coping current database directory to phreeqc3

git-svn-id: svn://136.177.114.72/svn_GW/phreeqc3/trunk@6501 1feff8c3-07ed-0310-ac33-dd36852eb9cd
This commit is contained in:
Scott R Charlton 2012-04-19 00:05:34 +00:00
commit 7e2201e213
30 changed files with 161642 additions and 0 deletions

1695
Amm.dat Normal file

File diff suppressed because it is too large Load Diff

461
EPRI/cdmusic_hiemstra.dat Normal file
View File

@ -0,0 +1,461 @@
cdmusic_hiemstra.dat
# Original design by David Parkhurst, USGS, Sept 2006
# Additions by David Kinniburgh
# 19 February 2010
# This database is a temporary database until such time that a critically-assessed database is compiled.
# It is based solely on the published work of Hiemstra, van Riemsdijk and co-workers.
# So far, it only contains data for goethite and to a lesser extent ferrihydrite
# Goethite
# HR1999: Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 210, 182-193 (1999)
# HR2000: Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 225, 94-104 (2000)
# HRR2004: Hiemstra T, Rahnemaie R, van Riemsdijk, WH. J Colloid Interface Sci 278, 282-290 (2004)
# WKHMR2005: Weng LP, van Riemsdijk WH, Koopal LK, Geochim Cosmochim Acta 69, 325-339 (2005)
# WRKH2006: Weng LP, van Riemsdijk WH, Koopal LK, Hiemstra T. J Colloid Interface Sci 302, 442-457 (2006)
# RHR2006a: Rahnemaie R, Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 293, 312-321 (2006)
# RHR2006b: Rahnemaie R, Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 297, 379-388 (2006)
# HR2006: Hiemstra T, van Riemsdijk WH. J Colloid Interface Sci 301, 1-18 (2006)
# SHR2006: Stachowicz M, Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 302, 62-75 (2006)
# RHR2007a: Rahnemaie R, Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 315, 415-425 (2007)
# RHR2007b: Rahnemaie R, Hiemstra T, van Riemsdijk, WH. Langmuir 23, 3680-3689 (2007)
# HBR2007: Hiemstra T, Barnett MO, van Riemsdijk, WH. J Colloid Interface Sci 310, 8-17 (2007)
# HRR2007: Hiemstra T, Rietra RPJJ, van Riemsdijk, WH. Croatica Chemica Acta 80, 313-324 (2007)
# SHR2007: Stachowicz M, Hiemstra T, van Riemsdijk, WH. Envtl Sci Technol 41, 5620-5625 (2007)
# WRH2007: Weng LP, van Riemsdijk WH, Hiemstra T. J Colloid Interface Sci 314, 107-118 (2007)
# SHR2008: Stachowicz M, Hiemstra T, van Riemsdijk, WH. J Colloid Interface Sci 320, 400-414 (2008)
# WRH2008a: Weng LP, van Riemsdijk WH, Hiemstra T. Geochim Cosmochim Acta 72, 5857-5870 (2008)
# WRH2008b: Weng LP, van Riemsdijk WH, Hiemstra T. Envtl Sci Technol 42, 8747-8752 (2008)
# NB There is no guarantee that the following data are internally consistent, or are consistent with the
# aqueous database that you use.
# Refer to the original papers for the associated aqueous model.
SOLUTION_MASTER_SPECIES
[N5] [N5]O3- 0 14 14
Perchlorate Perchlorate- 0 35 35
SOLUTION_SPECIES
[N5]O3- = [N5]O3-
log_k 0
Perchlorate- = Perchlorate-
log_k 0
# Goethite
SURFACE_MASTER_SPECIES
# Goe_uni Goe_uniOH-0.5
# Goe_tri Goe_triO-0.5
Goe_uni Goe_uniOH1.5 # PHREEQC needs a neutral species for coupling
Goe_tri Goe_triOH0.5 # surface sites and changing goethite concentrations
SURFACE_SPECIES
#
# Fe3-O sites
#
Goe_triOH0.5 = Goe_triOH0.5; -log_k 0
-cd_music 0.5 0 0 0 0
Goe_triOH0.5 = Goe_triO-0.5 + 0.5H+
-cd_music 0 0 0 0 0
log_k 20 # make Goe_triOH0.5 a negligible species
Goe_triO-0.5 + H+ = Goe_triOH+0.5
-cd_music 1 0 0 0 0
log_k 9.20 # SHR2008
Goe_triO-0.5 + Li+ = Goe_triOLi+0.5
-cd_music 0 1 0 0 0
log_k 0.10 # HR2006, SHR2008
Goe_triO-0.5 + Na+ = Goe_triONa+0.5
-cd_music 0 1 0 0 0
log_k -0.60 # HR2006, SHR2008
Goe_triO-0.5 + K+ = Goe_triOK+0.5
-cd_music 0 1 0 0 0
log_k -1.61 # HR2006
Goe_triO-0.5 + H+ + NO3- = Goe_triOHNO3-0.5
-cd_music 1 -1 0 0 0
log_k 8.52 # HR2006a = 9.20 + (-0.68), SHR2008
Goe_triO-0.5 + H+ + [N5]O3- = Goe_triOH[N5]O3-0.5
-cd_music 1 -1 0 0 0
log_k 8.52 # HR2006a = 9.20 + (-0.68), SHR2008
Goe_triO-0.5 + H+ + Cl- = Goe_triOHCl-0.5
