505 lines
17 KiB
C++
505 lines
17 KiB
C++
/**
|
|
* @file Simulation.hpp
|
|
* @brief API of Simulation class, that holds all information regarding a
|
|
* specific simulation run like its timestep, number of iterations and output
|
|
* options. Simulation object also holds a predefined Grid and Boundary object.
|
|
*
|
|
*/
|
|
|
|
#ifndef SIMULATION_H_
|
|
#define SIMULATION_H_
|
|
|
|
#include "Boundary.hpp"
|
|
#include "Grid.hpp"
|
|
#include <algorithm>
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "Core/BTCS.hpp"
|
|
#include "Core/FTCS.hpp"
|
|
#include "Core/TugUtils.hpp"
|
|
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#else
|
|
#define omp_get_num_procs() 1
|
|
#endif
|
|
|
|
namespace tug {
|
|
|
|
/**
|
|
* @brief Enum defining the implemented solution approaches.
|
|
*
|
|
*/
|
|
enum APPROACH {
|
|
FTCS_APPROACH, /*!< Forward Time-Centered Space */
|
|
BTCS_APPROACH, /*!< Backward Time-Centered Space */
|
|
CRANK_NICOLSON_APPROACH /*!< Crank-Nicolson method */
|
|
};
|
|
|
|
/**
|
|
* @brief Enum defining the Linear Equation solvers
|
|
*
|
|
*/
|
|
enum SOLVER {
|
|
EIGEN_LU_SOLVER, /*!< EigenLU solver */
|
|
THOMAS_ALGORITHM_SOLVER /*!< Thomas Algorithm solver; more efficient for
|
|
tridiagonal matrices */
|
|
};
|
|
|
|
/**
|
|
* @brief Enum holding different options for .csv output.
|
|
*
|
|
*/
|
|
enum CSV_OUTPUT {
|
|
CSV_OUTPUT_OFF, /*!< do not produce csv output */
|
|
CSV_OUTPUT_ON, /*!< produce csv output with last concentration matrix */
|
|
CSV_OUTPUT_VERBOSE, /*!< produce csv output with all concentration matrices */
|
|
CSV_OUTPUT_XTREME /*!< csv output like VERBOSE but additional boundary
|
|
conditions at beginning */
|
|
};
|
|
|
|
/**
|
|
* @brief Enum holding different options for console output.
|
|
*
|
|
*/
|
|
enum CONSOLE_OUTPUT {
|
|
CONSOLE_OUTPUT_OFF, /*!< do not print any output to console */
|
|
CONSOLE_OUTPUT_ON, /*!< print before and after concentrations to console */
|
|
CONSOLE_OUTPUT_VERBOSE /*!< print all concentration matrices to console */
|
|
};
|
|
|
|
/**
|
|
* @brief Enum holding different options for time measurement.
|
|
*
|
|
*/
|
|
enum TIME_MEASURE {
|
|
TIME_MEASURE_OFF, /*!< do not print any time measures */
|
|
TIME_MEASURE_ON /*!< print time measure after last iteration */
|
|
};
|
|
|
|
/**
|
|
* @brief The class forms the interface for performing the diffusion simulations
|
|
* and contains all the methods for controlling the desired parameters, such as
|
|
* time step, number of simulations, etc.
|
|
*
|
|
* @tparam T the type of the internal data structures for grid, boundary
|
|
* condition and timestep
|
|
* @tparam approach Set the SLE scheme to be used
|
|
* @tparam solver Set the solver to be used
|
|
*/
|
|
template <class T, APPROACH approach = BTCS_APPROACH,
|
|
SOLVER solver = THOMAS_ALGORITHM_SOLVER>
|
|
class Simulation {
|
|
public:
|
|
/**
|
|
* @brief Set up a simulation environment. The timestep and number of
|
|
* iterations must be set. For the BTCS approach, the Thomas algorithm is used
|
|
* as the default linear equation solver as this is faster for tridiagonal
|
|
* matrices. CSV output, console output and time measure are off by
|
|
* default. Also, the number of cores is set to the maximum number of cores -1
|
|
* by default.
