test: added FTCS julia/cpp tests

[skip ci]
This commit is contained in:
nebmit 2023-11-30 14:36:27 +01:00
parent 2b478c1dd4
commit fe7f5c9b4a
No known key found for this signature in database
11 changed files with 449 additions and 2 deletions

View File

@ -0,0 +1,53 @@
#include <Eigen/Eigen>
#include <tug/Simulation.hpp>
#include <chrono>
#include <iostream>
using namespace Eigen;
using namespace tug;
using namespace std::chrono;
int main(int argc, char *argv[])
{
// **** GRID ****
int rows = 1024;
int cols = 1000;
Grid64 grid(rows, cols);
MatrixXd concentrations = MatrixXd::Constant(rows, cols, 0.5);
concentrations(10, 10) = 15000;
concentrations(1014, 990) = 7500;
concentrations(10, 990) = 7500;
concentrations(1014, 10) = 7500;
grid.setConcentrations(concentrations);
MatrixXd alphax = MatrixXd::Constant(rows, cols, 1.25);
MatrixXd alphay = MatrixXd::Constant(rows, cols, 1.1);
alphax.block(0, 0, 100, cols) = MatrixXd::Constant(100, cols, 0.5);
alphax.block(100, 0, 100, cols) = MatrixXd::Constant(100, cols, 0.8);
alphay.block(0, 0, rows, 200) = MatrixXd::Constant(rows, 200, 0.6);
alphay.block(0, 200, rows, 200) = MatrixXd::Constant(rows, 200, 0.9);
grid.setAlpha(alphax, alphay);
// **** BOUNDARY ****
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// **** SIMULATION ****
Simulation simulation = Simulation<double, tug::FTCS_APPROACH>(grid, bc);
simulation.setTimestep(0.01);
simulation.setIterations(100);
simulation.setOutputCSV(CSV_OUTPUT_ON);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);
// **** RUN SIMULATION ****
auto start = high_resolution_clock::now();
simulation.run();
auto stop = high_resolution_clock::now();
auto duration = duration_cast<nanoseconds>(stop - start);
std::cout << duration.count() << std::endl;
}

View File

@ -0,0 +1,42 @@
#include <Eigen/Eigen>
#include <tug/Simulation.hpp>
#include <chrono>
#include <iostream>
using namespace Eigen;
using namespace tug;
using namespace std::chrono;
int main(int argc, char *argv[])
{
// **** GRID ****
int cells = 20;
Grid64 grid(cells);
MatrixXd concentrations = MatrixXd::Constant(1, cells, 0);
concentrations(0, 0) = 2000;
grid.setConcentrations(concentrations);
MatrixXd alpha = MatrixXd::Constant(1, cells, 1);
grid.setAlpha(alpha);
// **** BOUNDARY ****
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 0);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 0);
// **** SIMULATION ****
Simulation simulation = Simulation<double, tug::FTCS_APPROACH>(grid, bc);
simulation.setTimestep(0.001);
simulation.setIterations(7000);
simulation.setOutputCSV(CSV_OUTPUT_ON);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);
// **** RUN SIMULATION ****
auto start = high_resolution_clock::now();
simulation.run();
auto stop = high_resolution_clock::now();
auto duration = duration_cast<seconds>(stop - start);
std::cout << duration.count() << std::endl;
}

View File

@ -0,0 +1,66 @@
#include <Eigen/Eigen>
#include <tug/Simulation.hpp>
#include <chrono>
#include <iostream>
#include <cmath>
using namespace Eigen;
using namespace tug;
using namespace std::chrono;
int main(int argc, char *argv[])
{
// **** GRID ****
int rows = 2027;
int cols = 1999;
Grid64 grid(rows, cols);
MatrixXd concentrations(rows, cols);
for (int i = 0; i < rows; ++i)
{
for (int j = 0; j < cols; ++j)
{
concentrations(i, j) = static_cast<double>(i * j) / 1e6;
}
}
concentrations(10, 10) = 15000;
concentrations(2020, 1994) = 7500;
concentrations(10, 1994) = 7500;
concentrations(2020, 10) = 7500;
grid.setConcentrations(concentrations);
// Complex alpha patterns
MatrixXd alphax = MatrixXd(rows, cols);
MatrixXd alphay = MatrixXd(rows, cols);
for (int i = 0; i < rows; ++i)
{
for (int j = 0; j < cols; ++j)
{
alphax(i, j) = std::sin(i / 100.0) * std::cos(j / 100.0);
alphay(i, j) = std::cos(i / 100.0) * std::sin(j / 100.0);
}
}
grid.setAlpha(alphax, alphay);
// **** BOUNDARY ****
Boundary bc = Boundary(grid);
bc.setBoundarySideConstant(BC_SIDE_LEFT, 1.5);
bc.setBoundarySideConstant(BC_SIDE_RIGHT, 1.5);
bc.setBoundarySideConstant(BC_SIDE_TOP, 0.75);
bc.setBoundarySideConstant(BC_SIDE_BOTTOM, 0.75);
// **** SIMULATION ****
Simulation simulation = Simulation<double, tug::FTCS_APPROACH>(grid, bc);
simulation.setTimestep(0.005);
simulation.setIterations(200);
simulation.setOutputCSV(CSV_OUTPUT_ON);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);
// **** RUN SIMULATION ****
auto start = high_resolution_clock::now();
simulation.run();
auto stop = high_resolution_clock::now();
auto duration = duration_cast<nanoseconds>(stop - start);
std::cout << duration.count() << std::endl;
}

