From 4a6ec6151e2f155dd16dc438023b743fbc77e6ae Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 20:26:38 +0000 Subject: [PATCH] Squashed 'database/' changes from 4e898381..ec0212de ec0212de removed tabs before eol in stimela.dat. Updated RELEASE.TXT. 3cf80a8a Added simela.dat-from Peter de Moel. Fixed bug in write_raw/read_raw GasComp, order of options git-subtree-dir: database git-subtree-split: ec0212ded233929c14fc4bc5d6f0d61604ef3c8e --- CMakeLists.txt | 1 + Makefile.am | 1 + stimela.dat | 2129 ++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2131 insertions(+) create mode 100644 stimela.dat diff --git a/CMakeLists.txt b/CMakeLists.txt index 75d594f5..113817fb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -16,6 +16,7 @@ set(phreeqc_DATABASE phreeqc.dat pitzer.dat sit.dat + stimela.dat Tipping_Hurley.dat wateq4f.dat ) diff --git a/Makefile.am b/Makefile.am index abe19d83..df221e25 100644 --- a/Makefile.am +++ b/Makefile.am @@ -24,5 +24,6 @@ DATABASE=\ phreeqc.dat\ pitzer.dat\ sit.dat\ + stimela.dat\ Tipping_Hurley.dat\ wateq4f.dat diff --git a/stimela.dat b/stimela.dat new file mode 100644 index 00000000..09f9c650 --- /dev/null +++ b/stimela.dat @@ -0,0 +1,2129 @@ +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment +# Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat + +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# Modified acc. TSAW calculated +#element species alk gfw_formula element_gfw # phreeqc.dat (if modified) +# +H H+ -1 H 1.0080 1.008 1,008 +H(0) H2 0 H +H(1) H+ -1 0 +E e- 0 0.0 0 +O H2O 0 O 15.999 # 16 15,999 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.078 # 40.08 40,078 +Mg Mg+2 0 Mg 24.305 # 24.312 +Na Na+ 0 Na 22.990 # 22.9898 +K K+ 0 K 39.098 # 39.102 +Fe Fe+2 0 Fe 55.845 # 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.982 # 26.9815 +Ba Ba+2 0 Ba 137.33 # 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.085 # 28.0843 +Cl Cl- 0 Cl 35.45 # 35.453 +C CO3-2 2 HCO3 12.011 # 12.0111 12,011 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.043 # 50.05 50,043 +S SO4-2 0 SO4 32.06 # 32.064 32,06 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.007 # 14.0067 14,007 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N # 14.0067 +# begin modification stimela.dat +# uncommented Amm definitions +Amm AmmH+ 0 AmmH 17.031 # 17,031 +# end modification stimela.dat +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.974 # 30.9738 +F F- 0 F 18.998 # 18.9984 +Li Li+ 0 Li 6.94 # 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.38 # 65.37 +Cd Cd+2 0 Cd 112.41 # 112.4 +Pb Pb+2 0 Pb 207.2 # 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas 2,016 +Oxg Oxg 0 Oxg 31.998 # 32 O2 gas 31,998 +Mtg Mtg 0 Mtg 16.043 # 16.032 CH4 gas 16,043 +Sg H2Sg 0 H2Sg 34.076 # 34.064 H2S gas 34,076 +Ntg Ntg 0 Ntg 28.014 # 28.0134 N2 gas 28,014 +# begin modification stimela.dat +# added redox-uncoupled (inert) elements: [Fe+2], [Mn+2] and [N+3] +[Fe+2] [Fe+2]+2 0 Fe 55.845 +[Mn+2] [Mn+2]+2 0 Mn 54.938 +[N+3] [N+3]O2- 0 N 14.007 +# redox_uncoupled elements Amm (NH3), Mtg (CH4) and Sg (H2S) are not readable chemical formula +# replaced with uniform notation for redox-uncoupled (inert) elements: [N-3], [C-4] and [S-2] +[N-3] [N-3]H4+ 0 NH4 14.007 # Amm = [N-3]H3 +[C-4] [C-4]H4 0 CH4 12.011 # Mtg = [C-4]H4 +[S-2] H2[S-2] 0 H2S 32.06 # Sg = [S-2] +# uniform notation omitted for Oxg (O2), Hdg (H2) and Ntg (N2), to limit modifications from phreeqc.dat +# end modification stimela.dat +SOLUTION_SPECIES +H+ = H+ + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 + # Dw(25 C) dw_T a a2 visc a3 a_v_dif + # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc + # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. + + # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) + # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) + # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) + # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + + # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 + # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = AmmH+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# added [N-3]H4+, [N+3]O2-, [Fe+2]+2 and [Mn+2]+2 +[N-3]H4+ = [N-3]H4+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +[N+3]O2- = [N+3]O2- + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +[Fe+2]+2 = [Fe+2]+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +[Mn+2]+2 = [Mn+2]+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +# end modification stimela.dat +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 + -dw 2.09e-9 208 3.5 0 0.5737 +Zn+2 = Zn+2 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# begin modification stimela.dat +[C-4]H4 = [C-4]H4 # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +H2[S-2] = H2[S-2] # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# end