|
|
*
|
|
* @param grid Valid grid object
|
|
* @param bc Valid boundary condition object
|
|
* @param approach Approach to solving the problem. Either FTCS or BTCS.
|
|
*/
|
|
Simulation(Grid<T> &_grid, Boundary<T> &_bc) : grid(_grid), bc(_bc){};
|
|
|
|
/**
|
|
* @brief Set the option to output the results to a CSV file. Off by default.
|
|
*
|
|
*
|
|
* @param csv_output Valid output option. The following options can be set
|
|
* here:
|
|
* - CSV_OUTPUT_OFF: do not produce csv output
|
|
* - CSV_OUTPUT_ON: produce csv output with last
|
|
* concentration matrix
|
|
* - CSV_OUTPUT_VERBOSE: produce csv output with all
|
|
* concentration matrices
|
|
* - CSV_OUTPUT_XTREME: produce csv output with all
|
|
* concentration matrices and simulation environment
|
|
*/
|
|
void setOutputCSV(CSV_OUTPUT csv_output) {
|
|
if (csv_output < CSV_OUTPUT_OFF && csv_output > CSV_OUTPUT_VERBOSE) {
|
|
throw std::invalid_argument("Invalid CSV output option given!");
|
|
}
|
|
|
|
this->csv_output = csv_output;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the options for outputting information to the console. Off by
|
|
* default.
|
|
*
|
|
* @param console_output Valid output option. The following options can be set
|
|
* here:
|
|
* - CONSOLE_OUTPUT_OFF: do not print any output to
|
|
* console
|
|
* - CONSOLE_OUTPUT_ON: print before and after
|
|
* concentrations to console
|
|
* - CONSOLE_OUTPUT_VERBOSE: print all concentration
|
|
* matrices to console
|
|
*/
|
|
void setOutputConsole(CONSOLE_OUTPUT console_output) {
|
|
if (console_output < CONSOLE_OUTPUT_OFF &&
|
|
console_output > CONSOLE_OUTPUT_VERBOSE) {
|
|
throw std::invalid_argument("Invalid console output option given!");
|
|
}
|
|
|
|
this->console_output = console_output;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the Time Measure option. Off by default.
|
|
*
|
|
* @param time_measure The following options are allowed:
|
|
* - TIME_MEASURE_OFF: Time of simulation is not printed
|
|
* to console
|
|
* - TIME_MEASURE_ON: Time of simulation run is printed to
|
|
* console
|
|
*/
|
|
void setTimeMeasure(TIME_MEASURE time_measure) {
|
|
if (time_measure < TIME_MEASURE_OFF && time_measure > TIME_MEASURE_ON) {
|
|
throw std::invalid_argument("Invalid time measure option given!");
|
|
}
|
|
|
|
this->time_measure = time_measure;
|
|
}
|
|
|
|
/**
|
|
* @brief Setting the time step for each iteration step. Time step must be
|
|
* greater than zero. Setting the timestep is required.
|
|
*
|
|
* @param timestep Valid timestep greater than zero.
|
|
*/
|
|
void setTimestep(T timestep) {
|
|
if (timestep <= 0) {
|
|
throw_invalid_argument("Timestep has to be greater than zero.");
|
|
}
|
|
|
|
if constexpr (approach == FTCS_APPROACH ||
|
|
approach == CRANK_NICOLSON_APPROACH) {
|
|
T cfl;
|
|
if (grid.getDim() == 1) {
|
|
|
|
const T deltaSquare = grid.getDelta();
|
|
const T maxAlpha = grid.getAlpha().maxCoeff();
|
|
|
|
// Courant-Friedrichs-Lewy condition
|
|
cfl = deltaSquare / (4 * maxAlpha);
|
|
} else if (grid.getDim() == 2) {
|
|
const T deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
|
|
// will be 0 if 1D, else ...