View File

@ -0,0 +1,46 @@
#include <Eigen/Eigen>
#include <tug/Simulation.hpp>
#include <chrono>
#include <iostream>
using namespace Eigen;
using namespace tug;
using namespace std::chrono;
int main(int argc, char *argv[])
{
// **** GRID ****
int rows = 20;
int cols = 20;
Grid64 grid(rows, cols);
MatrixXd concentrations = MatrixXd::Constant(rows, cols, 0);
concentrations(10, 10) = 2000;
grid.setConcentrations(concentrations);
MatrixXd alphax = MatrixXd::Constant(rows, cols, 1);
MatrixXd alphay = MatrixXd::Constant(rows, cols, 1);
grid.setAlpha(alphax, alphay);
// **** BOUNDARY ****
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// **** SIMULATION ****
Simulation simulation = Simulation<double, tug::FTCS_APPROACH>(grid, bc);
simulation.setTimestep(0.1);
simulation.setIterations(500);
simulation.setOutputCSV(CSV_OUTPUT_ON);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);
// **** RUN SIMULATION ****
auto start = high_resolution_clock::now();
simulation.run();
auto stop = high_resolution_clock::now();
auto duration = duration_cast<nanoseconds>(stop - start);
std::cout << duration.count() << std::endl;
}

View File

@ -0,0 +1,54 @@
#include <Eigen/Eigen>
#include <tug/Simulation.hpp>
#include <chrono>
#include <iostream>
using namespace Eigen;
using namespace tug;
using namespace std::chrono;
int main(int argc, char *argv[])
{
// **** GRID ****
int rows = 450;
int cols = 670;
Grid64 grid(rows, cols);
MatrixXd concentrations = MatrixXd::Constant(rows, cols, 0);
concentrations(10, 10) = 1500;
concentrations(440, 660) = 750;
concentrations(440, 10) = 750;
concentrations(10, 660) = 750;
concentrations(220, 335) = 1500;
grid.setConcentrations(concentrations);
MatrixXd alphax = MatrixXd::Constant(rows, cols, 1);
MatrixXd alphay = MatrixXd::Constant(rows, cols, 1);
alphax.block(0, 0, 100, cols) = MatrixXd::Constant(100, cols, 0.5);
alphax.block(100, 0, 100, cols) = MatrixXd::Constant(100, cols, 0.8);
alphay.block(0, 0, rows, 200) = MatrixXd::Constant(rows, 200, 0.6);
alphay.block(0, 200, rows, 200) = MatrixXd::Constant(rows, 200, 0.9);
grid.setAlpha(alphax, alphay);
// **** BOUNDARY ****
Boundary bc = Boundary(grid);
bc.setBoundarySideClosed(BC_SIDE_LEFT);
bc.setBoundarySideClosed(BC_SIDE_RIGHT);
bc.setBoundarySideClosed(BC_SIDE_TOP);
bc.setBoundarySideClosed(BC_SIDE_BOTTOM);
// **** SIMULATION ****
Simulation simulation = Simulation<double, tug::FTCS_APPROACH>(grid, bc);
simulation.setTimestep(0.2);
simulation.setIterations(750);
simulation.setOutputCSV(CSV_OUTPUT_ON);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);
// **** RUN SIMULATION ****
auto start = high_resolution_clock::now();
simulation.run();
auto stop = high_resolution_clock::now();
auto duration = duration_cast<nanoseconds>(stop - start);
std::cout << duration.count() << std::endl;
}

View File

@ -0,0 +1,41 @@
include("../../tug/Simulation.jl")
function main()
# **** GRID ****
rows::Int = 1024
cols::Int = 1000
alphaX = fill(1.25, rows, cols)
alphaY = fill(1.1, rows, cols)
alphaX[1:100, :] .= 0.5
alphaX[101:200, :] .= 0.8
alphaY[:, 1:200] .= 0.6
alphaY[:, 201:400] .= 0.9
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.5, rows, cols)
concentrations[11, 11] = 15000
concentrations[1015, 991] = 7500
concentrations[11, 991] = 7500
concentrations[1015, 11] = 7500
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)
setBoundarySideClosed!(bc, RIGHT)
setBoundarySideClosed!(bc, TOP)
setBoundarySideClosed!(bc, BOTTOM)
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc, FTCS)
simulation = setTimestep(simulation, 0.01)
simulation = setIterations(simulation, 100)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUTPUT_ON)
# **** RUN SIMULATION ****
print((@elapsed run(simulation)) * 1e9)
end
main()