modification stimela.dat +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# begin modification stimela.dat +H2[S-2] = H[S-2]- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 1.73e-9 +2 H2[S-2] = (H2[S-2])2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# end modification stimela.dat +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = Amm + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# definition [N-3]H3 +[N-3]H4+ = [N-3]H3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# end modification stimela.dat +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ + SO4-2 = AmmHSO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# definition [N-3]H4SO4- +[N-3]H4+ + SO4-2 = [N-3]H4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# end modification stimela.dat +NH4+ + SO4-2 = NH4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.85 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 + -delta_h 30.3 kcal + -gamma 5 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.6 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + -log_k 14 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.16 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 + -delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 + -delta_h 0.26 kcal + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8 + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0 -3833 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal +# begin modification stimela.dat +# analytic not modified, kept as in version 3.6.2, which is in accordance to Standard Methods 2330 (2016) +# -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic -171.9065 -0.077993 2839.319 71.595 # changed in version 3.7.0, March 10 2021 +# end modification stimela.dat + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +# begin modification stimela.dat +# adding Vaterite from Aragonite according Standard Methods 2330 (2010) +Vaterite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 # overruled by -analytic + -delta_h -2.589 kcal # overruled by -analytic + -analytic -172.1295 -0.077993 3074.688 71.595 + -Vm 39.41 cm3/mol # MW (100.09 g/mol) / rho (2.54 g/cm3) +# end modification stimela.dat +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.48 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.43 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal + # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.8 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.5 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.3 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.58 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.82 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.3 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2 H+ + 2 e- = H2S + -log_k 4.882 + -delta_h -9.5 kca +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.11 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.64 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +# begin modification stimela.dat +# uncommented Amm definitions +Amm(g) + Amm = Amm + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# end modification stimela.dat +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# begin modification stimela.dat +# uniform notation of elements in redox-uncoupled gases +[N-3]H3(g) + [N-3]H3 = [N-3]H3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +[C-4]H4(g) + [C-4]H4 = [C-4]H4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2[S-2](g) + H2[S-2] = H+ + H[S-2]- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# end modification stimela.dat +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.28 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 +# begin modification stimela.dat +# define for added redox-uncoupled gases +H2O(g) H2[S-2](g) 0.19 +H2O(g) [C-4]H4(g) 0.49 +# end modification stimela.dat + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0 + + Na+ + X- = NaX + -log_k 0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# begin modification stimela.dat +# uncommented Amm definitions + AmmH+ + X- = AmmHX + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# definition [N-3]H4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# end modification stimela.dat + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 + + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 + + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 + + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 + + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 + + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 + + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 + + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end + +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T).