|
|
const T deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
|
|
const T minDeltaSquare = std::min(deltaColSquare, deltaRowSquare);
|
|
|
|
const T maxAlpha =
|
|
std::min(grid.getAlphaX().maxCoeff(), grid.getAlphaY().maxCoeff());
|
|
|
|
cfl = minDeltaSquare / (4 * maxAlpha);
|
|
}
|
|
const std::string dim = std::to_string(grid.getDim()) + "D";
|
|
|
|
const std::string &approachPrefix = this->approach_names[approach];
|
|
std::cout << approachPrefix << "_" << dim << " :: CFL condition: " << cfl
|
|
<< std::endl;
|
|
std::cout << approachPrefix << "_" << dim
|
|
<< " :: required dt=" << timestep << std::endl;
|
|
|
|
if (timestep > cfl) {
|
|
|
|
this->innerIterations = (int)ceil(timestep / cfl);
|
|
this->timestep = timestep / (double)innerIterations;
|
|
|
|
std::cerr << "Warning :: Timestep was adjusted, because of stability "
|
|
"conditions. Time duration was approximately preserved by "
|
|
"adjusting internal number of iterations."
|
|
<< std::endl;
|
|
std::cout << approachPrefix << "_" << dim << " :: Required "
|
|
<< this->innerIterations
|
|
<< " inner iterations with dt=" << this->timestep
|
|
<< std::endl;
|
|
|
|
} else {
|
|
|
|
this->timestep = timestep;
|
|
std::cout << approachPrefix << "_" << dim
|
|
<< " :: No inner iterations required, dt=" << timestep
|
|
<< std::endl;
|
|
}
|
|
} else {
|
|
this->timestep = timestep;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Currently set time step is returned.
|
|
*
|
|
* @return double timestep
|
|
*/
|
|
T getTimestep() const { return this->timestep; }
|
|
|
|
/**
|
|
* @brief Set the desired iterations to be calculated. A value greater
|
|
* than zero must be specified here. Setting iterations is required.
|
|
*
|
|
* @param iterations Number of iterations to be simulated.
|
|
*/
|
|
void setIterations(int iterations) {
|
|
if (iterations <= 0) {
|
|
throw std::invalid_argument(
|
|
"Number of iterations must be greater than zero.");
|
|
}
|
|
this->iterations = iterations;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the number of desired openMP Threads.
|
|
*
|
|
* @param num_threads Number of desired threads. Must have a value between
|
|
* 1 and the maximum available number of processors. The
|
|
* maximum number of processors is set as the default case during Simulation
|
|
* construction.
|
|
*/
|
|
void setNumberThreads(int num_threads) {
|
|
if (numThreads > 0 && numThreads <= omp_get_num_procs()) {
|
|
this->numThreads = numThreads;
|
|
} else {
|
|
int maxThreadNumber = omp_get_num_procs();
|
|
throw std::invalid_argument(
|
|
"Number of threads exceeds the number of processor cores (" +
|
|
std::to_string(maxThreadNumber) + ") or is less than 1.");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the currently set iterations to be calculated.
|
|
*
|
|
* @return int Number of iterations.
|
|
*/
|
|
int getIterations() const { return this->iterations; }
|
|
|
|
/**
|
|
* @brief Outputs the current concentrations of the grid on the console.
|
|
*
|
|
*/
|
|
inline void printConcentrationsConsole() const {
|
|
std::cout << grid.getConcentrations() << std::endl;
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Creates a CSV file with a name containing the current simulation
|
|
* parameters. If the data name already exists, an additional counter
|
|
* is appended to the name. The name of the file is built up as follows:
|
|
* <approach> + <number rows> + <number columns> + <number of
|
|
* iterations>+<counter>.csv
|
|
*
|
|
* @return string Filename with configured simulation parameters.
