diff --git a/gtest/CMakeLists.txt b/gtest/CMakeLists.txt index a2ef9367..4b495a8d 100644 --- a/gtest/CMakeLists.txt +++ b/gtest/CMakeLists.txt @@ -92,6 +92,12 @@ configure_file( COPYONLY ) +configure_file( + phreeqc.dat.90a6449 + phreeqc.dat.90a6449 + COPYONLY + ) + configure_file( ../database/phreeqc.dat phreeqc.dat diff --git a/gtest/TestIPhreeqc.cpp b/gtest/TestIPhreeqc.cpp index 448aa985..fe372297 100644 --- a/gtest/TestIPhreeqc.cpp +++ b/gtest/TestIPhreeqc.cpp @@ -4098,7 +4098,7 @@ TEST(TestIPhreeqc, TestMultiPunchCSelectedOutput) CVar var; IPhreeqc obj; - ASSERT_EQ(0, obj.LoadDatabase("phreeqc.dat")); + ASSERT_EQ(0, obj.LoadDatabase("phreeqc.dat.90a6449")); ASSERT_EQ(0, obj.RunFile("multi_punch")); ASSERT_EQ(6, obj.GetSelectedOutputRowCount()); diff --git a/gtest/TestIPhreeqcLib.cpp b/gtest/TestIPhreeqcLib.cpp index 60046a8a..2724b5db 100644 --- a/gtest/TestIPhreeqcLib.cpp +++ b/gtest/TestIPhreeqcLib.cpp @@ -4064,7 +4064,7 @@ TEST(TestIPhreeqcLib, TestMultiPunchCSelectedOutput) int id = ::CreateIPhreeqc(); ASSERT_TRUE(id >= 0); - ASSERT_EQ(0, ::LoadDatabase(id, "phreeqc.dat")); + ASSERT_EQ(0, ::LoadDatabase(id, "phreeqc.dat.90a6449")); ASSERT_EQ(0, ::RunFile(id, "multi_punch")); ASSERT_EQ(6, ::GetSelectedOutputRowCount(id)); diff --git a/gtest/phreeqc.dat.90a6449 b/gtest/phreeqc.dat.90a6449 new file mode 100644 index 00000000..65c1656f --- /dev/null +++ b/gtest/phreeqc.dat.90a6449 @@ -0,0 +1,1935 @@ +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 0 +E e- 0 0.0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas + +SOLUTION_SPECIES +H+ = H+ + -gamma 9.0 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc +# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 +e- = e- +H2O = H2O +# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -dw 0.705e-9 111 2.4 13.7 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Na+ = Na+ + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility + -dw 1.33e-9 122 1.52 3.70 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 +# for calculating densities (rho) when I > 3... + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 +K+ = K+ + -gamma 3.5 0.015 + -dw 1.96e-9 395 2.5 21 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 +Fe+2 = Fe+2 + -gamma 6.0 0 + -dw 0.719e-9 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 +Mn+2 = Mn+2 + -gamma 6.0 0 + -dw 0.688e-9 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 +Al+3 = Al+3 + -gamma 9.0 0 + -dw 0.559e-9 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 +Sr+2 = Sr+2 + -gamma 5.260 0.121 + -dw 0.794e-9 161 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 +H4SiO4 = H4SiO4 + -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -dw 2.03e-9 194 1.6 6.9 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute +CO3-2 = CO3-2 + -gamma 5.4 0 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 +SO4-2 = SO4-2 + -gamma 5.0 -0.04 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 +NO3- = NO3- + -gamma 3.0 0 + -dw 1.9e-9 184 1.85 3.85 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 +#AmmH+ = AmmH+ +# -gamma 2.5 0 +# -dw 1.98e-9 312 0.95 4.53 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +H3BO3 = H3BO3 + -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt +PO4-3 = PO4-3 + -gamma 4.0 0 + -dw 0.612e-9 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 +F- = F- + -gamma 3.5 0 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 +Li+ = Li+ + -gamma 6.0 0 + -dw 1.03e-9 80 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 +Br- = Br- + -gamma 3.0 0 + -dw 2.01e-9 258 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 +Zn+2 = Zn+2 + -gamma 5.0 0 + -dw 0.715e-9 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 +Cd+2 = Cd+2 + -dw 0.717e-9 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 +Pb+2 = Pb+2 + -dw 0.945e-9 + -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt +Cu+2 = Cu+2 + -gamma 6.0 0 + -dw 0.733e-9 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 +# redox-uncoupled gases +Hdg = Hdg # H2 + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt +Oxg = Oxg # O2 + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt +Mtg = Mtg # CH4 + -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 +Ntg = Ntg # N2 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 +H2Sg = H2Sg # H2S + -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -dw 5.27e-9 548 0.52 1e-10 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329 + -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 +2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 14.58 1.84 4.14 -2.46 -3.20 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 +SO4-2 + H+ = HSO4- + -log_k 1.988 + -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -dw 1.33e-9 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.140 kcal + -gamma 3.5 0 + -dw 1.73e-9 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt +HS- + H+ = H2S + -log_k 6.994 + -delta_h -5.30 kcal + -analytical -11.17 0.02386 3279.0 + -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 +2H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 + -Vm 36.41 -71.95 0 0 2.58 +H2Sg = HSg- + H+ + -log_k -6.994 + -delta_h 5.30 kcal + -analytical_expression 11.17 -0.02386 -3279.0 + -gamma 3.5 0 + -dw 1.73e-9 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt +2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 + -Vm 36.41 -71.95 0 0 2.58 +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.570 + -delta_h -43.760 kcal + -gamma 3.0 0 + -dw 1.91e-9 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.130 kcal + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 +#AmmH+ = Amm + H+ +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -dw 1.98e-9 312 0.95 4.53 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -dw 2.28e-9 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 +#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +#AmmH+ + SO4-2 = AmmHSO4- +NH4+ + SO4-2 = NH4SO4- + -log_k 1.11; -delta_h 13.2 kcal + -gamma 5 -0.163 + -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 + -dw 1.1e-9 400 1.85 200 + -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.850 