-cd_music 1 -1 0 0 0
log_k 8.75 # HR2006a = 9.20 + (-0.45)
#
# Fe-O sites
#
Goe_uniOH1.5 = Goe_uniOH1.5; log_k 0
-cd_music 0.5 0 0 0 0
Goe_uniOH1.5 = Goe_uniOH-0.5 + 0.5H+
-cd_music 0 0 0 0 0
log_k 20 # make Goe_uniOH1.5 a negligible species
Goe_uniOH-0.5 + H+ = Goe_uniOH2+0.5
-cd_music 1 0 0 0 0
log_k 9.20 # SHR2008
Goe_uniOH-0.5 + Li+ = Goe_uniOHLi+0.5
-cd_music 0 1 0 0 0
log_k 0.10 # HR2006, SHR2008
Goe_uniOH-0.5 + Na+ = Goe_uniOHNa+0.5
-cd_music 0 1 0 0 0
log_k -0.60 # HR2006, SHR2008
Goe_uniOH-0.5 + K+ = Goe_uniOHK+0.5
-cd_music 0 1 0 0 0
log_k -1.61 # HR2006
Goe_uniOH-0.5 + H+ + NO3- = Goe_uniOH2NO3-0.5
-cd_music 1 -1 0 0 0
log_k 8.52 # HR2006a = 9.20 + (-0.68), SHR2008
Goe_uniOH-0.5 + H+ + [N5]O3- = Goe_uniOH2[N5]O3-0.5
-cd_music 1 -1 0 0 0
log_k 8.52 # HR2006a = 9.20 + (-0.68), SHR2008
Goe_uniOH-0.5 + H+ + Cl- = Goe_uniOH2Cl-0.5
-cd_music 1 -1 0 0 0
log_k 8.75 # HR2006a = 9.20 + (-0.45)
#
# Cations
#
# Iron
# Ferrous
# 2Goe_uniOH-0.5 + Fe+2 = (Goe_uniOH)2Fe+1
# log_k 8.47
# -cd_music 0.73 1.27 0 0 0
# Ferrous with surface oxidation to ferric
# 2Goe_uniOH-0.5 + Fe+2 + 2H2O = (Goe_uniOH)2Fe(OH)2-1 + 2H+
# log_k -9.31
# -cd_music 0.17 -0.17 0 0 0
# Ferrous-arsenite surface complex
# Goe_uniOH-0.5 + Fe+2 + H3AsO3 = Goe_uniOAs(OH)3Fe+0.5 + H+
# log_k 3.35
# -cd_music 0.08 0.92 0 0 0
# Calcium
Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5
log_k 2.85 # SHR2008 2.93 WRH2008a
-cd_music 0.0 2.0 0 0 0
Goe_triO-0.5 + Ca+2 = Goe_triOCa+1.5
log_k 2.85 # SHR2008 2.93 WRH2008a
-cd_music 0.0 2.0 0 0 0
Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5
log_k 3.69 # SHR2008 3.66 WRH2008a
-cd_music 0.32 1.68 0 0 0
Goe_uniOH-0.5 + Ca+2 + H2O = Goe_uniOHCaOH+0.5 + H+
log_k -9.17 # SHR2008 -9.21 WRH2008a
-cd_music 0.32 0.68 0 0 0
# Magnesium
2Goe_uniOH-0.5 + Mg+2 = (Goe_uniOH)2Mg+1
log_k 4.89 # SHR2008
-cd_music 0.71 1.29 0 0 0
2Goe_uniOH-0.5 + Mg+2 + H2O = (Goe_uniOH)2MgOH + H+
log_k -6.44 # SHR2008
-cd_music 0.71 0.29 0 0 0
# Copper
2Goe_uniOH-0.5 + Cu+2 = (Goe_uniOH)2Cu+1
log_k 9.18 # WRH2008
-cd_music 0.84 1.16 0 0 0
2Goe_uniOH-0.5 + Cu+2 + H2O = (Goe_uniOH)2CuOH + H+
log_k 3.60 # WRH2008a
-cd_music 0.84 0.16 0 0 0
2Goe_uniOH-0.5 + 2Cu+2 + 2H2O = (Goe_uniOH)2Cu2(OH)2+1 + 2H+
log_k 3.65 # WRH2008a
-cd_music 0.84 1.16 0 0 0
2Goe_uniOH-0.5 + 2Cu+2 + 3H2O = (Goe_uniOH)2Cu2(OH)3 + 3H+
log_k -3.10 # WRH2008a
-cd_music 0.84 0.16 0 0 0
#
# Anions
#
#
# Arsenate
#
Goe_uniOH-0.5 + 2H+ + AsO4-3 = Goe_uniOAsO2OH-1.5 + H2O
log_k 26.60 # SHR2008
-cd_music 0.30 -1.30 0 0 0
2Goe_uniOH-0.5 + 2H+ + AsO4-3 = (Goe_uniO)2AsO2-2 + 2H2O
log_k 29.77 # SHR2008
-cd_music 0.47 -1.47 0 0 0
2Goe_uniOH-0.5 + 3H+ + AsO4-3 = (Goe_uniO)2AsOOH- + 2H2O
log_k 33.00 # SHR2008
-cd_music 0.58 -0.58 0 0 0
#
# Arsenite
#
Goe_uniOH-0.5 + H3AsO3 = Goe_uniOAs(OH)2-0.5 + H2O
log_k 4.91 # SHR2008
-cd_music 0.16 -0.16 0 0 0
2Goe_uniOH-0.5 + H3AsO3 = (Goe_uniO)2AsOH-1 + 2H2O
log_k 7.26 # SHR2008
-cd_music 0.34 -0.34 0 0 0
#
# Phosphate
#
Goe_uniOH-0.5 + 2H+ + PO4-3 = Goe_uniOPO2OH-1.5 + H2O
log_k 27.65 # SHR2008
-cd_music 0.28 -1.28 0 0 0
2Goe_uniOH-0.5 + 2H+ + PO4-3 = (Goe_uniO)2PO2-2 + 2H2O
log_k 29.77 # SHR2008
-cd_music 0.46 -1.46 0 0 0
# 2Goe_uniOH-0.5 + 2H+ + PO4-3 + H+ = (Goe_uniO)2POOH- + 2H2O
# log_k 35.4 # SHR2008
# -cd_music 0.58 -0.58 0 0 0
#
# Carbonate
#
2Goe_uniOH-0.5 + 2H+ + CO3-2 = (Goe_uniO)2CO- + 2H2O
log_k 22.33 # SHR2008
-cd_music 0.68 -0.68 0 0 0
#
# Sulphate
#
Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniOSO3-1.5 + H2O
log_k 9.37 # HR2006
-cd_music 0.5 -1.5 0 0 0
Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniOSO3-1.5 + H2O
log_k 11.06 # HR2006
-cd_music 1 -1.84 -0.16 0 0
#
# Silica
#
2Goe_uniOH-0.5 + H4SiO4 = (Goe_uniO)2Si(OH)2-1 + 2H2O
log_k 5.85 # HBR2007
-cd_music 0.29 -0.29 0 0 0
2Goe_uniOH-0.5 + 4H4SiO4 = (Goe_uniO)2SiOHOSi3O2(OH)7-1 + 5H2O
log_k 13.98 # HBR2007
-cd_music 0.29 -0.29 0 0 0
