER: \usepackage{graphicx}
|
||||||
#+LATEX_HEADER: \usepackage{}
|
#+LATEX_HEADER: \usepackage{charter}
|
||||||
#+OPTIONS: toc:nil
|
#+OPTIONS: toc:nil
|
||||||
|
|
||||||
|
|
||||||
@ -38,7 +38,7 @@ constant in 4 quadrants:
|
|||||||
The relevant part of the R script used to produce these results is
|
The relevant part of the R script used to produce these results is
|
||||||
presented in listing 1; the whole script is at [[file:scripts/HetDiff.R]].
|
presented in listing 1; the whole script is at [[file:scripts/HetDiff.R]].
|
||||||
A visualization of the output of the reference simulation is given in
|
A visualization of the output of the reference simulation is given in
|
||||||
figure [[#fig:1][1]].
|
figure [[fig:1][1]].
|
||||||
|
|
||||||
Note: all results from this script are stored in the =outc= matrix by
|
Note: all results from this script are stored in the =outc= matrix by
|
||||||
the =deSolve= function. I stored a different version into
|
the =deSolve= function. I stored a different version into
|
||||||
@ -47,6 +47,7 @@ for each time step including initial conditions) and 121 rows, one for
|
|||||||
each domain element, with no headers.
|
each domain element, with no headers.
|
||||||
|
|
||||||
#+caption: Result of ReacTran/deSolve solution of the above problem at 4
|
#+caption: Result of ReacTran/deSolve solution of the above problem at 4
|
||||||
|
#+name: fig:1
|
||||||
[[./images/deSolve_AlphaHet1.png]]
|
[[./images/deSolve_AlphaHet1.png]]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -5,12 +5,25 @@
|
|||||||
|
|
||||||
Welcome to Tug's documentation!
|
Welcome to Tug's documentation!
|
||||||
===============================
|
===============================
|
||||||
|
|
||||||
Welcome to the documentation of the TUG project, a simulation program
|
Welcome to the documentation of the TUG project, a simulation program
|
||||||
for solving one- and two-dimensional diffusion problems with heterogeneous diffusion coefficients, more
|
for solving transport equations in one- and two-dimensional uniform
|
||||||
generally, for solving the following differential equation
|
grids using cell centered finite differences.
|
||||||
|
|
||||||
|
Diffusion
|
||||||
|
-----------
|
||||||
|
|
||||||
|
TUG can solve diffusion problems with heterogeneous and anisotropic
|
||||||
|
diffusion coefficients. The partial differential equation expressing
|
||||||
|
diffusion reads:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
\frac{\partial C}{\partial t} = \alpha_x \frac{\partial^2 C}{\partial x^2} + \alpha_y \frac{\partial^2 C}{\partial y^2}.
|
\frac{\partial C}{\partial t} = \nabla \cdot \left[ \mathbf{\alpha} \nabla C \right]
|
||||||
|
|
||||||
|
In 2D, the equation reads:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x}\left[ \alpha_x \frac{\partial C}{\partial x}\right] + \frac{\partial}{\partial y}\left[ \alpha_y \frac{\partial C}{\partial y}\right]
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 2
|
:maxdepth: 2
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user