From 29b9061378147b8e72f25c2b09016f072f74e500 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Thu, 24 Apr 2014 03:02:14 +0000 Subject: [PATCH] fixed non-ASCII issues; added \dontrun to examples 15 and 21 git-svn-id: svn://136.177.114.72/svn_GW/IPhreeqc/trunk@8672 1feff8c3-07ed-0310-ac33-dd36852eb9cd --- R/Makefile | 2 ++ R/phreeqc/R/phreeqc.R | 31 ++++++++++++++++--------------- 2 files changed, 18 insertions(+), 15 deletions(-) diff --git a/R/Makefile b/R/Makefile index d657376b..6d9681be 100644 --- a/R/Makefile +++ b/R/Makefile @@ -234,6 +234,7 @@ all: $(PSRC) $(XSRC) $(DATA) $(MAN)/phreeqc-package.Rd $(DATADIR)/databases.rda : $(DBS) build-databases.R R --no-save --no-restore CMD BATCH build-databases.R + rm -f .RData ex15.ascii : $(EXDIR)/ex15.dat perl -pe 's/[^[:ascii:]]/?/g' $< > $@ @@ -243,6 +244,7 @@ ex15.ascii : $(EXDIR)/ex15.dat $(DATADIR)/examples.rda : $(EXS) build-examples.R R --no-save --no-restore CMD BATCH build-examples.R + rm -f .RData roxygenize $(MAN)/phreeqc-package.Rd : phreeqc/R/phreeqc.R rm -f $(RDFILES) diff --git a/R/phreeqc/R/phreeqc.R b/R/phreeqc/R/phreeqc.R index d5f6b225..438a160e 100644 --- a/R/phreeqc/R/phreeqc.R +++ b/R/phreeqc/R/phreeqc.R @@ -1813,15 +1813,14 @@ NULL ##' @name ex11 ##' @title Example 11--Transport and Cation Exchange ##' @description The following example simulates the chemical composition of the -##' effluent from a column containing a cation exchanger -##' (Appelo and Postma, 2005). Initially, the column contains a -##' sodium-potassium-nitrate solution in equilibrium with the exchanger. The -##' column is flushed with three pore volumes of calcium chloride solution. -##' Calcium, potassium, and sodium react to equilibrium with the exchanger at -##' all times. The problem is run two ways—by using the ADVECTION data block, -##' which models only advection, and by using the TRANSPORT data block, which -##' simulates advection and dispersive mixing. The example can be run using the -##' \code{\link{phrRunString}} routine. +##' effluent from a column containing a cation exchanger (Appelo and Postma, +##' 2005). Initially, the column contains a sodium-potassium-nitrate solution +##' in equilibrium with the exchanger. The column is flushed with three pore +##' volumes of calcium chloride solution. Calcium, potassium, and sodium react +##' to equilibrium with the exchanger at all times. The problem is run two +##' ways--by using the ADVECTION data block, which models only advection, and by +##' using the TRANSPORT data block, which simulates advection and dispersive +##' mixing. The example can be run using the \code{\link{phrRunString}} routine. ##' @docType data ##' @family Examples ##' @references \url{http://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} @@ -1957,9 +1956,10 @@ NULL ##' @keywords dataset ##' @examples ##' +##' # this example takes longer than 5 seconds ##' phrLoadDatabaseString(ex15.dat) ##' phrSetOutputStringsOn(TRUE) -##' phrRunString(ex15) +##' \dontrun{phrRunString(ex15)} ##' phrGetOutputStrings() ##' NULL @@ -2002,10 +2002,10 @@ NULL ##' @title Example 17--Inverse Modeling With Evaporation ##' @description Evaporation is handled in the same manner as other ##' heterogeneous reactions for inverse modeling. To model evaporation (or -##' dilution), it is necessary to include a phase with the composition “H2O”. +##' dilution), it is necessary to include a phase with the composition "H2O". ##' The important concept in modeling evaporation is the water mole-balance -##' equation (see Parkhurst and Appelo, 1999, “Equations and Numerical Method -##' for Inverse Modeling”). The moles of water in the initial solutions times +##' equation (see Parkhurst and Appelo, 1999, "Equations and Numerical Method +##' for Inverse Modeling"). The moles of water in the initial solutions times ##' their mixing fractions, plus water gained or lost by dissolution or ##' precipitation of phases, plus water gained or lost through redox reactions, ##' must equal the moles of water in the final solution. The equation is still @@ -2146,7 +2146,7 @@ NULL ##' Van Loon and others, 2004, for details). Solutions with tracers are ##' circulated at the surfaces of the filters, the tracers diffuse into and out ##' of the clay, and the solutions are sampled and analyzed regularly in time. -##' The concentration changes are interpreted with Fick’s diffusion equations to +##' The concentration changes are interpreted with Fick's diffusion equations to ##' obtain transport parameters for modeling the rates of migration of elements ##' away from a waste repository. Transport in clays is mainly diffusive because ##' of the low hydraulic conductivity, and solutes are further retarded by @@ -2163,7 +2163,8 @@ NULL ##' # example 21 requires the selected_output file to be turned on ##' phrSetSelectedOutputFileOn(1, TRUE) ##' phrSetOutputStringsOn(TRUE) -##' phrRunString(ex21) +##' # this takes longer than 5 seconds +##' \dontrun{phrRunString(ex21)} ##' phrGetOutputStrings() ##' NULL