2Goe_uniOH-0.5 + 4H4SiO4 = (Goe_uniO)2SiOHOSi3O3(OH)6-2 + 5H2O + H+
log_k 7.47 # HBR2007
-cd_music 0.29 -1.29 0 0 0
###################################################################################################
#
# Ferrihydrite (Fhy)
#
# HvR2009: Hiemstra & van Riemsdijk (2009) Geochim. Cosmochim. Acta 73, 4423-4436.
# HvRRU2009: Hiemstra et al. (2009) Geochim. Cosmochim. Acta 73, 4437-4451.
# The U sorption is sensitive to the aqueous U database used. See HvRRU2009, Table A1.
# The aqueous model used by Hiemstra et al. here is consistent with the NEA database:
# http://migrationdb.jaea.go.jp/tdb_e/d_page_e/d_0500_e.html
SURFACE_MASTER_SPECIES
# Fhy_unie Fhy_unieOH-0.5
# Fhy_unic Fhy_unicOH-0.5
# Fhy_tri Fhy_triO-0.5
Fhy_unie Fhy_unieOH1.5
Fhy_unic Fhy_unicOH1.5
Fhy_tri Fhy_triOH0.5
SURFACE_SPECIES
#
# Fe3-O sites
#
Fhy_triOH0.5 = Fhy_triOH0.5
-cd_music 0.5 0 0 0 0
log_k 0
Fhy_triOH0.5 = Fhy_triO-0.5 + 0.5H+
-cd_music 0 0 0 0 0
log_k 20
Fhy_triO-0.5 + H+ = Fhy_triOH+0.5
-cd_music 1 0 0 0 0
log_k 8.06 #HvR2009
Fhy_triO-0.5 + Na+ = Fhy_triONa+0.5
-cd_music 0 1 0 0 0
log_k -0.60 #HvR2009
Fhy_triO-0.5 + H+ + NO3- = Fhy_triOHNO3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_triO-0.5 + H+ + [N5]O3- = Fhy_triOH[N5]O3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_triO-0.5 + H+ + Cl- = Fhy_triOHCl-0.5
-cd_music 1 -1 0 0 0
log_k 7.61 #HvR2009
Fhy_triO-0.5 + H+ + Perchlorate- = Fhy_triOHPerchlorate-0.5
-cd_music 1 -1 0 0 0
log_k 6.36 #HvR2009
#
# Fe-Oa sites (edge sharing)
#
Fhy_unieOH1.5 = Fhy_unieOH1.5
-cd_music 0.5 0 0 0 0
log_k 0
Fhy_unieOH1.5 = Fhy_unieOH-0.5 + 0.5H+
-cd_music 0 0 0 0 0
log_k 20
Fhy_unieOH-0.5 + H+ = Fhy_unieOH2+0.5
-cd_music 1 0 0 0 0
log_k 8.06 #HvR2009
Fhy_unieOH-0.5 + Na+ = Fhy_unieOHNa+0.5
-cd_music 0 1 0 0 0
log_k -0.60 #HvR2009
Fhy_unieOH-0.5 + H+ + NO3- = Fhy_unieOH2NO3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_unieOH-0.5 + H+ + [N5]O3- = Fhy_unieOH2[N5]O3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_unieOH-0.5 + H+ + Cl- = Fhy_unieOH2Cl-0.5
-cd_music 1 -1 0 0 0
log_k 7.61 #HvR2009
Fhy_unieOH-0.5 + H+ + Perchlorate- = Fhy_unieOH2Perchlorate-0.5
-cd_music 1 -1 0 0 0
log_k 6.36 #HvR2009
#
# Fe-Ob sites (double corner sharing)
#
Fhy_unicOH1.5 = Fhy_unicOH1.5
-cd_music 0.5 0 0 0 0
log_k 0
Fhy_unicOH1.5 = Fhy_unicOH-0.5 + 0.5H+
-cd_music 0 0 0 0 0
log_k 20
Fhy_unicOH-0.5 + H+ = Fhy_unicOH2+0.5
-cd_music 1 0 0 0 0
log_k 8.06 #HvR2009
Fhy_unicOH-0.5 + Na+ = Fhy_unicOHNa+0.5
-cd_music 0 1 0 0 0
log_k -0.60 #HvR2009
Fhy_unicOH-0.5 + H+ + NO3- = Fhy_unicOH2NO3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_unicOH-0.5 + H+ + [N5]O3- = Fhy_unicOH2[N5]O3-0.5
-cd_music 1 -1 0 0 0
log_k 7.38 #HvR2009
Fhy_unicOH-0.5 + H+ + Cl- = Fhy_unicOH2Cl-0.5
-cd_music 1 -1 0 0 0
log_k 7.61 #HvR2009
Fhy_unicOH-0.5 + H+ + Perchlorate- = Fhy_unicOH2Perchlorate-0.5
-cd_music 1 -1 0 0 0
log_k 6.36 #HvR2009
# Carbonate
2Fhy_unicOH-0.5 + 2H+ + CO3-2 = Fhy_unic2O2CO- + 2H2O
-cd_music 0.62 -0.62 0 0 0
log_k 21.50 #HvRRU2009
# Uranium and carbonate
2Fhy_unieOH-0.5 + UO2+2 = Fhy_unie2(OH)2UO2+
-cd_music 0.9 1.1 0 0 0
log_k 9.0 #HvRRU2009
2Fhy_unieOH-0.5 + UO2+2 + H2O = Fhy_unie2(OH)2UO2OH + H+
-cd_music 0.9 0.1 0 0 0
log_k 3.30 #HvRRU2009
2Fhy_unieOH-0.5 + UO2+2 + 2H2O = Fhy_unie2(OH)2UO2(OH)2- + 2H+
-cd_music 0.9 -0.9 0 0 0
log_k -5.3 #HvRRU2009
2Fhy_unieOH-0.5 + UO2+2 + CO3-2 + H2O = Fhy_unie2(OH)2UO2CO3(OH)-2 + H+
-cd_music 0.9 -1.9 0 0 0
log_k 10.49 #HvRRU2009
Fhy_unicOH-0.5 + UO2+2 + 3CO3-2 + H+ = Fhy_unic(OCO2)UO2(CO3)2-3.5 + H2O
-cd_music 0.33 -3.33 0 0 0
log_k 36.63 #HvRRU2009
Fhy_unieOH-0.5 + UO2+2 + 3CO3-2 + H+ = Fhy_unie(OCO2)UO2(CO3)2-3.5 + H2O
-cd_music 0.33 -3.33 0 0 0
log_k 36.63 #HvRRU2009
2Fhy_unieOH-0.5 + 3UO2+2 + 6H2O = Fhy_unie2(OH)2(UO2)3(OH)6- + 6H+
-cd_music 0.9 -0.9 0 0 0
log_k -15.8 #HvRRU2009
2Fhy_unieOH-0.5 + 3UO2+2 + CO3-2 + 3H2O = Fhy_unie2(OH)2(UO2)3(OH)3CO3 + 3H+
-cd_music 0.9 0.1 0 0 0
log_k 14.6 #HvRRU2009

