nebmit 0eb96ed0ad
perf: solution vector creation using matrices
Modified the createSolutionVector function to use matrix operations
Additionally added a function to create the entire solution matrix.
This function, whilst currently active, is better suited for GPU usage.

[skip ci]
2023-11-22 17:43:52 +01:00

356 lines
15 KiB
Julia

# BTCS.jl
# Implementation of heterogenous BTCS (backward time-centered space)
# solution of diffusion equation in 1D and 2D space using the
# alternating-direction implicit (ADI) method.
# Translated from C++'s BTCS.hpp.
using LinearAlgebra
using SparseArrays
using Base.Threads
include("../Boundary.jl")
include("../Grid.jl")
function calcAlphaIntercell(alpha1::T, alpha2::T) where {T}
2 / ((1 / alpha1) + (1 / alpha2))
end
function calcAlphaIntercell(alpha1::Vector{T}, alpha2::Vector{T}) where {T}
2 ./ ((1 ./ alpha1) .+ (1 ./ alpha2))
end
function calcAlphaIntercell(alpha1::Matrix{T}, alpha2::Matrix{T}) where {T}
2 ./ ((1 ./ alpha1) .+ (1 ./ alpha2))
end
function calcBoundaryCoeffClosed(alpha_center::T, alpha_side::T, sx::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * alpha
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
function calcBoundaryCoeffConstant(alpha_center::T, alpha_side::T, sx::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * (alpha + 2 * alpha_center)
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
# creates coefficient matrix for next time step from alphas in x-direction
function createCoeffMatrix(alpha::Matrix{T}, alpha_left::Matrix{T}, alpha_right::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, numCols::Int, rowIndex::Int, sx::T)::Tridiagonal{T} where {T}
# Precompute boundary condition type check for efficiency
bcTypeLeft = getType(bcLeft[rowIndex])
# Determine left side boundary coefficients based on boundary condition
centerCoeffTop, rightCoeffTop = if bcTypeLeft == CONSTANT
calcBoundaryCoeffConstant(alpha[rowIndex, 1], alpha[rowIndex, 2], sx)
elseif bcTypeLeft == CLOSED
calcBoundaryCoeffClosed(alpha[rowIndex, 1], alpha[rowIndex, 2], sx)
else
error("Undefined Boundary Condition Type on Left!")
end
# Precompute boundary condition type check for efficiency
bcTypeRight = getType(bcRight[rowIndex])
# Determine right side boundary coefficients based on boundary condition
centerCoeffBottom, leftCoeffBottom = if bcTypeRight == CONSTANT
calcBoundaryCoeffConstant(alpha[rowIndex, numCols], alpha[rowIndex, numCols-1], sx)
elseif bcTypeRight == CLOSED
calcBoundaryCoeffClosed(alpha[rowIndex, numCols], alpha[rowIndex, numCols-1], sx)
else
error("Undefined Boundary Condition Type on Right!")
end
dl = [-sx .* alpha_left[rowIndex, :]; leftCoeffBottom]
d = [centerCoeffTop; 1 .+ sx .* (alpha_right[rowIndex, :] + alpha_left[rowIndex, :]); centerCoeffBottom]
du = [rightCoeffTop; -sx .* alpha_right[rowIndex, :]]
alpha_diagonal = Tridiagonal(dl, d, du)
return alpha_diagonal
end
function calcExplicitConcentrationsBoundaryClosed(conc_center::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_neighbor)
(sy * alpha + (1 - sy * alpha)) * conc_center
end
function calcExplicitConcentrationsBoundaryConstant(conc_center::T, conc_bc::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
