mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-15 16:18:22 +01:00
Squashed 'database/' changes from 22eb9506..bae20ea7
bae20ea7 Merge pull request #45 from dlparkhurst/viscosity d18452f3 All test cases run. Fixed CALCULATED_VALUES and RATES in Amm.dat and phreeqc.dat 5c6d1c5a Tony's changes Mar 15, 2024 39130824 Tony's changes Mar 15, 2024 bc1f8f86 Tony's changes Mar 15, 2024 3318883e Tony's Mar 15, changes. 77038cb6 modified NH3 from Tony's Amm.dat e510f752 Tony's changes 2/12/2024 git-subtree-dir: database git-subtree-split: bae20ea7e849a914e6abea15c71cdad69db68db7
This commit is contained in:
parent
8e1a4d0836
commit
4a0af1be39
158
Concrete_PHR.dat
Normal file
158
Concrete_PHR.dat
Normal file
@ -0,0 +1,158 @@
|
||||
# Concrete minerals
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
SO4-AFem # Lothenbach 2019
|
||||
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -31.57; -Vm 321
|
||||
CO3-AFem # Lothenbach 2019
|
||||
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
-log_k -34.59; -Vm 292
|
||||
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
-log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Fe # Lothenbach 2019
|
||||
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
|
||||
-log_k -26.3; -Vm 155
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
195
Concrete_PZ.dat
Normal file
195
Concrete_PZ.dat
Normal file
@ -0,0 +1,195 @@
|
||||
# Concrete minerals for use with
|
||||
# DATABASE c:\phreeqc\database\pitzer.dat
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
SOLUTION_MASTER_SPECIES
|
||||
Al Al(OH)4- 0 Al 26.9815
|
||||
H(0) H2 0 H
|
||||
O(0) O2 0 O
|
||||
SOLUTION_SPECIES
|
||||
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
|
||||
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
|
||||
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
|
||||
|
||||
PITZER # Using data from Weskolowski, 1992, GCA
|
||||
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
|
||||
-B0
|
||||
Al(OH)4- K+ -0.0669 0 0 8.24e-3
|
||||
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
|
||||
-B1
|
||||
Al(OH)4- K+ 0.668 0 0 -1.93e-2
|
||||
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
|
||||
-C0
|
||||
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
|
||||
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
|
||||
-THETA
|
||||
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
|
||||
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
|
||||
# Al(OH)4- SO4-2 -0.012
|
||||
-PSI
|
||||
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
|
||||
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
|
||||
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
|
||||
Al(OH)4- OH- K+ 0 0 0 0
|
||||
Al(OH)4- K+ Na+ 0 0 0 0
|
||||
END
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
O2(g)
|
||||
O2 = O2; -log_k -2.8983
|
||||
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
|
||||
H2(g)
|
||||
H2 = H2; -log_k -3.1050
|
||||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||||
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
# No Fe(OH)4- in Pitzer...
|
||||
# SO4-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
# -log_k -31.57; -Vm 321
|
||||
# CO3-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
# -log_k -34.59; -Vm 292
|
||||
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
# -log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
152
kinetic_rates.dat
Normal file
152
kinetic_rates.dat
Normal file
@ -0,0 +1,152 @@
|
||||
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
|
||||
|
||||
# KINETICS 1
|
||||
# Albite_PK
|
||||
# -formula NaAlSi3O8
|
||||
|
||||
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
|
||||
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
|
||||
|
||||
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
|
||||
|
||||
# RATES
|
||||
# Albite_PK # Palandri and Kharaka, 2004
|
||||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
# 20 put(affinity, -99, 1) # store value in memory
|
||||
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
# 40 SAVE calc_value("Palandri_rate")
|
||||
# -end
|
||||
|
||||
# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html
|
||||
|
||||
# References
|
||||
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
|
||||
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
|
||||
|
||||
CALCULATE_VALUES
|
||||
Palandri_rate
|
||||
# in KINETICS, define 11 parms:
|
||||
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factor, gas constant
|
||||
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
|
||||
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
|
||||
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
|
||||
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Sverdrup_rate