12987
EPRI/epri_cdmusic.dat Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

14101
SIT/ThermoSIT.dat Normal file

File diff suppressed because it is too large Load Diff

BIN
SIT/sit-phreeqc.doc Normal file

Binary file not shown.

14230
SIT/sit-total.txt Normal file

File diff suppressed because it is too large Load Diff

7230
iso.dat Normal file

File diff suppressed because it is too large Load Diff

21
isotopes/basic/iso.bas Normal file
View File

@ -0,0 +1,21 @@
10 n1 = 6
20 n2 = 2
30 dim a$(n1)
40 data "HS","DS","TS","H[34S]", "D[34S]", "T[34S]"
50 restore 40
60 for i = 1 to n1
70 read a$(i)
80 next i
200 for i = 1 to 6
220 for j = i to 6
230 if (i = j) then gosub 1000
240 if not (i = j) then gosub 2000
250 next j
260 next i
270 end
1000 REM equation for same
1010 print "Fe(HS)2 + 2" + A$(i) + "- = Fe(" + A$(i) + ")2" + " + 2HS-"
1020 return
2000 REM equation for different
2010 print "Fe(HS)2 + " + A$(i) + "- + " + A$(j) "- = Fe" + A$(i) + A$(j) + " + 2HS-"
2020 return

25
isotopes/basic/iso1.bas Normal file
View File

@ -0,0 +1,25 @@
10 base_species$ = "FeHSO4+"
20 base_species_charge$ = "+"
30 base_ligand$ = "HSO4-"
40 prefix$ = "Fe"
50 ligand_charge$ = "-"
60 n1 = 6
70 dim ligand$(n1)
80 data "HSO4","DSO4","TSO4","H[34S]O4","D[34S]O4","T[34S]O4"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
200 for i = 1 to n1
210 lhs$ = base_species$ + " + " + ligand$(i) + ligand_charge$
220 rhs$ = prefix$ + ligand$(i) + base_species_charge$ + " + " + base_ligand$
230 print lhs$ + " = " + rhs$
240 next i
250 end
10000 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
10010 data "CO3","CO2[18O]","CO[18O]2","C[18O]3","[13C]O3","[13C]O2[18O]","[13C]O[18O]2","[13C][18O]3","[14C]O3","[14C]O2[18O]","[14C]O[18O]2","[14C][18O]3"
10080 data "HCO3","HCO2[18O]","HCO[18O]2","HC[18O]3","H[13C]O3","H[13C]O2[18O]","H[13C]O[18O]2","H[13C][18O]3","H[14C]O3","H[14C]O2[18O]","H[14C]O[18O]2","H[14C][18O]3"
10081 data "DCO3","DCO2[18O]","DCO[18O]2","DC[18O]3","D[13C]O3","D[13C]O2[18O]","D[13C]O[18O]2","D[13C][18O]3","D[14C]O3","D[14C]O2[18O]","D[14C]O[18O]2","D[14C][18O]3"
10082 data "TCO3","TCO2[18O]","TCO[18O]2","TC[18O]3","T[13C]O3","T[13C]O2[18O]","T[13C]O[18O]2","T[13C][18O]3","T[14C]O3","T[14C]O2[18O]","T[14C]O[18O]2","T[14C][18O]3"