View File

@ -0,0 +1,30 @@
include("../../tug/Simulation.jl")
function main()
# **** GRID ****
cells::Int = 20
alpha = fill(1.0, 1, cells)
grid::Grid = Grid{Float64}(cells, alpha)
concentrations = fill(0.0, 1, cells)
concentrations[1] = 2000
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideConstant!(bc, LEFT, 0.0)
setBoundarySideConstant!(bc, RIGHT, 0.0)
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc, FTCS)
simulation = setTimestep(simulation, 0.001)
simulation = setIterations(simulation, 7000)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUTPUT_ON)
# **** RUN SIMULATION ****
print((@elapsed run(simulation)) * 1e9)
end
main()

View File

@ -0,0 +1,38 @@
include("../../tug/Simulation.jl")
function main()
# **** GRID ****
rows::Int = 2027
cols::Int = 1999
alphaX = [sin(i / 100) * cos(j / 100) for i in 1:rows, j in 1:cols]
alphaY = [cos(i / 100) * sin(j / 100) for i in 1:rows, j in 1:cols]
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = [i * j / 1e6 for i in 1:rows, j in 1:cols]
concentrations[11, 11] = 15000
concentrations[2021, 1995] = 7500
concentrations[11, 1995] = 7500
concentrations[2021, 11] = 7500
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)
setBoundarySideConstant!(bc, RIGHT, 1.5)
setBoundarySideClosed!(bc, TOP)
setBoundarySideConstant!(bc, BOTTOM, 0.75)
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc, FTCS)
simulation = setTimestep(simulation, 0.005)
simulation = setIterations(simulation, 200)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUTPUT_ON)
# **** RUN SIMULATION ****
print((@elapsed run(simulation)) * 1e9)
end
main()

View File

@ -0,0 +1,34 @@
include("../../tug/Simulation.jl")
function main()
# **** GRID ****
rows::Int = 20
cols::Int = 20
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.0, rows, cols)
concentrations[11, 11] = 2000
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)
setBoundarySideClosed!(bc, RIGHT)
setBoundarySideClosed!(bc, TOP)
setBoundarySideClosed!(bc, BOTTOM)
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc, FTCS)
simulation = setTimestep(simulation, 0.1)
simulation = setIterations(simulation, 500)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUTPUT_ON)
# **** RUN SIMULATION ****
print((@elapsed run(simulation)) * 1e9)
end
main()

View File

@ -0,0 +1,42 @@
include("../../tug/Simulation.jl")
function main()
# **** GRID ****
rows::Int = 450
cols::Int = 670
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
alphaX[1:100, :] .= 0.5
alphaX[101:200, :] .= 0.8
alphaY[:, 1:200] .= 0.6
alphaY[:, 201:400] .= 0.9
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.0, rows, cols)
concentrations[11, 11] = 1500
concentrations[441, 661] = 750
concentrations[441, 11] = 750
concentrations[11, 661] = 750
concentrations[221, 336] = 1500
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)
setBoundarySideClosed!(bc, RIGHT)
setBoundarySideClosed!(bc, TOP)
setBoundarySideClosed!(bc, BOTTOM)
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc, FTCS)
simulation = setTimestep(simulation, 0.2)
simulation = setIterations(simulation, 750)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUTPUT_ON)
# **** RUN SIMULATION ****
print((@elapsed run(simulation)) * 1e9)
end
main()

View File

@ -33,7 +33,7 @@ def format_difference(diff):
threshold = 1e-5
if diff != 0:
if abs(diff) < threshold:
return '{:.2e}'.format(diff).rjust(6) # Scientific notation for small values
return '{:.2e}'.format(diff).rjust(6) # Scientific notation for small values
else:
return '{:.3f}'.format(diff).rjust(6) # Fixed-point notation for larger values
else:
@ -46,7 +46,8 @@ def run_benchmark(command, runs, precompile=False):
output = subprocess.run(command, capture_output=True, text=True)
elapsed = time.perf_counter() - start_time
if precompile:
times.append(float(output.stdout)*1e-9) # Convert from ns to s
out = output.stdout.splitlines()[-1] # Take the second to last line if there are new line symbols
times.append(float(out)*1e-9) # Convert from nanoseconds to seconds
else:
times.append(elapsed)