|
||||
# in KINETICS, define 34 parms:
|
||||
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
|
||||
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
|
||||
10 affinity = get(-99, 1)
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factors
|
||||
70 dif_temp = 1 / TK - 1 / 281
|
||||
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
|
||||
90
|
||||
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||||
110 aAl = act("Al+3")
|
||||
120 aSi = act("H4SiO4")
|
||||
130 R = tot("OrganicMatter")
|
||||
140
|
||||
150 REM # rate by H+
|
||||
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
|
||||
170 pk_H = pkH - 3 + e_H * dif_temp
|
||||
180 CAl = CAl * 1e-6
|
||||
190 CBC = CBC * 1e-6
|
||||
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
|
||||
210
|
||||
220 REM # rate by hydrolysis
|
||||
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
|
||||
240 CAl = CAl * 1e-6
|
||||
250 CBC = CBC * 1e-6
|
||||
260 CSi = CSi * 1e-6
|
||||
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
|
||||
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
|
||||
290
|
||||
300 REM # rate by CO2
|
||||
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
|
||||
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
|
||||
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
|
||||
340
|
||||
350 REM # rate by Organic Acids
|
||||
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
|
||||
370 COrg = COrg * 1e-6
|
||||
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
|
||||
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
|
||||
400
|
||||
410 REM # rate by OH-
|
||||
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
|
||||
430 CAl = CAl * 1e-6
|
||||
440 CBC = CBC * 1e-6
|
||||
450 CSi = CSi * 1e-6
|
||||
460 pk_OH = pkOH - 3 + e_OH * dif_temp
|
||||
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
|
||||
480
|
||||
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
|
||||
500 area = sp_area * M0 * (M / M0)^0.67
|
||||
510
|
||||
520 rate = roughness * area * rate * affinity
|
||||
530 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Hermanska_rate
|
||||
# in KINETICS, define 14 parms:
|
||||
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
|
||||
# (Note that logk25 values are not used, they were transformed to A's.)
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # gas constant * Tk, act("H+")
|
||||
70 RT = 8.314e-3 * TK : aH = act("H+")
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
|
||||
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
|
||||
150 rate_H2O = Ab * exp(- e_H2O / RT)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
|
||||
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
1933
phreeqc.dat
1933
phreeqc.dat
File diff suppressed because it is too large
Load Diff
375
pitzer.dat
375
pitzer.dat
@ -3,187 +3,190 @@
|
||||
# Details are given at the end of this file.
|
||||
|
||||
SOLUTION_MASTER_SPECIES
|
||||
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
|
||||
B B(OH)3 0 B 10.81
|
||||
Ba Ba+2 0 Ba 137.33
|
||||
Br Br- 0 Br 79.904
|
||||
C CO3-2 2 HCO3 12.0111
|
||||
C(4) CO3-2 2 HCO3 12.0111
|
||||
Ca Ca+2 0 Ca 40.08
|
||||
Cl Cl- 0 Cl 35.453
|
||||
E e- 0 0.0 0.0
|
||||
Fe Fe+2 0 Fe 55.847
|
||||
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
|
||||
B B(OH)3 0 B 10.81
|
||||
Ba Ba+2 0 Ba 137.33
|
||||
Br Br- 0 Br 79.904
|
||||
C CO3-2 2 HCO3 12.0111
|
||||
C(4) CO3-2 2 HCO3 12.0111
|
||||
Ca Ca+2 0 Ca 40.08
|
||||
Cl Cl- 0 Cl 35.453
|
||||
E e- 0 0.0 0.0
|
||||
Fe Fe+2 0 Fe 55.847
|
||||
H H+ -1 H 1.008
|
||||
H(1) H+ -1 0.0
|
||||
K K+ 0 K 39.0983
|
||||
Li Li+ 0 Li 6.941
|
||||
Mg Mg+2 0 Mg 24.305
|
||||
Mn Mn+2 0 Mn 54.938
|
||||
Na Na+ 0 Na 22.9898
|
||||
O H2O 0 O 16.00
|
||||
O(-2) H2O 0 0.0
|
||||
S SO4-2 0 SO4 32.064
|
||||
S(6) SO4-2 0 SO4
|
||||
Si H4SiO4 0 SiO2 28.0843
|
||||
Sr Sr+2 0 Sr 87.62
|
||||
K K+ 0 K 39.0983
|
||||
Li Li+ 0 Li 6.941
|
||||
Mg Mg+2 0 Mg 24.305
|
||||
Mn Mn+2 0 Mn 54.938
|
||||
Na Na+ 0 Na 22.9898
|
||||
O H2O 0 O 16.00
|
||||
O(-2) H2O 0 0.0
|
||||
S SO4-2 0 SO4 32.064
|
||||
S(6) SO4-2 0 SO4
|
||||
Si H4SiO4 0 SiO2 28.0843
|
||||
Sr Sr+2 0 Sr 87.62
|
||||
# redox-uncoupled gases
|
||||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||||
Oxg Oxg 0 Oxg 32 # Oxygen gas
|
||||
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
|
||||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||||
Oxg Oxg 0 Oxg 32 # Oxygen gas
|
||||
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
|
||||
Sg H2Sg 0.0 H2Sg 32.064 # H2S gas
|
||||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
|
||||
SOLUTION_SPECIES
|
||||
H+ = H+
|
||||
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4.