View File

@ -0,0 +1,77 @@
10 base_species$ = "FeHCO3+"
20 base_species_charge$ = "+"
30 base_ligand$ = "HCO3-"
40 prefix$ = "Fe"
50 ligand_charge$ = "-"
60 n1 = 72
70 dim ligand$(n1)
80 data "HCO3","HCO2[18O]","HCO[18O]O","HCO[18O]2",
81 data "HC[18O]O2","HC[18O]O[18O]","HC[18O]2O","HC[18O]3"
82 data "H[13C]O3","H[13C]O2[18O]","H[13C]O[18O]O","H[13C]O[18O]2",
83 data "H[13C][18O]O2","H[13C][18O]O[18O]","H[13C][18O]2O","H[13C][18O]3"
84 data "H[14C]O3","H[14C]O2[18O]","H[14C]O[18O]O","H[14C]O[18O]2",
85 data "H[14C][18O]O2","H[14C][18O]O[18O]","H[14C][18O]2O","H[14C][18O]3"
86 data "DCO3","DCO2[18O]","DCO[18O]O","DCO[18O]2",
87 data "DC[18O]O2","DC[18O]O[18O]","DC[18O]2O","DC[18O]3"
88 data "D[13C]O3","D[13C]O2[18O]","D[13C]O[18O]O","D[13C]O[18O]2",
89 data "D[13C][18O]O2","D[13C][18O]O[18O]","D[13C][18O]2O","D[13C][18O]3"
90 data "D[14C]O3","D[14C]O2[18O]","D[14C]O[18O]O","D[14C]O[18O]2",
91 data "D[14C][18O]O2","D[14C][18O]O[18O]","D[14C][18O]2O","D[14C][18O]3"
92 data "TCO3","TCO2[18O]","TCO[18O]O","TCO[18O]2",
93 data "TC[18O]O2","TC[18O]O[18O]","TC[18O]2O","TC[18O]3"
94 data "T[13C]O3","T[13C]O2[18O]","T[13C]O[18O]O","T[13C]O[18O]2",
95 data "T[13C][18O]O2","T[13C][18O]O[18O]","T[13C][18O]2O","T[13C][18O]3"
96 data "T[14C]O3","T[14C]O2[18O]","T[14C]O[18O]O","T[14C]O[18O]2",
97 data "T[14C][18O]O2","T[14C][18O]O[18O]","T[14C][18O]2O","T[14C][18O]3"
120 data_line = 79
130 for i = 1 to n1
140 if not ((i mod 4) = 1) then goto 170
150 data_line = data_line + 1
155 print data_line, i
160 restore data_line
170 read ligand$(i)
180 next i
200 for i = 1 to n1
210 lhs$ = base_species$ + " + " + ligand$(i) + ligand_charge$
220 rhs$ = prefix$ + ligand$(i) + base_species_charge$ + " + " + base_ligand$
230 print lhs$ + " = " + rhs$
240 next i
250 end
10000 rem data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
10180 rem data "CO3","CO2[18O]","CO[18O]2","C[18O]3"
10181 rem data "[13C]O3","[13C]O2[18O]","[13C]O[18O]2","[13C][18O]3"
10182 rem data "[14C]O3","[14C]O2[18O]","[14C]O[18O]2","[14C][18O]3"
10279 REM HCO3 isotopomers
10280 rem data "HCO3","HCO2[18O]","HCO[18O]O","HCO[18O]2",
10281 rem data "HC[18O]O2","HC[18O]O[18O]","HC[18O]2O","HC[18O]3"
10282 rem data "H[13C]O3","H[13C]O2[18O]","H[13C]O[18O]O","H[13C]O[18O]2",
10283 rem data "H[13C][18O]O2","H[13C][18O]O[18O]","H[13C][18O]2O","H[13C][18O]3"
10284 rem data "H[14C]O3","H[14C]O2[18O]","H[14C]O[18O]O","H[14C]O[18O]2",
10285 rem data "H[14C][18O]O2","H[14C][18O]O[18O]","H[14C][18O]2O","H[14C][18O]3"
10290 rem data "DCO3","DCO2[18O]","DCO[18O]O","DCO[18O]2",
10291 rem data "DC[18O]O2","DC[18O]O[18O]","DC[18O]2O","DC[18O]3"
10292 rem data "D[13C]O3","D[13C]O2[18O]","D[13C]O[18O]O","D[13C]O[18O]2",
10293 rem data "D[13C][18O]O2","D[13C][18O]O[18O]","D[13C][18O]2O","D[13C][18O]3"
10294 rem data "D[14C]O3","D[14C]O2[18O]","D[14C]O[18O]O","D[14C]O[18O]2",
10295 rem data "D[14C][18O]O2","D[14C][18O]O[18O]","D[14C][18O]2O","D[14C][18O]3"
10300 rem data "TCO3","TCO2[18O]","TCO[18O]O","TCO[18O]2",
10301 rem data "TC[18O]O2","TC[18O]O[18O]","TC[18O]2O","TC[18O]3"
10302 rem data "T[13C]O3","T[13C]O2[18O]","T[13C]O[18O]O","T[13C]O[18O]2",
10303 rem data "T[13C][18O]O2","T[13C][18O]O[18O]","T[13C][18O]2O","T[13C][18O]3"
10304 rem data "T[14C]O3","T[14C]O2[18O]","T[14C]O[18O]O","T[14C]O[18O]2",
10305 rem data "T[14C][18O]O2","T[14C][18O]O[18O]","T[14C][18O]2O","T[14C][18O]3"
10480 rem data "HCO3","HCO2[18O]","HCO[18O]2","HC[18O]3","H[13C]O3","H[13C]O2[18O]","H[13C]O[18O]2","H[13C][18O]3","H[14C]O3","H[14C]O2[18O]","H[14C]O[18O]2","H[14C][18O]3"
10481 rem data "DCO3","DCO2[18O]","DCO[18O]2","DC[18O]3","D[13C]O3","D[13C]O2[18O]","D[13C]O[18O]2","D[13C][18O]3","D[14C]O3","D[14C]O2[18O]","D[14C]O[18O]2","D[14C][18O]3"
10482 rem data "TCO3","TCO2[18O]","TCO[18O]2","TC[18O]3","T[13C]O3","T[13C]O2[18O]","T[13C]O[18O]2","T[13C][18O]3","T[14C]O3","T[14C]O2[18O]","T[14C]O[18O]2","T[14C][18O]3"
20080 rem data "HSO4","DSO4","TSO4","H[34S]O4","D[34S]O4","T[34S]O4"
30080 rem data "PO4","PO3[18O]","PO2[18O]2","PO[18O]3","P[18O]4"

31
isotopes/basic/iso2.bas Normal file
View File

@ -0,0 +1,31 @@
10 base_species$ = "Fe(OH)2+"
20 base_species_charge$ = "+"
30 base_ligand$ = "OH-"
40 prefix$ = "Fe"
50 ligand_charge$ = "-"
60 n1 = 6
70 dim ligand$(n1)
80 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
200 for i = 1 to n1
210 for j = i to n1
220 if (i = j) then gosub 1000
230 if not (i = j) then gosub 2000
240 next j
250 next i
260 end
1000 REM equation for same
1010 lhs$ = base_species$ + " + 2" + ligand$(i) + ligand_charge$
1020 rhs$ = prefix$ + "(" + ligand$(i) + ")2" + base_species_charge$ + " + 2" + base_ligand$
1030 print lhs$ + " = " + rhs$
1040 return
2000 REM equation for different
2010 lhs$ = base_species$ + " + " + ligand$(i) + ligand_charge$ + " + " + ligand$(j) + ligand_charge$
2020 rhs$ = prefix$ + ligand$(i) + ligand$(j) + base_species_charge$ + " + 2" + base_ligand$
2030 print lhs$ + " = " + rhs$
2040 return