alpha_center_neighbor = calcAlphaIntercell(alpha_center, alpha_neighbor)
alpha_center_center = alpha_center == alpha_neighbor ? alpha_center_neighbor : calcAlphaIntercell(alpha_center, alpha_center)
sy * alpha_center_neighbor * conc_center +
(1 - sy * (alpha_center_center + 2 * alpha_center)) * conc_center +
sy * alpha_center * conc_bc
end
function calcExplicitConcentrationsBoundaryClosed(conc_center::Vector{T}, alpha::Vector{T}, sy::T) where {T}
(sy .* alpha .+ (1 .- sy .* alpha)) .* conc_center
end
function calcExplicitConcentrationsBoundaryConstant(conc_center::Vector{T}, conc_bc::Vector{T}, alpha_center::Vector{T}, alpha_neighbor::Vector{T}, sy::T) where {T}
sy .* alpha_neighbor .* conc_center[rowIndex, :] +
(1 .- sy .* (alpha_center .+ 2 .* alphaY[rowIndex, :])) .* conc_center[rowIndex, :] +
sy .* alphaY[rowIndex, :] .* conc_bc
end
# creates a solution vector for next time step from the current state of concentrations
function createSolutionVector(concentrations::Matrix{T}, alphaX::Matrix{T}, alphaY::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, bcTop::Vector{BoundaryElement{T}}, bcBottom::Vector{BoundaryElement{T}}, length::Int, rowIndex::Int, sx::T, sy::T) where {T}
numRows = size(concentrations, 1)
sv = zeros(T, length)
# Inner rows
if rowIndex > 1 && rowIndex < numRows
alpha_neighbour_below = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex+1, :])
alpha_neighbour_above = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex-1, :])
# Compute sv with Array Operations
sv = sy .* alpha_neighbour_below .* concentrations[rowIndex+1, :] +
(1 .- sy .* (alpha_neighbour_below .+ alpha_neighbour_above)) .* concentrations[rowIndex, :] +
sy .* alpha_neighbour_above .* concentrations[rowIndex-1, :]
end
# First row
if rowIndex == 1
alpha_center = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex, :])
alpha_neighour_right = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex+1, :])
# Apply vectorized operations based on boundary condition
if getType(bcTop[1]) == CONSTANT
sv = sy .* alpha_neighour_right .* concentrations[rowIndex, :] +
(1 .- sy .* (alpha_center .+ 2 .* alphaY[rowIndex, :])) .* concentrations[rowIndex, :] +
sy .* alphaY[rowIndex, :] .* getValue(bcTop)
elseif getType(bcTop[1]) == CLOSED
sv = (sy .* alpha_neighour_right .+ (1 .- sy .* alpha_neighour_right)) .* concentrations[rowIndex, :]
else
error("Undefined Boundary Condition Type somewhere on Left or Top!")
end
end
# Last row
if rowIndex == numRows
alpha_center = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex, :])
alpha_neighbour_left = calcAlphaIntercell(alphaY[rowIndex, :], alphaY[rowIndex-1, :])
# Apply vectorized operations based on boundary condition
if getType(bcBottom[1]) == CONSTANT
sv = sy .* alpha_neighbour_left .* concentrations[rowIndex, :] +
(1 .- sy .* (alpha_center .+ 2 .* alphaY[rowIndex, :])) .* concentrations[rowIndex, :] +
sy .* alphaY[rowIndex, :] .* getValue(bcBottom)
elseif getType(bcBottom[1]) == CLOSED
sv = (sy .* alpha_neighbour_left .+ (1 .- sy .* alpha_neighbour_left)) .* concentrations[rowIndex, :]
else
error("Undefined Boundary Condition Type somewhere on Right or Bottom!")