|
||||
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
-viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5
|
||||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
|
||||
-dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0
|
||||
|
||||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
|
||||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn.
|
||||
# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.)
|
||||
# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka))
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
-dw 2.299e-9 -254
|
||||
Li+ = Li+
|
||||
-dw 1.03e-9 80
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||||
Na+ = Na+
|
||||
-dw 1.33e-9 122 1.52 3.70
|
||||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||||
# for calculating densities (rho) when I > 3...
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
|
||||
-viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062
|
||||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||||
-dw 1.33e-9 75 3.627 0 0.7037
|
||||
K+ = K+
|
||||
-dw 1.96e-9 395 2.5 21
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1
|
||||
-viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||||
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
|
||||
-dw 1.96e-9 254 3.484 0 0.1964
|
||||
Mg+2 = Mg+2
|
||||
-dw 0.705e-9 111 2.4 13.7
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
-dw 0.705e-9 -4 5.569 0 1.047
|
||||
Ca+2 = Ca+2
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
|
||||
-viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
-dw 0.792e-9 34 5.411 0 1.046
|
||||
Sr+2 = Sr+2
|
||||
-dw 0.794e-9 161
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
|
||||
Ba+2 = Ba+2
|
||||
-dw 0.848e-9 46
|
||||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||||
-viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768
|
||||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||||
-dw 0.848e-9 174 10.53 0 3.0
|
||||
Mn+2 = Mn+2
|
||||
-dw 0.688e-9
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
|
||||
-dw 0.688e-9
|
||||
Fe+2 = Fe+2
|
||||
-dw 0.719e-9
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
-dw 0.719e-9
|
||||
Cl- = Cl-
|
||||
-dw 2.03e-9 194 1.6 6.9
|
||||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||||
-dw 2.033e-9 216 3.160 0.2071 0.7432
|
||||
CO3-2 = CO3-2
|
||||
-dw 0.955e-9 225 1.002 3.96
|
||||
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
|
||||
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
|
||||
-viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754
|
||||
-dw 0.955e-9 -60 2.257 0.1022 0.4136
|
||||
SO4-2 = SO4-2
|
||||
-dw 1.07e-9 138 3.95 25.9
|
||||
-Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0
|
||||
-viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271
|
||||
-Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786
|
||||
-viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248
|
||||
-dw 1.07e-9 -68 0.3946 0.9106 0.8941
|
||||
B(OH)3 = B(OH)3
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||||
-dw 1.1e-9
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||||
Br- = Br-
|
||||
-dw 2.01e-9 258
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||||
-viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818
|
||||
-dw 2.01e-9 139 2.949 0 1.321
|
||||
H4SiO4 = H4SiO4
|
||||
-dw 1.10e-9
|
||||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||||
-dw 1.10e-9
|
||||
# redox-uncoupled gases
|
||||
Hdg = Hdg # H2
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
Oxg = Oxg # O2
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
Mtg = Mtg # CH4
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
Ntg = Ntg # N2
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
-dw 5.27e-9 548 0.52 1e-10
|
||||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
|
||||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
|
||||
-viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH
|
||||
-dw 5.27e-9 491 1.851 0 0.3256
|
||||
CO3-2 + H+ = HCO3-
|
||||
log_k 10.3393
|
||||
delta_h -3.561 kcal
|
||||
log_k 10.3393; delta_h -3.561 kcal
|
||||
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
|
||||
-dw 1.18e-9 -79.0 0.956 -3.29
|
||||
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
|
||||
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
|
||||
-viscosity 0 0.633 7.2e-3 0 0 0 1.087
|
||||
-dw 1.18e-9 -108 9.955 0 1.4928
|
||||
CO3-2 + 2 H+ = CO2 + H2O
|
||||
log_k 16.6767
|
||||
delta_h -5.738 kcal
|
||||
log_k 16.6767
|
||||
delta_h -5.738 kcal
|
||||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
|
||||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
SO4-2 + H+ = HSO4-
|
||||
log_k 1.979
|
||||
delta_h 4.91 kcal
|
||||
-analytic -5.3585 0.0183412 557.2461
|
||||
-dw 1.33e-9
|
||||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||||
-log_k 1.988; -delta_h 3.85 kcal
|
||||
-analytic -56.889 0.006473 2307.9 19.8858
|
||||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||||
-viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371
|
||||
-dw 0.731e-9 1e3 7.082 3.0 0.860
|
||||
H2Sg = HSg- + H+
|
||||
log_k -6.994
|
||||
delta_h 5.30 kcal
|
||||
-analytical 11.17 -0.02386 -3279.0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
B(OH)3 + H2O = B(OH)4- + H+
|
||||
log_k -9.239
|
||||
log_k -9.239
|
||||
delta_h 0 kcal
|
||||
3B(OH)3 = B3O3(OH)4- + 2H2O + H+
|
||||
log_k -7.528
|
||||
log_k -7.528
|
||||
delta_h 0 kcal
|
||||
4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+
|
||||
log_k -16.134
|
||||
log_k -16.134
|
||||
delta_h 0 kcal
|
||||
Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+
|
||||
log_k -7.589
|
||||
log_k -7.589
|
||||
delta_h 0 kcal
|
||||
Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+
|
||||
log_k -7.840
|
||||
log_k -7.840
|
||||
delta_h 0 kcal
|
||||
# Ca+2 + CO3-2 = CaCO3
|
||||
# log_k 3.151
|
||||
# log_k 3.151
|
||||
# delta_h 3.547 kcal
|
||||
# -analytic -1228.806 -0.299440 35512.75 485.818
|
||||
# -dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||||
# -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||||
# -dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||||
# -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||||
Mg+2 + H2O = MgOH+ + H+
|
||||
log_k -11.809
|
||||
log_k -11.809
|
||||
delta_h 15.419 kcal
|
||||
Mg+2 + CO3-2 = MgCO3
|
||||
log_k 2.928
|
||||
log_k 2.928
|
||||
delta_h 2.535 kcal
|
||||
-analytic -32.225 0.0 1093.486 12.72433
|
||||
-dw 4.21e-10
|
||||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
-analytic -32.225 0.0 1093.486 12.72433
|
||||
-dw 4.21e-10
|
||||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
H4SiO4 = H3SiO4- + H+
|
||||
-log_k -9.83; -delta_h 6.12 kcal
|
||||
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
|
||||
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
|
||||
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
|
||||
H4SiO4 = H2SiO4-2 + 2 H+
|
||||
-log_k -23.0; -delta_h 17.6 kcal
|
||||
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
|
||||
@ -191,22 +194,22 @@ H4SiO4 = H2SiO4-2 + 2 H+
|
||||
PHASES
|
||||
Akermanite
|
||||
Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat
|
||||
log_k 45.23
|
||||
log_k 45.23
|
||||
-delta_H -289 kJ/mol
|
||||
Vm 92.6
|
||||
Anhydrite
|
||||
CaSO4 = Ca+2 + SO4-2
|
||||
log_k -4.362
|
||||
-analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3
|
||||
-Vm 46.1 # 136.14 / 2.95
|
||||
-Vm 46.1 # 136.14 / 2.95
|
||||
Anthophyllite
|
||||
Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat
|
||||
log_k 66.80
|
||||
log_k 66.80
|
||||
-delta_H -483 kJ/mol
|
||||
Vm 269
|
||||
Antigorite
|
||||
Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat
|
||||
log_k 477.19
|
||||
log_k 477.19
|
||||
-delta_H -3364 kJ/mol
|
||||
Vm 1745
|
||||
Aragonite
|
||||
@ -214,48 +217,48 @@ Aragonite
|
||||