View File

@ -0,0 +1,86 @@
10 base_species$ = "Al(SO4)2-"
20 base_species_charge$ = "-"
30 base_ligand$ = "SO4-2"
40 ligand_charge$ = "-2"
50 prefix$ = "Al"
60 n1 = 2
70 dim ligand$(n1), lig$(4)
80 data "SO4","[34S]O4"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
180 total_eqns = 0
190 eqns = 0
200 for i = 1 to n1
210 for j = 1 to n1
230 gosub 8000
240 next j
250 next i
260 print eqns, total_eqns
270 end
8000 REM equation for different
8010 lhs$ = base_species$
8020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
8030 lhs$ = lhs$ + " + " + ligand$(j) + ligand_charge$
8060 rhs$ = prefix$
8070 rhs$ = rhs$ + ligand$(i)
8080 rhs$ = rhs$ + ligand$(j)
8110 rhs$ = rhs$ + base_species_charge$
8120 rhs$ = rhs$ + " + 2" + base_ligand$
8130 lig$(1) = ligand$(i)
8140 lig$(2) = ligand$(j)
8150 lig$(3) = ""
8160 lig$(4) = ""
8170 gosub 9000
8180 if (printit = 1) then print lhs$ + " = " + rhs$
8190 REM if (printit = 0) then print "# " + lhs$ + " = " + rhs$
8200 return
9000 REM Sum minor isotopes
9020 REM sum D
9030 nd = 0
9040 for ii = 1 to 4
9050 if instr(lig$(ii),"D") > 0 then nd = nd + 1
9060 next ii
9070 REM sum T
9080 nt = 0
9090 for ii = 1 to 4
9100 if instr(lig$(ii),"T") > 0 then nt = nt + 1
9110 next ii
9120 REM sum [18O]
9130 n18o = 0
9140 for ii = 1 to 4
9150 if instr(lig$(ii),"[18O]") > 0 then n18o = n18o + 1
9160 next ii
9170 REM sum [13C]
9180 n13C = 0
9190 for ii = 1 to 4
9200 if instr(lig$(ii),"[13C]") > 0 then n13C = n13C + 1
9210 next ii
9220 REM sum [14C]
9230 n14C = 0
9240 for ii = 1 to 4
9250 if instr(lig$(ii),"[14C]") > 0 then n14C = n14C + 1
9260 next ii
9270 REM sum [34S]
9280 n34s = 0
9290 for ii = 1 to 4
9300 if instr(lig$(ii),"[34S]") > 0 then n34s = n34s + 1
9310 next ii
9320 printit = 1
9330 if (nd > 2) then printit = 0
9340 if (nt > 1) then printit = 0
9350 if (n18o > 2) then printit = 0
9360 if (n13c > 2) then printit = 0
9370 if (n14c > 1) then printit = 0
9380 if (n34S > 2) then printit = 0
9390 if (printit = 1) then eqns = eqns + 1
9400 total_eqns = total_eqns + 1
9410 return
10080 REM data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
20080 REM data "HS","DS","TS","H[34S]","D[34S]","T[34S]"
30080 data "SO4","[34S]O4"

44
isotopes/basic/iso3.bas Normal file
View File

@ -0,0 +1,44 @@
10 base_species$ = "Fe(OH)3"
20 base_species_charge$ = ""
30 base_ligand$ = "OH-"
40 prefix$ = "Fe"
50 ligand_charge$ = "-"
60 n1 = 6
70 dim ligand$(n1)
80 data "OH","OD","OT","[18O]H","[18O]D","[18O]D"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
200 for i = 1 to n1
210 for j = i to n1
220 for k = j to n1
230 if (i = j) and (j = k) then gosub 1000
240 if (i = j) and not (j = k) then gosub 2000
250 if not (i = j) and (j = k) then gosub 3000
260 if not (i = j) and not (j = k) then gosub 3000
270 next k
280 next j
290 next i
300 end
1000 REM equation for same
1010 lhs$ = base_species$ + " + 3" + ligand$(i) + ligand_charge$
1020 rhs$ = prefix$ + "(" + ligand$(i) + ")3" + base_species_charge$ + " + 3" + base_ligand$
1030 print lhs$ + " = " + rhs$
1040 return
2000 REM equation for different
2010 lhs$ = base_species$ + " + 2" + ligand$(i) + ligand_charge$ + " + " + ligand$(k) + ligand_charge$
2020 rhs$ = prefix$ + "(" + ligand$(i) + ")2" + ligand$(k) + base_species_charge$ + " + 3" + base_ligand$
2030 print lhs$ + " = " + rhs$
2040 return
3000 REM equation for different
3010 lhs$ = base_species$ + " + " + ligand$(i) + ligand_charge$ + " + 2" + ligand$(j) + ligand_charge$
3020 rhs$ = prefix$ + ligand$(i) + "(" + ligand$(j) + ")2" + base_species_charge$ + " + 3" + base_ligand$
3030 print lhs$ + " = " + rhs$
3040 return
4000 REM equation for different
4010 lhs$ = base_species$ + " + " + ligand$(i) + ligand_charge$ + " + " + ligand$(j) + ligand_charge$ + ligand$(k) + ligand_charge$
4020 rhs$ = prefix$ + ligand$(i) + ligand$(j) + ligand$(k) + base_species_charge$ + " + 3" + base_ligand$
4030 print lhs$ + " = " + rhs$
4040 return

View File

@ -0,0 +1,91 @@
10 base_species$ = "Al(OH)3"
20 base_species_charge$ = ""
30 base_ligand$ = "OH-"
40 prefix$ = "Al"
50 ligand_charge$ = "-"
60 n1 = 6
70 dim ligand$(n1), lig$(4)
80 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
180 total_eqns = 0
190 eqns = 0
200 for i = 1 to n1
210 for j = 1 to n1
220 for k = 1 to n1
250 gosub 8000
270 next k
280 next j
290 next i
300 print eqns, total_eqns
310 end
8000 REM equation for different
8010 lhs$ = base_species$
8020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
8030 lhs$ = lhs$ + " + " + ligand$(j) + ligand_charge$
8040 lhs$ = lhs$ + " + " + ligand$(k) + ligand_charge$
8060 rhs$ = prefix$
8070 rhs$ = rhs$ + ligand$(i)
8080 rhs$ = rhs$ + ligand$(j)
8090 rhs$ = rhs$ + ligand$(k)
8110 rhs$ = rhs$ + base_species_charge$
8120 rhs$ = rhs$ + " + 3" + base_ligand$
8130 lig$(1) = ligand$(i)
8140 lig$(2) = ligand$(j)
8150 lig$(3) = ligand$(k)
8160 lig$(4) = ""
8170 gosub 9000
8180 if (printit = 1) then print lhs$ + " = " + rhs$
8190 REM if (printit = 0) then print "# " + lhs$ + " = " + rhs$
8200 return
9000 REM Sum minor isotopes
9020 REM sum D
9030 nd = 0
9040 for ii = 1 to 4
9050 if instr(lig$(ii),"D") > 0 then nd = nd + 1
9060 next ii
9070 REM sum T
9080 nt = 0
9090 for ii = 1 to 4
9100 if instr(lig$(ii),"T") > 0 then nt = nt + 1
9110 next ii
9120 REM sum [18O]
9130 n18o = 0
9140 for ii = 1 to 4
9150 if instr(lig$(ii),"[18O]") > 0 then n18o = n18o + 1
9160 next ii
9170 REM sum [13C]
9180 n13C = 0
9190 for ii = 1 to 4
9200 if instr(lig$(ii),"[13C]") > 0 then n13C = n13C + 1
9210 next ii
9220 REM sum [14C]
9230 n14C = 0
9240 for ii = 1 to 4
9250 if instr(lig$(ii),"[14C]") > 0 then n14C = n14C + 1
9260 next ii
9270 REM sum [34S]
9280 n34s = 0
9290 for ii = 1 to 4
9300 if instr(lig$(ii),"[34S]") > 0 then n34s = n34s + 1
9310 next ii
9320 printit = 1
9330 if (nd > 2) then printit = 0
9340 if (nt > 1) then printit = 0
9350 if (n18o > 2) then printit = 0
9360 if (n13c > 2) then printit = 0
9370 if (n14c > 1) then printit = 0
9380 if (n34S > 2) then printit = 0
9390 if (printit = 1) then eqns = eqns + 1
9400 total_eqns = total_eqns + 1
9410 return
10080 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
20080 data "HS","DS","TS","H[34S]","D[34S]","T[34S]"