|
|
*/
|
|
std::string createCSVfile() const {
|
|
std::ofstream file;
|
|
int appendIdent = 0;
|
|
std::string appendIdentString;
|
|
|
|
// string approachString = (approach == 0) ? "FTCS" : "BTCS";
|
|
const std::string &approachString = this->approach_names[approach];
|
|
std::string row = std::to_string(grid.getRow());
|
|
std::string col = std::to_string(grid.getCol());
|
|
std::string numIterations = std::to_string(iterations);
|
|
|
|
std::string filename =
|
|
approachString + "_" + row + "_" + col + "_" + numIterations + ".csv";
|
|
|
|
while (std::filesystem::exists(filename)) {
|
|
appendIdent += 1;
|
|
appendIdentString = std::to_string(appendIdent);
|
|
filename = approachString + "_" + row + "_" + col + "_" + numIterations +
|
|
"-" + appendIdentString + ".csv";
|
|
}
|
|
|
|
file.open(filename);
|
|
if (!file) {
|
|
exit(1);
|
|
}
|
|
|
|
// adds lines at the beginning of verbose output csv that represent the
|
|
// boundary conditions and their values -1 in case of closed boundary
|
|
if (csv_output == CSV_OUTPUT_XTREME) {
|
|
Eigen::IOFormat one_row(Eigen::StreamPrecision, Eigen::DontAlignCols, "",
|
|
" ");
|
|
file << bc.getBoundarySideValues(BC_SIDE_LEFT).format(one_row)
|
|
<< std::endl; // boundary left
|
|
file << bc.getBoundarySideValues(BC_SIDE_RIGHT).format(one_row)
|
|
<< std::endl; // boundary right
|
|
file << bc.getBoundarySideValues(BC_SIDE_TOP).format(one_row)
|
|
<< std::endl; // boundary top
|
|
file << bc.getBoundarySideValues(BC_SIDE_BOTTOM).format(one_row)
|
|
<< std::endl; // boundary bottom
|
|
file << std::endl << std::endl;
|
|
}
|
|
|
|
file.close();
|
|
|
|
return filename;
|
|
}
|
|
|
|
/**
|
|
* @brief Writes the currently calculated concentration values of the grid
|
|
* into the CSV file with the passed filename.
|
|
*
|
|
* @param filename Name of the file to which the concentration values are
|
|
* to be written.
|
|
*/
|
|
void printConcentrationsCSV(const std::string &filename) const {
|
|
std::ofstream file;
|
|
|
|
file.open(filename, std::ios_base::app);
|
|
if (!file) {
|
|
exit(1);
|
|
}
|
|
|
|
Eigen::IOFormat do_not_align(Eigen::StreamPrecision, Eigen::DontAlignCols);
|
|
file << grid.getConcentrations().format(do_not_align) << std::endl;
|
|
file << std::endl << std::endl;
|
|
file.close();
|
|
}
|
|
|
|
/**
|
|
* @brief Method starts the simulation process with the previously set
|
|
* parameters.