end
end
# Conditions for the first and last columns
is_first_column = (1:length) .== 1
is_last_column = (1:length) .== length
# Apply operations conditionally
if getType(bcLeft[rowIndex]) == CONSTANT
sv .+= (2 * sx * alphaX[rowIndex, 1] * getValue(bcLeft[rowIndex])) .* is_first_column
end
if getType(bcRight[rowIndex]) == CONSTANT
sv .+= (2 * sx * alphaX[rowIndex, end] * getValue(bcRight[rowIndex])) .* is_last_column
end
return sv
end
function createSolutionMatrix(concentrations::Matrix{T}, alphaX::Matrix{T}, alphaY::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, bcTop::Vector{BoundaryElement{T}}, bcBottom::Vector{BoundaryElement{T}}, sx::T, sy::T) where {T}
numRows, numCols = size(concentrations)
solutionMatrix = zeros(T, numRows, numCols)
# Vectorized Precomputation of Alphas
alpha_neighbour_below = calcAlphaIntercell(alphaY[1:end-1, :], alphaY[2:end, :])
alpha_neighbour_above = calcAlphaIntercell(alphaY[2:end, :], alphaY[1:end-1, :])
alpha_center = calcAlphaIntercell(alphaY, alphaY)
# Compute solutionMatrix for inner rows
solutionMatrix[2:end-1, :] = sy .* alpha_neighbour_below[1:end-1, :] .* concentrations[3:end, :] +
(1 .- sy .* (alpha_neighbour_below[1:end-1, :] .+ alpha_neighbour_above[2:end, :])) .* concentrations[2:end-1, :] +
sy .* alpha_neighbour_above[2:end, :] .* concentrations[1:end-2, :]
# Apply boundary conditions for first row
if getType(bcTop[1]) == CONSTANT
solutionMatrix[1, :] = sy .* alpha_center[1, :] .* concentrations[1, :] +
(1 .- sy .* (alpha_center[1, :] .+ 2 .* alphaY[1, :])) .* concentrations[1, :] +
sy .* alphaY[1, :] .* getValue(bcTop)
elseif getType(bcTop[1]) == CLOSED
solutionMatrix[1, :] = (sy .* alpha_center[1, :] .+ (1 .- sy .* alpha_center[1, :])) .* concentrations[1, :]
end
# Apply boundary conditions for last row
if getType(bcBottom[1]) == CONSTANT
solutionMatrix[end, :] = sy .* alpha_center[end, :] .* concentrations[end, :] +
(1 .- sy .* (alpha_center[end, :] .+ 2 .* alphaY[end, :])) .* concentrations[end, :] +
sy .* alphaY[end, :] .* getValue(bcBottom)
elseif getType(bcBottom[1]) == CLOSED
solutionMatrix[end, :] = (sy .* alpha_center[end, :] .+ (1 .- sy .* alpha_center[end, :])) .* concentrations[end, :]
end
# Apply boundary conditions for first and last columns
if getType(bcLeft[1]) == CONSTANT
solutionMatrix[:, 1] .+= 2 * sx * alphaX[:, 1] .* getValue(bcLeft)
end
if getType(bcRight[1]) == CONSTANT
solutionMatrix[:, end] .+= 2 * sx * alphaX[:, end] .* getValue(bcRight)
end
return solutionMatrix
end
# BTCS solution for 1D grid
function BTCS_1D(grid::Grid{T}, bc::Boundary{T}, alpha_left::Matrix{T}, alpha_right::Matrix{T}, timestep::T) where {T}
sx = timestep / (getDeltaCol(grid) * getDeltaCol(grid))
alpha = getAlphaX(grid)
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
length = getCols(grid)
concentrations::Matrix{T} = getConcentrations(grid)
A::Tridiagonal{T} = createCoeffMatrix(alpha, alpha_left, alpha_right, bcLeft, bcRight, length, 1, sx)
b = concentrations[1, :]
if getType(bcLeft[1]) == CONSTANT
b[1] += 2 * sx * alpha[1, 1] * getValue(bcLeft[1])
end
if getType(bcRight[1]) == CONSTANT
b[end] += 2 * sx * alpha[1, end] * getValue(bcRight[1])
end
concentrations[1, :] = A \ b
end
# BTCS solution for 2D grid
function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, alphaX_left::Matrix{T}, alphaX_right::Matrix{T}, alphaY_t_left::Matrix{T}, alphaY_t_right::Matrix{T}, timestep::T) where {T}
rows = getRows(grid)
cols = getCols(grid)
sx = timestep / (2 * getDeltaCol(grid) * getDeltaCol(grid))
sy = timestep / (2 * getDeltaRow(grid) * getDeltaRow(grid))
alphaX = getAlphaX(grid)
alphaY = getAlphaY(grid)
alphaX_t = getAlphaX_t(grid)
alphaY_t = getAlphaY_t(grid)
