342 lines
10 KiB
C++
342 lines
10 KiB
C++
#include "BTCSDiffusion.hpp"
|
|
|
|
#include <Eigen/SparseLU>
|
|
|
|
#include <Eigen/src/Core/Map.h>
|
|
#include <Eigen/src/Core/Matrix.h>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iomanip>
|
|
#include <iterator>
|
|
#include <ostream>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <iostream>
|
|
|
|
const int BTCSDiffusion::BC_CLOSED = 0;
|
|
const int BTCSDiffusion::BC_FLUX = 1;
|
|
const int BTCSDiffusion::BC_CONSTANT = 2;
|
|
|
|
BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
|
|
assert(dim <= 3);
|
|
|
|
grid_cells.resize(dim, 1);
|
|
domain_size.resize(dim, 1);
|
|
deltas.resize(dim, 1);
|
|
}
|
|
|
|
void BTCSDiffusion::setXDimensions(unsigned int domain_size,
|
|
unsigned int n_grid_cells) {
|
|
assert(this->grid_dim > 0);
|
|
this->domain_size[0] = domain_size;
|
|
this->grid_cells[0] = n_grid_cells;
|
|
|
|
updateInternals();
|
|
}
|
|
|
|
void BTCSDiffusion::setYDimensions(unsigned int domain_size,
|
|
unsigned int n_grid_cells) {
|
|
assert(this->grid_dim > 1);
|
|
this->domain_size[1] = domain_size;
|
|
this->grid_cells[1] = n_grid_cells;
|
|
|
|
updateInternals();
|
|
}
|
|
|
|
void BTCSDiffusion::setZDimensions(unsigned int domain_size,
|
|
unsigned int n_grid_cells) {
|
|
assert(this->grid_dim > 2);
|
|
this->domain_size[2] = domain_size;
|
|
this->grid_cells[2] = n_grid_cells;
|
|
|
|
updateInternals();
|
|
}
|
|
|
|
unsigned int BTCSDiffusion::getXGridCellsN() { return this->grid_cells[0]; }
|
|
unsigned int BTCSDiffusion::getYGridCellsN() { return this->grid_cells[1]; }
|
|
unsigned int BTCSDiffusion::getZGridCellsN() { return this->grid_cells[2]; }
|
|
unsigned int BTCSDiffusion::getXDomainSize() { return this->domain_size[0]; }
|
|
unsigned int BTCSDiffusion::getYDomainSize() { return this->domain_size[1]; }
|
|
unsigned int BTCSDiffusion::getZDomainSize() { return this->domain_size[2]; }
|
|
|
|
void BTCSDiffusion::updateInternals() {
|
|
for (int i = 0; i < grid_dim; i++) {
|
|
deltas[i] = (double)domain_size[i] / grid_cells[i];
|
|
}
|
|
|
|
bc.resize((grid_dim > 1 ? grid_cells[1] : 1), grid_cells[0]);
|
|
}
|
|
|
|
void BTCSDiffusion::simulate1D(Eigen::Map<DVectorRowMajor> &c,
|
|
boundary_condition left,
|
|
boundary_condition right,
|
|
const std::vector<double> &alpha, double dx,
|
|
int size) {
|
|
|
|
bool left_is_constant = (left.type == BTCSDiffusion::BC_CONSTANT);
|
|
bool right_is_constant = (right.type == BTCSDiffusion::BC_CONSTANT);
|
|
|
|
// The sizes for matrix and vectors of the equation system is defined by the
|
|
// actual size of the input vector and if the system is (partially) closed.
|
|
// Then we will need ghost nodes. So this variable will give the count of
|
|
// ghost nodes.
|
|
int bc_offset = !left_is_constant + !right_is_constant;
|
|
;
|
|
|
|
// set sizes of private and yet allocated vectors
|
|
b_vector.resize(size + bc_offset);
|
|
x_vector.resize(size + bc_offset);
|
|
|
|
/*
|
|
* Begin to solve the equation system using LU solver of Eigen.
|
|
*
|
|
* But first fill the A matrix and b vector.