|
|
*/
|
|
void run() {
|
|
if (this->timestep == -1) {
|
|
throw_invalid_argument("Timestep is not set!");
|
|
}
|
|
if (this->iterations == -1) {
|
|
throw_invalid_argument("Number of iterations are not set!");
|
|
}
|
|
|
|
std::string filename;
|
|
if (this->console_output > CONSOLE_OUTPUT_OFF) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (this->csv_output > CSV_OUTPUT_OFF) {
|
|
filename = createCSVfile();
|
|
}
|
|
|
|
auto begin = std::chrono::high_resolution_clock::now();
|
|
|
|
if constexpr (approach == FTCS_APPROACH) { // FTCS case
|
|
|
|
for (int i = 0; i < iterations * innerIterations; i++) {
|
|
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (csv_output >= CSV_OUTPUT_VERBOSE) {
|
|
printConcentrationsCSV(filename);
|
|
}
|
|
|
|
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
|
|
|
|
// if (i % (iterations * innerIterations / 100) == 0) {
|
|
// double percentage = (double)i / ((double)iterations *
|
|
// (double)innerIterations) * 100; if ((int)percentage % 10 == 0) {
|
|
// cout << "Progress: " << percentage << "%" << endl;
|
|
// }
|
|
// }
|
|
}
|
|
|
|
} else if constexpr (approach == BTCS_APPROACH) { // BTCS case
|
|
|
|
if constexpr (solver == EIGEN_LU_SOLVER) {
|
|
for (int i = 0; i < iterations; i++) {
|
|
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (csv_output >= CSV_OUTPUT_VERBOSE) {
|
|
printConcentrationsCSV(filename);
|
|
}
|
|
|
|
BTCS_LU(this->grid, this->bc, this->timestep, this->numThreads);
|
|
}
|
|
} else if constexpr (solver == THOMAS_ALGORITHM_SOLVER) {
|
|
for (int i = 0; i < iterations; i++) {
|
|
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (csv_output >= CSV_OUTPUT_VERBOSE) {
|
|
printConcentrationsCSV(filename);
|
|
}
|
|
|
|
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
|
|
}
|
|
}
|
|
|
|
} else if constexpr (approach ==
|
|
CRANK_NICOLSON_APPROACH) { // Crank-Nicolson case
|
|
|
|
constexpr T beta = 0.5;
|
|
|
|
// TODO this implementation is very inefficient!
|
|
// a separate implementation that sets up a specific tridiagonal matrix
|
|
// for Crank-Nicolson would be better
|
|
Eigen::MatrixX<T> concentrations;
|
|
Eigen::MatrixX<T> concentrationsFTCS;
|
|
Eigen::MatrixX<T> concentrationsResult;
|
|
for (int i = 0; i < iterations * innerIterations; i++) {
|
|
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (csv_output >= CSV_OUTPUT_VERBOSE) {
|
|
printConcentrationsCSV(filename);
|
|
}
|
|
|
|
concentrations = grid.getConcentrations();
|
|
FTCS(this->grid, this->bc, this->timestep, this->numThreads);
|
|
concentrationsFTCS = grid.getConcentrations();
|
|
grid.setConcentrations(concentrations);
|
|
BTCS_Thomas(this->grid, this->bc, this->timestep, this->numThreads);
|
|
concentrationsResult =
|
|
beta * concentrationsFTCS + (1 - beta) * grid.getConcentrations();
|
|
grid.setConcentrations(concentrationsResult);
|
|
}
|
|
}
|
|
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
auto milliseconds =
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
|
|
|
|
if (this->console_output > CONSOLE_OUTPUT_OFF) {
|
|
printConcentrationsConsole();
|
|
}
|
|
if (this->csv_output > CSV_OUTPUT_OFF) {
|
|
printConcentrationsCSV(filename);
|
|
}
|
|
if (this->time_measure > TIME_MEASURE_OFF) {
|
|
const std::string &approachString = this->approach_names[approach];
|
|
const std::string dimString = std::to_string(grid.getDim()) + "D";
|
|
std::cout << approachString << dimString << ":: run() finished in "
|
|
<< milliseconds.count() << "ms" << std::endl;
|
|
}
|
|
}
|
|
|
|
private:
|
|
T timestep{-1};
|
|
int iterations{-1};
|
|
int innerIterations{1};
|
|
int numThreads{omp_get_num_procs()};
|
|
CSV_OUTPUT csv_output{CSV_OUTPUT_OFF};
|
|
CONSOLE_OUTPUT console_output{CONSOLE_OUTPUT_OFF};
|
|
TIME_MEASURE time_measure{TIME_MEASURE_OFF};
|
|
|
|
Grid<T> &grid;
|
|
Boundary<T> &bc;
|
|
|
|
const std::vector<std::string> approach_names = {"FTCS", "BTCS", "CRNI"};
|
|
};
|
|
} // namespace tug
|
|
#endif // SIMULATION_H_
|