log_k -8.336
|
||||
delta_h -2.589 kcal
|
||||
-analytic -171.8607 -.077993 2903.293 71.595
|
||||
-Vm 34.04
|
||||
-Vm 34.04
|
||||
Arcanite
|
||||
K2SO4 = SO4-2 + 2 K+
|
||||
log_k -1.776; -delta_h 5 kcal
|
||||
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
|
||||
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
|
||||
-Vm 65.5
|
||||
-Vm 65.5
|
||||
Artinite
|
||||
Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat
|
||||
log_k 19.66
|
||||
log_k 19.66
|
||||
-delta_H -130 kJ/mol
|
||||
Vm 97.4
|
||||
Barite
|
||||
BaSO4 = Ba+2 + SO4-2
|
||||
log_k -9.97; delta_h 6.35 kcal
|
||||
-analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3
|
||||
-Vm 52.9
|
||||
-Vm 52.9
|
||||
Bischofite
|
||||
MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O
|
||||
log_k 4.455
|
||||
log_k 4.455
|
||||
-analytical_expression 7.526 -1.114e-2 115.7 # ref. 3
|
||||
Vm 127.1
|
||||
Bloedite
|
||||
Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O
|
||||
log_k -2.347
|
||||
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
|
||||
log_k -2.347
|
||||
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
|
||||
Vm 147
|
||||
Brucite
|
||||
Mg(OH)2 = Mg++ + 2 OH-
|
||||
log_k -10.88
|
||||
log_k -10.88
|
||||
-delta_H 4.85 kcal/mol
|
||||
Vm 24.6
|
||||
Burkeite
|
||||
Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+
|
||||
log_k -0.772
|
||||
log_k -0.772
|
||||
Vm 152
|
||||
Calcite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
log_k -8.406
|
||||
log_k -8.406
|
||||
delta_h -2.297 kcal
|
||||
-analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982
|
||||
-Vm 36.9
|
||||
-Vm 36.9
|
||||
Carnallite
|
||||
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
|
||||
log_k 4.35; -delta_h 1.17
|
||||
@ -263,105 +266,105 @@ Carnallite
|
||||
Vm 173.7
|
||||
Celestite
|
||||
SrSO4 = Sr+2 + SO4-2
|
||||
log_k -6.630
|
||||
log_k -6.630
|
||||
-analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3
|
||||
-Vm 46.4
|
||||
-Vm 46.4
|
||||
Chalcedony
|
||||
SiO2 + 2 H2O = H4SiO4
|
||||
-log_k -3.55; -delta_h 4.720 kcal
|
||||
-Vm 23.1
|
||||
-Vm 23.1
|
||||
Chrysotile
|
||||
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat
|
||||
-log_k 32.2
|
||||
-delta_h -46.800 kcal
|
||||
-analytic 13.248 0.0 10217.1 -6.1894
|
||||
-Vm 110
|
||||
-Vm 110
|
||||
Diopside
|
||||
CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat
|
||||
log_k 20.96
|
||||
log_k 20.96
|
||||
-delta_H -134 kJ/mol
|
||||
Vm 67.2
|
||||
Dolomite
|
||||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||||
log_k -17.09
|
||||
log_k -17.09
|
||||
delta_h -9.436 kcal
|
||||
-analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275.
|
||||
-Vm 64.5
|
||||
-Vm 64.5
|
||||
Enstatite
|
||||
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
|
||||
log_k 11.33
|
||||
log_k 11.33
|
||||
-delta_H -83 kJ/mol
|
||||
Vm 31.3
|
||||
Epsomite
|
||||
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
|
||||
log_k -1.881
|
||||
log_k -1.881
|
||||
-analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3
|
||||
Vm 147
|
||||
Forsterite
|
||||
Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat
|
||||
log_k 27.86
|
||||
log_k 27.86
|
||||
-delta_H -206 kJ/mol
|
||||
Vm 43.7
|
||||
Gaylussite
|
||||
CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O
|
||||
log_k -9.421
|
||||
log_k -9.421
|
||||
Glaserite
|
||||
NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2
|
||||
log_k -3.803; -delta_h 25
|
||||
-Vm 123
|
||||
-Vm 123
|
||||
Glauberite
|
||||
Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2
|
||||
log_k -5.31
|
||||
log_k -5.31
|
||||
-analytical_expression 218.142 0 -9285 -77.735 # ref. 3
|
||||
Vm 100.4
|
||||
Goergeyite
|
||||
K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O
|
||||
log_k -29.5
|
||||
-analytical_expression 1056.787 0 -52300 -368.06 # ref. 3
|
||||
-Vm 295.9
|
||||
-Vm 295.9
|
||||
Gypsum
|
||||