|
|
*/
|
|
|
|
// Set boundary condition for ghost nodes (for closed or flux system) or outer
|
|
// inlet nodes (constant boundary condition)
|
|
A_matrix.resize(size + bc_offset, size + bc_offset);
|
|
A_matrix.reserve(Eigen::VectorXi::Constant(size + bc_offset, 3));
|
|
|
|
A_matrix.insert(0, 0) = 1;
|
|
b_vector[0] =
|
|
(left_is_constant ? left.value : getBCFromFlux(left, c[0], alpha[0]));
|
|
|
|
A_matrix.insert((size + bc_offset) - 1, (size + bc_offset) - 1) = 1;
|
|
b_vector[size + bc_offset - 1] =
|
|
(right_is_constant ? right.value
|
|
: getBCFromFlux(right, c[size - 1], alpha[size - 1]));
|
|
|
|
// Start filling the A matrix
|
|
// =i= is used for equation system matrix and vector indexing
|
|
// and =j= for indexing of c,alpha and bc
|
|
for (int i = 1, j = i + !(left_is_constant); i < size - right_is_constant;
|
|
i++, j++) {
|
|
|
|
// if current grid cell is considered as constant boundary conditon
|
|
if (bc(1,j).type == BTCSDiffusion::BC_CONSTANT) {
|
|
A_matrix.insert(i, i) = 1;
|
|
b_vector[i] = bc(1,j).value;
|
|
continue;
|
|
}
|
|
|
|
double sx = (alpha[j] * time_step) / (dx * dx);
|
|
|
|
A_matrix.insert(i, i) = -1. - 2. * sx;
|
|
A_matrix.insert(i, i - 1) = sx;
|
|
A_matrix.insert(i, i + 1) = sx;
|
|
|
|
b_vector[i] = -c[j];
|
|
}
|
|
|
|
solveLES();
|
|
|
|
// write back result to input/output vector
|
|
c = x_vector.segment(!left_is_constant, c.size());
|
|
}
|
|
|
|
void BTCSDiffusion::simulate2D(Eigen::Map<DMatrixRowMajor> &c,
|
|
Eigen::Map<const DMatrixRowMajor> &alpha) {
|
|
|
|
DMatrixRowMajor tmp_vector;
|
|
|
|
int n_cols = c.cols();
|
|
unsigned int size = (this->grid_cells[0] + 2) * (this->grid_cells[1]);
|
|
|
|
A_matrix.resize(size, size);
|
|
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
|
|
|
|
b_vector.resize(size);
|
|
x_vector.resize(size);
|
|
|
|
for (int i = 0; i < c.rows(); i++) {
|
|
boundary_condition left = bc(i, 0);
|
|
bool left_constant = left.type == BTCSDiffusion::BC_CONSTANT;
|
|
boundary_condition right = bc(i, n_cols - 1);
|
|
bool right_constant = right.type == BTCSDiffusion::BC_CONSTANT;
|
|
|
|
fillMatrixFromRow(alpha.row(i), n_cols, i, left_constant, right_constant,
|
|
deltas[0], this->time_step / 2);
|
|
fillVectorFromRow2D(c, alpha.row(i), i, deltas[0], left, right);
|
|
}
|
|
|
|
solveLES();
|
|
|
|
tmp_vector = x_vector;
|
|
tmp_vector.transposeInPlace();
|
|
tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
|
|
|
|
Eigen::Map<Eigen::MatrixXd> tmp(tmp_vector.data(), c.rows(), c.cols() + 2);
|
|
|
|
c = tmp_vector.block(0, 1, c.rows(), c.cols());
|
|
c.transposeInPlace();
|
|
|
|
size = (this->grid_cells[0] * (this->grid_cells[1] + 2));
|
|
|
|
A_matrix.resize(size, size);
|
|
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
|
|
|
|
b_vector.resize(size);
|
|
x_vector.resize(size);
|
|
|
|
n_cols = c.cols();
|
|
|
|
for (int i = 0; i < c.rows(); i++) {
|
|
boundary_condition left = bc(0,i);
|
|
bool left_constant = left.type == BTCSDiffusion::BC_CONSTANT;
|
|
boundary_condition right = bc(n_cols-1,i);
|
|
bool right_constant = right.type == BTCSDiffusion::BC_CONSTANT;
|
|
|
|
fillMatrixFromRow(alpha.col(i), n_cols, i, left_constant, right_constant,
|
|
deltas[1], this->time_step / 2);
|
|
fillVectorFromRow2D(c, alpha.row(i), i, deltas[1], left, right);
|
|
}
|
|
|
|
solveLES();
|
|
|
|
tmp_vector = x_vector;
|
|
tmp_vector.transposeInPlace();
|
|
tmp_vector.conservativeResize(c.rows(), c.cols() + 2);
|
|
|
|
c = tmp_vector.block(0, 1, c.rows(), c.cols());
|
|
|
|
c.transposeInPlace();
|
|
}
|
|
|
|
void BTCSDiffusion::fillMatrixFromRow(const DVectorRowMajor &alpha, int n_cols,
|
|
int row, bool left_constant,
|
|
bool right_constant, double delta,
|
|
double time_step) {
|
|
|
|
n_cols += 2;
|
|
int offset = n_cols * row;
|
|
|
|