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -dw 0.846e-9 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 +PO4-3 + 3H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224 + -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 11.435 + -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -dw 5.06e-10 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0.0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -dw 4.78e-10 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt +Mg+2 + SO4-2 = MgSO4 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +Na+ + OH- = NaOH + -log_k -10 # remove this complex +# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +Na+ + HCO3- = NaHCO3 + -log_k -0.18; -delta_h 27 kJ + -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71. + -gamma 0 0.23 + -dw 6.73e-10 -400 1e-10 1e-10 + -Vm 9 -6 + -viscosity 0 0 0 0.1 3e-2 +Na+ + SO4-2 = NaSO4- + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + SO4-2 = KSO4- + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -31.0 + -delta_h 30.3 kcal + -gamma 5.0 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2.0 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1.0 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5.0 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.60 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 +Fe+3 + 3 F- = FeF3 + -log_k 14.0 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -34.8 + -gamma 5.0 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5.0 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5.0 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2SO4-2 = Al(SO4)2- + -log_k 5.0 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.160 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.260 kcal + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5.0 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5.0 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5.0 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2Cl- = CuCl2- + -log_k 5.50 + -delta_h -0.42 kcal + -gamma 4.0 0 +Cu+ + 3Cl- = CuCl3-2 + -log_k 5.70 + -delta_h 0.26 kcal + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4.0 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4.0 0 +Cu+2 + 4Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5.0 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8.0 + -gamma 4.0 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0.0 -3833.0 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4.0 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4.0 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5.0 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3HS- = Pb(HS)3- + -log_k 16.57 +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2F- = PbF2 + -log_k 2.56 +Pb+2 + 3F- = PbF3- + -log_k 3.42 +Pb+2 + 4F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal + -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.480 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.430 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.400 kcal + -analytic 155.0305 0.0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.710 kcal + -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0.0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.340 kcal + -analytic -0.26 0.0 -731.0 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.720 kcal + -analytic -0.09 0.0 -1032.0 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.990 kcal + -analytic 0.41 0.0 -1309.0 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.800 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.500 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.300 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.580 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.820 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.800 kcal + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.760 + -delta_h -10.700 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1.0 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.300 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2H+ + 2e- = H2S + -log_k 4.882 + -delta_h -9.5 kcal +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36.0 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.110 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.640 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.570 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.900 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.60; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6; -P_c 49.80; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.1050 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.80; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.50; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.20; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +#Amm(g) +# Amm = Amm +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.81800e-3 3199 17.909 -27460 + T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O + -log_k -1.4 + -delta_h -50.250 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.280 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10.0 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 + Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + -log_k 8.15 + -delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0.0 + + Na+ + X- = NaX + -log_k 0.0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# AmmH+ + X- = AmmHX + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + -log_k 0.8 + -gamma 5.0 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + -log_k 0.52 + -gamma 6.0 0 + + Fe+2 + 2X- = FeX2 + -log_k 0.44 + -gamma 6.0 0 + + Cu+2 + 2X- = CuX2 + -log_k 0.6 + -gamma 6.0 0 + + Zn+2 + 2X- = ZnX2 + -log_k 0.8 + -gamma 5.0 0 + + Cd+2 + 2X- = CdX2 + -log_k 0.8 + -gamma 0.0 0 + + Pb+2 + 2X- = PbX2 + -log_k 1.05 + -gamma 0.0 0 + + Al+3 + 3X- = AlX3 + -log_k 0.41 + -gamma 9.0 0 + + AlOH+2 + 2X- = AlOHX2 + -log_k 0.89 + -gamma 0.0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444.0 / TK ) +40 k2 = 10^(2.84 - 2177.0 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T).