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
|
||||
-log_k -4.58; -delta_h -0.109 kcal
|
||||
-analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3
|
||||
-Vm 73.9
|
||||
-Vm 73.9
|
||||
Halite
|
||||
NaCl = Cl- + Na+
|
||||
log_k 1.570
|
||||
log_k 1.570
|
||||
-analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3
|
||||
-Vm 27.1
|
||||
-Vm 27.1
|
||||
Hexahydrite
|
||||
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
|
||||
log_k -1.635
|
||||
log_k -1.635
|
||||
-analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3
|
||||
Vm 132
|
||||
Huntite
|
||||
CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat
|
||||
log_k 10.30
|
||||
log_k 10.30
|
||||
-analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2
|
||||
Vm 130.8
|
||||
Kainite
|
||||
KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O
|
||||
log_k -0.193
|
||||
log_k -0.193
|
||||
Kalicinite
|
||||
KHCO3 = K+ + H+ + CO3-2
|
||||
log_k -9.94 # Harvie et al., 1984
|
||||
log_k -9.94 # Harvie et al., 1984
|
||||
Kieserite
|
||||
MgSO4:H2O = Mg+2 + SO4-2 + H2O
|
||||
log_k -0.123
|
||||
log_k -0.123
|
||||
-analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3
|
||||
Vm 53.8
|
||||
Labile_S
|
||||
Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O
|
||||
log_k -5.672
|
||||
log_k -5.672
|
||||
Leonhardite
|
||||
MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O
|
||||
log_k -0.887
|
||||
log_k -0.887
|
||||
Leonite
|
||||
K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O
|
||||
log_k -3.979
|
||||
log_k -3.979
|
||||
Magnesite
|
||||
MgCO3 = CO3-2 + Mg+2
|
||||
log_k -7.834
|
||||
log_k -7.834
|
||||
delta_h -6.169
|
||||
Vm 28.3
|
||||
MgCl2_2H2O
|
||||
@ -376,51 +379,51 @@ Mirabilite
|
||||
Vm 216
|
||||
Misenite
|
||||
K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+
|
||||
log_k -10.806
|
||||
log_k -10.806
|
||||
Nahcolite
|
||||
NaHCO3 = CO3-2 + H+ + Na+
|
||||
log_k -10.742
|
||||
log_k -10.742
|
||||
Vm 38.0
|
||||
Natron
|
||||
Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O
|
||||
log_k -0.825
|
||||
log_k -0.825
|
||||
Nesquehonite
|
||||
MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O
|
||||
log_k -5.167
|
||||
log_k -5.167
|
||||
Pentahydrite
|
||||
MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O
|
||||
log_k -1.285
|
||||
log_k -1.285
|
||||
Pirssonite
|
||||
Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O
|
||||
log_k -9.234
|
||||
log_k -9.234
|
||||
Polyhalite
|
||||
K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O
|
||||
log_k -13.744
|
||||
log_k -13.744
|
||||
Vm 218
|
||||
Portlandite
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
log_k -5.190
|
||||
log_k -5.190
|
||||
Quartz
|
||||
SiO2 + 2 H2O = H4SiO4
|
||||
-log_k -3.98; -delta_h 5.990 kcal
|
||||
-Vm 22.67
|
||||
-Vm 22.67
|
||||
Schoenite
|
||||
K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O
|
||||
log_k -4.328
|
||||
log_k -4.328
|
||||
Sepiolite(d)
|
||||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
|
||||
-log_k 18.66
|
||||
-Vm 162
|
||||
-Vm 162
|
||||
Sepiolite
|
||||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
|
||||
-log_k 15.760
|
||||
-delta_h -10.700 kcal
|
||||
-Vm 154
|
||||
-Vm 154
|
||||
SiO2(a)
|
||||
SiO2 + 2 H2O = H4SiO4
|
||||
-log_k -2.71; -delta_h 3.340 kcal
|
||||
-analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3
|
||||
-Vm 25.7
|
||||
-Vm 25.7
|
||||
Sylvite
|
||||
KCl = K+ + Cl-
|
||||
log_k 0.90; -delta_h 8
|
||||
@ -429,42 +432,42 @@ Sylvite
|
||||
Syngenite
|
||||
K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O
|
||||
log_k -6.43; -delta_h -32.65 # ref. 3
|
||||
-Vm 127.3
|
||||
-Vm 127.3
|
||||
Talc
|
||||
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat
|
||||
-log_k 21.399
|
||||
-delta_h -46.352 kcal
|
||||
-Vm 140
|
||||
-Vm 140
|
||||
Thenardite
|
||||
Na2SO4 = 2 Na+ + SO4-2
|
||||
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
|
||||
-Vm 52.9