A_matrix.insert(offset, offset) = 1;
|
|
|
|
if (left_constant)
|
|
A_matrix.insert(offset + 1, offset + 1) = 1;
|
|
|
|
A_matrix.insert(offset + (n_cols - 1), offset + (n_cols - 1)) = 1;
|
|
|
|
if (right_constant)
|
|
A_matrix.insert(offset + (n_cols - 2), offset + (n_cols - 2)) = 1;
|
|
|
|
for (int j = 1 + left_constant, k = j - 1; j < n_cols - (1 - right_constant);
|
|
j++, k++) {
|
|
double sx = (alpha[j - 1] * time_step) / (delta * delta);
|
|
|
|
if (this->bc(row, k).type == BTCSDiffusion::BC_CONSTANT) {
|
|
A_matrix.insert(offset + j, offset + j) = 1;
|
|
continue;
|
|
}
|
|
|
|
A_matrix.insert(offset + j, offset + j) = -1. - 2. * sx;
|
|
A_matrix.insert(offset + j, offset + (j - 1)) = sx;
|
|
A_matrix.insert(offset + j, offset + (j + 1)) = sx;
|
|
}
|
|
}
|
|
|
|
void BTCSDiffusion::fillVectorFromRow2D(Eigen::Map<DMatrixRowMajor> &c,
|
|
const Eigen::VectorXd alpha, int row,
|
|
double delta, boundary_condition left,
|
|
boundary_condition right) {
|
|
|
|
int ncol = c.cols();
|
|
int nrow = c.rows();
|
|
int offset = ncol + 2;
|
|
|
|
if (left.type != BTCSDiffusion::BC_CONSTANT) {
|
|
// this is not correct currently.We will fix this when we are able to define
|
|
// FLUX boundary conditions
|
|
b_vector[offset * row] = getBCFromFlux(left, c(row, 0), alpha[0]);
|
|
}
|
|
|
|
if (right.type != BTCSDiffusion::BC_CONSTANT) {
|
|
b_vector[offset * row + (offset - 1)] =
|
|
getBCFromFlux(right, c(row, ncol - 1), alpha[ncol - 1]);
|
|
}
|
|
|
|
for (int j = 1; j < offset - 1; j++) {
|
|
boundary_condition tmp_bc = this->bc(row, j-1);
|
|
|
|
if (tmp_bc.type == BTCSDiffusion::BC_CONSTANT) {
|
|
b_vector[offset * row + j] = tmp_bc.value;
|
|
continue;
|
|
}
|
|
|
|
double y_values[3];
|
|
y_values[0] =
|
|
(row != 0 ? c(row - 1, j - 1)
|
|
: getBCFromFlux(tmp_bc, c(row, j - 1), alpha[j - 1]));
|
|
y_values[1] = c(row, j - 1);
|
|
y_values[2] =
|
|
(row != nrow - 1 ? c(row + 1, j - 1)
|
|
: getBCFromFlux(tmp_bc, c(row, j - 1), alpha[j - 1]));
|
|
|
|
double t0_c =
|
|
alpha[j - 1] *
|
|
((y_values[0] - 2 * y_values[1] + y_values[2]) / (delta * delta));
|
|
b_vector[offset * row + j] = -c(row, j - 1) - t0_c;
|
|
}
|
|
}
|
|
|
|
void BTCSDiffusion::setTimestep(double time_step) {
|
|
this->time_step = time_step;
|
|
}
|
|
|
|
void BTCSDiffusion::simulate(std::vector<double> &c,
|
|
const std::vector<double> &alpha) {
|
|
if (this->grid_dim == 1) {
|
|
assert(c.size() == grid_cells[0]);
|
|
Eigen::Map<DVectorRowMajor> c_in(c.data(), this->grid_cells[0]);
|
|
simulate1D(c_in, bc(1,0), bc(1,bc.cols()-1), alpha, this->deltas[0],
|
|
this->grid_cells[0]);
|
|
}
|
|
if (this->grid_dim == 2) {
|
|
assert(c.size() == grid_cells[0] * grid_cells[1]);
|
|
Eigen::Map<DMatrixRowMajor> c_in(c.data(), this->grid_cells[1],
|
|
this->grid_cells[0]);
|
|
|
|
Eigen::Map<const DMatrixRowMajor> alpha_in(
|
|
alpha.data(), this->grid_cells[1], this->grid_cells[0]);
|
|
|
|
simulate2D(c_in, alpha_in);
|
|
}
|
|
}
|
|
|
|
inline double BTCSDiffusion::getBCFromFlux(boundary_condition bc,
|
|
double neighbor_c,
|
|
double neighbor_alpha) {
|
|
|
|
double val;
|
|
|
|
if (bc.type == BTCSDiffusion::BC_CLOSED) {
|
|
val = neighbor_c;
|
|
} else if (bc.type == BTCSDiffusion::BC_FLUX) {
|
|
// TODO
|
|
// val = bc[index].value;
|
|
} else {
|
|
// TODO: implement error handling here. Type was set to wrong value.
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
void BTCSDiffusion::setBoundaryCondition(int i, int j, bctype type, double value) {
|
|
|
|
bc(i,j).type = type;
|
|
bc(i,j).value = value;
|
|
}
|
|
|
|
inline void BTCSDiffusion::solveLES() {
|
|
// start to solve
|
|
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
|
|
solver;
|
|
solver.analyzePattern(A_matrix);
|
|
|
|
solver.factorize(A_matrix);
|
|
|
|
x_vector = solver.solve(b_vector);
|
|
}
|