135
isotopes/basic/iso4.bas Normal file
View File

@ -0,0 +1,135 @@
10 base_species$ = "Fe(OH)4-"
20 base_species_charge$ = "-"
30 base_ligand$ = "OH-"
40 prefix$ = "Fe"
50 ligand_charge$ = "-"
60 n1 = 6
70 dim ligand$(n1)
80 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
200 for i = 1 to n1
210 for j = i to n1
220 for k = j to n1
230 for l = k to n1
240 if (i = j) and (j = k) and (k = l) then gosub 1000
250 if (i = j) and (j = k) and not (k = l) then gosub 2000
260 if (i = j) and not (j = k) and (k = l) then gosub 3000
270 if (i = j) and not (j = k) and not (k = l) then gosub 4000
280 if not (i = j) and (j = k) and (k = l) then gosub 5000
290 if not (i = j) and (j = k) and not (k = l) then gosub 6000
300 if not (i = j) and not (j = k) and (k = l) then gosub 7000
310 if not (i = j) and not (j = k) and not (k = l) then gosub 8000
320 next l
330 next k
340 next j
350 next i
360 end
1000 REM equation for different
1010 lhs$ = base_species$
1020 lhs$ = lhs$ + " + 4" + ligand$(i) + ligand_charge$
1060 rhs$ = prefix$
1070 rhs$ = rhs$ + "(" + ligand$(i) + ")4"
1110 rhs$ = rhs$ + base_species_charge$
1120 rhs$ = rhs$ + " + 4" + base_ligand$
1130 print lhs$ + " = " + rhs$
1140 return
2000 REM equation for different
2010 lhs$ = base_species$
2020 lhs$ = lhs$ + " + 3" + ligand$(i) + ligand_charge$
2040 lhs$ = lhs$ + " + " + ligand$(l) + ligand_charge$
2060 rhs$ = prefix$
2070 rhs$ = rhs$ + "(" + ligand$(i) + ")3"
2090 rhs$ = rhs$ + ligand$(l)
2110 rhs$ = rhs$ + base_species_charge$
2120 rhs$ = rhs$ + " + 4" + base_ligand$
2130 print lhs$ + " = " + rhs$
2140 return
3000 REM equation for different
3010 lhs$ = base_species$
3020 lhs$ = lhs$ + " + 2" + ligand$(i) + ligand_charge$
3040 lhs$ = lhs$ + " + 2" + ligand$(k) + ligand_charge$
3060 rhs$ = prefix$
3070 rhs$ = rhs$ + "(" + ligand$(i) + ")2"
3090 rhs$ = rhs$ + "(" + ligand$(k) + ")2"
3110 rhs$ = rhs$ + base_species_charge$
3120 rhs$ = rhs$ + " + 4" + base_ligand$
3130 print lhs$ + " = " + rhs$
3140 return
4000 REM equation for different
4010 lhs$ = base_species$
4020 lhs$ = lhs$ + " + 2" + ligand$(i) + ligand_charge$
4040 lhs$ = lhs$ + " + " + ligand$(k) + ligand_charge$
4050 lhs$ = lhs$ + " + " + ligand$(l) + ligand_charge$
4060 rhs$ = prefix$
4070 rhs$ = rhs$ + "(" + ligand$(i) + ")2"
4090 rhs$ = rhs$ + ligand$(k)
4100 rhs$ = rhs$ + ligand$(l)
4110 rhs$ = rhs$ + base_species_charge$
4120 rhs$ = rhs$ + " + 4" + base_ligand$
4130 print lhs$ + " = " + rhs$
4140 return
5000 REM equation for different
5010 lhs$ = base_species$
5020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
5030 lhs$ = lhs$ + " + 3" + ligand$(j) + ligand_charge$
5060 rhs$ = prefix$
5070 rhs$ = rhs$ + ligand$(i)
5080 rhs$ = rhs$ + "(" + ligand$(j) + ")3"
5110 rhs$ = rhs$ + base_species_charge$
5120 rhs$ = rhs$ + " + 4" + base_ligand$
5130 print lhs$ + " = " + rhs$
5140 return
6000 REM equation for different
6010 lhs$ = base_species$
6020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
6030 lhs$ = lhs$ + " + 2" + ligand$(j) + ligand_charge$
6050 lhs$ = lhs$ + " + " + ligand$(l) + ligand_charge$
6060 rhs$ = prefix$
6070 rhs$ = rhs$ + ligand$(i)
6080 rhs$ = rhs$ + "(" + ligand$(j) + ")2"
6100 rhs$ = rhs$ + ligand$(l)
6110 rhs$ = rhs$ + base_species_charge$
6120 rhs$ = rhs$ + " + 4" + base_ligand$
6130 print lhs$ + " = " + rhs$
6140 return
7000 REM equation for different
7010 lhs$ = base_species$
7020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
7030 lhs$ = lhs$ + " + " + ligand$(j) + ligand_charge$
7040 lhs$ = lhs$ + " + 2" + ligand$(k) + ligand_charge$
7060 rhs$ = prefix$
7070 rhs$ = rhs$ + ligand$(i)
7080 rhs$ = rhs$ + ligand$(j)
7100 rhs$ = rhs$ + "(" + ligand$(k) + ")2"
7110 rhs$ = rhs$ + base_species_charge$
7120 rhs$ = rhs$ + " + 4" + base_ligand$
7130 print lhs$ + " = " + rhs$
7140 return
8000 REM equation for different
8010 lhs$ = base_species$
8020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
8030 lhs$ = lhs$ + " + " + ligand$(j) + ligand_charge$
8040 lhs$ = lhs$ + " + " + ligand$(k) + ligand_charge$
8050 lhs$ = lhs$ + " + " + ligand$(l) + ligand_charge$
8060 rhs$ = prefix$
8070 rhs$ = rhs$ + ligand$(i)
8080 rhs$ = rhs$ + ligand$(j)
8090 rhs$ = rhs$ + ligand$(k)
8100 rhs$ = rhs$ + ligand$(l)
8110 rhs$ = rhs$ + base_species_charge$
8120 rhs$ = rhs$ + " + 4" + base_ligand$
8130 print lhs$ + " = " + rhs$
8140 return