|
||||
-Vm 52.9
|
||||
Trona
|
||||
Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O
|
||||
log_k -11.384
|
||||
log_k -11.384
|
||||
Vm 106
|
||||
Borax
|
||||
Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O
|
||||
log_k 12.464
|
||||
log_k 12.464
|
||||
Vm 223
|
||||
Boric_acid,s
|
||||
B(OH)3 = B(OH)3
|
||||
log_k -0.030
|
||||
log_k -0.030
|
||||
KB5O8:4H2O
|
||||
KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+
|
||||
log_k 4.671
|
||||
log_k 4.671
|
||||
K2B4O7:4H2O
|
||||
K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+
|
||||
log_k 13.906
|
||||
log_k 13.906
|
||||
NaBO2:4H2O
|
||||
NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O
|
||||
log_k 9.568
|
||||
log_k 9.568
|
||||
NaB5O8:5H2O
|
||||
NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+
|
||||
log_k 5.895
|
||||
log_k 5.895
|
||||
Teepleite
|
||||
Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O
|
||||
log_k 10.840
|
||||
log_k 10.840
|
||||
CO2(g)
|
||||
CO2 = CO2
|
||||
log_k -1.468
|
||||
@ -778,7 +781,7 @@ EXCHANGE_MASTER_SPECIES
|
||||
X X-
|
||||
EXCHANGE_SPECIES
|
||||
X- = X-
|
||||
log_k 0.0
|
||||
log_k 0.0
|
||||
|
||||
Na+ + X- = NaX
|
||||
log_k 0.0
|
||||
@ -846,7 +849,7 @@ SURFACE_SPECIES
|
||||
log_k -8.93 # = -pKa2,int
|
||||
|
||||
###############################################
|
||||
# CATIONS #
|
||||
# CATIONS #
|
||||
###############################################
|
||||
#
|
||||
# Cations from table 10.1 or 10.5
|
||||
@ -871,7 +874,7 @@ SURFACE_SPECIES
|
||||
log_k 5.46
|
||||
|
||||
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
||||
log_k -7.2 # table 10.5
|
||||
log_k -7.2 # table 10.5
|
||||
#
|
||||
# Derived constants table 10.5
|
||||
#
|
||||
@ -880,10 +883,10 @@ SURFACE_SPECIES
|
||||
log_k -4.6
|
||||
# Manganese
|
||||
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
||||
log_k -0.4 # table 10.5
|
||||
log_k -0.4 # table 10.5
|
||||
|
||||
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
||||
log_k -3.5 # table 10.5
|
||||
log_k -3.5 # table 10.5
|
||||
# Iron
|
||||
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||||
# log_k 0.7 # LFER using table 10.5
|
||||
@ -892,17 +895,17 @@ SURFACE_SPECIES
|
||||
# log_k -2.5 # LFER using table 10.5
|
||||
|
||||
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
|
||||
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||||
log_k -0.95
|
||||
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||||
log_k -0.95
|
||||
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
||||
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||||
log_k -2.98
|
||||
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||||
log_k -2.98
|
||||
|
||||
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
|
||||
log_k -11.55
|
||||
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
|
||||
log_k -11.55
|
||||
|
||||
###############################################
|
||||
# ANIONS #
|
||||
# ANIONS #
|
||||
###############################################
|
||||
#
|
||||
# Anions from table 10.6
|
||||
@ -975,14 +978,14 @@ END
|
||||
# H2O 0.49 0.19 0.19 0.49
|
||||
# =============================================================================================
|
||||
# The molar volumes of solids are entered with
|
||||
# -Vm vm cm3/mol
|
||||
# -Vm vm cm3/mol
|
||||
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
|
||||
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
|
||||
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
|
||||
# --------------------
|
||||
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
|
||||
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
|
||||
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
|
||||
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
|
||||
# The volume (cm3/mol) is
|
||||
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
|
||||
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user