concentrations = getConcentrations(grid)
concentrations_intermediate = similar(concentrations)
concentrations_t_task = Threads.@spawn copy(transpose(concentrations))
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
bcTop = getBoundarySide(bc, TOP)
bcBottom = getBoundarySide(bc, BOTTOM)
# Thread Based Computation:
# Threads.@threads for i = 1:rows
# A::Tridiagonal{T} = createCoeffMatrix(alphaX, alphaX_left[i, :], alphaX_right[i, :], bcLeft, bcRight, cols, i, sx)
# b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight, bcTop, bcBottom, cols, i, sx, sy)
# concentrations_intermediate[i, :] = A \ b
# end
# Compute solution vectors for all rows
b_matrix = createSolutionMatrix(concentrations, alphaX, alphaY, bcLeft, bcRight, bcTop, bcBottom, sx, sy)
# Process each row for the coefficient matrix and solve the linear system
Threads.@threads for i = 1:rows
A::Tridiagonal{T} = createCoeffMatrix(alphaX, alphaX_left, alphaX_right, bcLeft, bcRight, cols, i, sx)
# Extract the solution vector for the current row from b_matrix
b = b_matrix[i, :]
concentrations_intermediate[i, :] = A \ b
end
concentrations_intermediate = copy(transpose(concentrations_intermediate))
concentrations_t = fetch(concentrations_t_task)
# Swap alphas, boundary conditions and sx/sy for column-wise calculation
# Thread Based Computation:
# Threads.@threads for i = 1:cols
# A::Tridiagonal{T} = createCoeffMatrix(alphaY_t, alphaY_t_left[i, :], alphaY_t_right[i, :], bcTop, bcBottom, rows, i, sy)
# b = createSolutionVector(concentrations_intermediate, alphaY_t, alphaX_t, bcTop, bcBottom, bcLeft, bcRight, rows, i, sy, sx)
# concentrations_t[i, :] = A \ b
# end
# Compute solution vectors for all rows
b_matrix = createSolutionMatrix(concentrations_intermediate, alphaY_t, alphaX_t, bcTop, bcBottom, bcLeft, bcRight, sy, sx)
# Process each row for the coefficient matrix and solve the linear system
Threads.@threads for i = 1:cols
A::Tridiagonal{T} = createCoeffMatrix(alphaY_t, alphaY_t_left, alphaY_t_right, bcTop, bcBottom, rows, i, sy)
# Extract the solution vector for the current row from b_matrix
b = b_matrix[i, :]
concentrations_t[i, :] = A \ b
end
concentrations = copy(transpose(concentrations_t))
setConcentrations!(grid, concentrations)
end
function runBTCS(grid::Grid{T}, bc::Boundary{T}, timestep::T, iterations::Int, stepCallback::Function) where {T}
if getDim(grid) == 1
length = getCols(grid)
alpha = getAlphaX(grid)
alpha_left_task = Threads.@spawn calcAlphaIntercell(alpha[:, 1:(length-2)], alpha[:, 2:(length-1)])
alpha_right_task = Threads.@spawn calcAlphaIntercell(alpha[:, 2:(length-1)], alpha[:, 3:length])
alpha_left = fetch(alpha_left_task)
alpha_right = fetch(alpha_right_task)
for _ in 1:(iterations)
BTCS_1D(grid, bc, alpha_left, alpha_right, timestep)
stepCallback()
end
elseif getDim(grid) == 2
rows = getRows(grid)
cols = getCols(grid)
alphaX = getAlphaX(grid)
alphaY_t = getAlphaY_t(grid)
alphaX_left_task = Threads.@spawn calcAlphaIntercell(alphaX[:, 1:(cols-2)], alphaX[:, 2:(cols-1)])
alphaX_right_task = Threads.@spawn calcAlphaIntercell(alphaX[:, 2:(cols-1)], alphaX[:, 3:cols])
alphaY_t_left_task = Threads.@spawn calcAlphaIntercell(alphaY_t[:, 1:(rows-2)], alphaY_t[:, 2:(rows-1)])
alphaY_t_right_task = Threads.@spawn calcAlphaIntercell(alphaY_t[:, 2:(rows-1)], alphaY_t[:, 3:rows])
alphaX_left = fetch(alphaX_left_task)
alphaX_right = fetch(alphaX_right_task)
alphaY_t_left = fetch(alphaY_t_left_task)
alphaY_t_right = fetch(alphaY_t_right_task)
for _ in 1:(iterations)
BTCS_2D(grid, bc, alphaX_left, alphaX_right, alphaY_t_left, alphaY_t_right, timestep)
stepCallback()
end
else
error("Error: Only 1- and 2-dimensional grids are defined!")
end
end