Tony updated OH- viscosity

This commit is contained in:
David Parkhurst 2024-09-17 10:15:25 -06:00
parent 5146dd686e
commit 24d2c771f3
4 changed files with 30 additions and 23 deletions

14
Amm.dat
View File

@ -213,7 +213,7 @@ H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.2
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
@ -446,8 +448,8 @@ Mg+2 + F- = MgF+
-delta_h 3.2 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
# Na+ + OH- = NaOH
# -log_k -14.7 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
@ -1938,15 +1940,15 @@ END
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.

View File

@ -213,7 +213,7 @@ H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.2
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
@ -446,8 +448,8 @@ Mg+2 + F- = MgF+
-delta_h 3.2 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
# Na+ + OH- = NaOH
# -log_k -14.7 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
@ -1938,15 +1940,15 @@ END
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.

View File

@ -213,7 +213,7 @@ H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.2
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
@ -446,8 +448,8 @@ Mg+2 + F- = MgF+
-delta_h 3.2 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
# Na+ + OH- = NaOH
# -log_k -14.7 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
@ -3128,15 +3130,15 @@ Wollastonite -6.97 700 56 0.4 0 0
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.

View File

@ -132,7 +132,7 @@ H2Sg = H2Sg # H2S
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 491 1.851 0 0.3256
CO3-2 + H+ = HCO3-
log_k 10.3393; delta_h -3.561 kcal
@ -145,6 +145,7 @@ CO3-2 + 2 H+ = CO2 + H2O
delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-viscosity 1.15e-2 9.82e-2 3.59e-2 0 0 0 0.266
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
SO4-2 + H+ = HSO4-
-log_k 1.988; -delta_h 3.85 kcal
@ -1011,15 +1012,15 @@ END
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 5.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.