diff --git a/current1 b/current1 new file mode 100644 index 00000000..527ac958 --- /dev/null +++ b/current1 @@ -0,0 +1,112 @@ +# check with analytical calc'n of the current: +# sample with por = 0.1, diam 0.1 m, 30 mm long = 23.6 mL water +# c = 0.3M NaCl, D = 1e-9 for all solutes, 3 V / 30 mm: +# J_E(Na) = -(1e-9 * 0.1) * 0.3e3 * 96485 / (8.3145 * 298) * (3 - 0) / (30e-3 - 0) = -1.168e-4 * 7.85e-4 = +# -9.175e-8 eq (Na+)/s * F = -8.85 mC/s = -8.85 mA due to Na +# Total current : J_E(Na+) + -J_E(Cl-) = 2 * -8.85 = 17.7 mA + +# D_Cl- = 2e-9 ? Then D_NaCl = 1.33, and the current is 17.7 * 1.33 = 23.6 mA + +# With phreeqc.dat: Dw (25°C)): Na+ = 1.33e-9, Cl- 2.03e-9 : current = 1.61 * 17.7 = 28.5 mA + +DATABASE ../database/wateq4f.dat +# SOLUTION_SPECIES +# Cl- = Cl-; -Dw 2.0e-9 + +EQUILIBRIUM_PHASES 0; H2(g) 0 0 # for bubbling out H2 +EQUILIBRIUM_PHASES 101; O2(g) 0 0 # ... and O2 + +SOLUTION 0 +pH 7 charge; Cl 300; Na 300 +SOLUTION 1-100 +-water 23.56e-5 # kg water in a cell +pH 7 charge; Cl 300; Na 300 +SOLUTION 101 +-water 1 +pH 7 charge; Cl 300; Na 300 +potential 3 +END + +PRINT; -reset false +TRANSPORT +-cells 100 +-lengths 30e-5 +-boundary_conditions 1 1 +-multi_d true 1e-9 0.1 0.0 1 +-flow_direction diffusion_only +-time_step 1 sec 1 +-shifts 100 +-punch_frequency 5 +-punch_cells 0-101 + +USER_GRAPH 1 current +-headings t current_A from conc`s in cell 0 +-axis_titles "time / hour" "current / mA" +-initial_solutions true +-axis_scale x_axis 0 100 +1 if cell_no > 0 then end +2 if step_no > 0 then 10 +3 put(mol("Na+") * tot("water"), 2) : put(mol("H+") * tot("water"), 3) : put(total_time , 1) +4 put(mol("Cl-") * tot("water"), 4) : put(mol("OH-") * tot("water"), 5) +5 end +10 graph_x total_time / 3600 +20 graph_sy -1e3 * current_A +30 c = (mol("Na+") * tot("water") - get(2)) : put(mol("Na+") * tot("water"), 2) +# 32 c = c + (mol("H+") * tot("water") - get(3)) : put(mol("H+") * tot("water"), 3) +40 c2 = (mol("Cl-") * tot("water") - get(4)) : put(mol("Cl-") * tot("water"), 4) +# 42 c2 = c2 + (mol("OH-") * tot("water") - get(5)) : put(mol("OH-") * tot("water"), 5) +50 graph_sy (c + -c2) / (total_time - get(1)) * 96485 * 1e3 +60 put(total_time , 1) + +USER_GRAPH 2 Na- and Cl-concentration +-connect_simulations false +-plot_concentration_vs dist +-initial_solutions true +-axis_scale x_axis 0 30 +-axis_titles "Distance in column / mm" "Na / (mol/kgw)" "Cl / (mol/kgw)" +1 if (floor(step_no / 50) <> step_no / 50) then end +2 if total_time < 100 then end +10 graph_x dist * 1e3 +20 graph_y tot("Na") +30 graph_sy tot("Cl") + +USER_GRAPH 3 potential +-connect_simulations false +-plot_concentration_vs dist +-initial_solutions true +-axis_scale x_axis 0 30 +-axis_titles "Distance in column / mm" "potential / Volt" +1 if (floor(step_no / 50) <> step_no / 50) then end +2 if total_time < 100 then end +10 graph_x dist * 1e3 +20 graph_y pot_V + +USER_GRAPH 4 pH +-initial_solutions true +-connect_simulations false +-plot_concentration_vs dist +-axis_scale x_axis 0 30 +-axis_titles "Distance in column / mm" pH +1 if (floor(step_no / 20) <> step_no / 20) then end +2 if sim_no = 2 and step_no > 0 then end +3 if sim_no = 3 and step_no = 0 then end +10 graph_x dist * 1e3 +20 graph_y -LA("H+") + +USER_GRAPH 5 redox potential +-initial_solutions true +-connect_simulations false +-plot_concentration_vs dist +-axis_scale x_axis 0 30 +-axis_titles "Distance in column / mm" 'Eh / Volt' +1 if (floor(step_no / 20) <> step_no / 20) then end +2 if sim_no = 2 and step_no > 0 then end +3 if sim_no = 3 and step_no = 0 then end +10 graph_x dist * 1e3 +20 graph_y -LA("e-") * 0.059 +END + +TRANSPORT +-time_step 1 hour 1 +END +