View File

@ -0,0 +1,91 @@
10 base_species$ = "Al(OH)4-"
20 base_species_charge$ = "-"
30 base_ligand$ = "OH-"
40 ligand_charge$ = "-"
50 prefix$ = "Al"
60 n1 = 6
70 dim ligand$(n1), lig$(4)
80 data "OH","OD","OT","[18O]H","[18O]D","[18O]T"
90 restore 80
100 for i = 1 to n1
110 read ligand$(i)
120 next i
180 total_eqns = 0
190 eqns = 0
200 for i = 1 to n1
210 for j = 1 to n1
220 for k = 1 to n1
230 for l = 1 to n1
250 gosub 8000
320 next l
330 next k
340 next j
350 next i
360 print eqns, total_eqns
370 end
8000 REM equation for different
8010 lhs$ = base_species$
8020 lhs$ = lhs$ + " + " + ligand$(i) + ligand_charge$
8030 lhs$ = lhs$ + " + " + ligand$(j) + ligand_charge$
8040 lhs$ = lhs$ + " + " + ligand$(k) + ligand_charge$
8050 lhs$ = lhs$ + " + " + ligand$(l) + ligand_charge$
8060 rhs$ = prefix$
8070 rhs$ = rhs$ + ligand$(i)
8080 rhs$ = rhs$ + ligand$(j)
8090 rhs$ = rhs$ + ligand$(k)
8100 rhs$ = rhs$ + ligand$(l)
8110 rhs$ = rhs$ + base_species_charge$
8120 rhs$ = rhs$ + " + 4" + base_ligand$
8130 lig$(1) = ligand$(i)
8140 lig$(2) = ligand$(j)
8150 lig$(3) = ligand$(k)
8160 lig$(4) = ligand$(l)
8170 gosub 9000
8180 if (printit = 1) then print lhs$ + " = " + rhs$
8190 REM if (printit = 0) then print "# " + lhs$ + " = " + rhs$
8200 return
9000 REM Sum minor isotopes
9020 REM sum D
9030 nd = 0
9040 for ii = 1 to 4
9050 if instr(lig$(ii),"D") > 0 then nd = nd + 1
9060 next ii
9070 REM sum T
9080 nt = 0
9090 for ii = 1 to 4
9100 if instr(lig$(ii),"T") > 0 then nt = nt + 1
9110 next ii
9120 REM sum [18O]
9130 n18o = 0
9140 for ii = 1 to 4
9150 if instr(lig$(ii),"[18O]") > 0 then n18o = n18o + 1
9160 next ii
9170 REM sum [13C]
9180 n13C = 0
9190 for ii = 1 to 4
9200 if instr(lig$(ii),"[13C]") > 0 then n13C = n13C + 1
9210 next ii
9220 REM sum [14C]
9230 n14C = 0
9240 for ii = 1 to 4
9250 if instr(lig$(ii),"[14C]") > 0 then n14C = n14C + 1
9260 next ii
9270 REM sum [34S]
9280 n34s = 0
9290 for ii = 1 to 4
9300 if instr(lig$(ii),"[34S]") > 0 then n34s = n34s + 1
9310 next ii
9320 printit = 1
9330 if (nd > 2) then printit = 0
9340 if (nt > 1) then printit = 0
9350 if (n18o > 2) then printit = 0
9360 if (n13c > 2) then printit = 0
9370 if (n14c > 1) then printit = 0
9380 if (n34S > 2) then printit = 0
9390 if (printit = 1) then eqns = eqns + 1
9400 total_eqns = total_eqns + 1
9410 return

7227
isotopes/newiso.dat Normal file

File diff suppressed because it is too large Load Diff

3741
isotopes/oldiso.dat Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

19234
llnl.dat Normal file

File diff suppressed because it is too large Load Diff

5650
minteq.dat Normal file

File diff suppressed because it is too large Load Diff

13208
minteq.v4.dat Normal file

File diff suppressed because it is too large Load Diff

1692
phreeqc.dat Normal file

File diff suppressed because it is too large Load Diff

907
pitzer.dat Normal file
View File

@ -0,0 +1,907 @@
# Pitzer.DAT for calculating pressure dependence of reactions, with
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
H H+ -1. H 1.008
H(1) H+ -1. 0.0
Hdg Hdg 0 Hdg 2.016 # H2 gas
E e- 0.0 0.0 0.0
O H2O 0.0 O 16.00
O(-2) H2O 0.0 0.0
Oxg Oxg 0 Oxg 32 # Oxygen gas
Ca Ca+2 0.0 Ca 40.08
Mg Mg+2 0.0 Mg 24.305
Na Na+ 0.0 Na 22.9898
K K+ 0.0 K 39.0983
Fe Fe+2 0.0 Fe 55.847
Mn Mn+2 0.0 Mn 54.938
Ba Ba+2 0.0 Ba 137.33
Sr Sr+2 0.0 Sr 87.62
Cl Cl- 0.0 Cl 35.453
C CO3-2 2.0 HCO3 12.0111
C(4) CO3-2 2.0 HCO3 12.0111
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
S SO4-2 0.0 SO4 32.064
S(6) SO4-2 0.0 SO4
Sg H2Sg 1.0 H2Sg 34.08 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
B B(OH)3 0.0 B 10.81
Li Li+ 0.0 Li 6.941
Br Br- 0.0 Br 79.904
SOLUTION_SPECIES
H+ = H+
log_k 0.000
-dw 9.31e-9
e- = e-
log_k 0.000
H2O = H2O
log_k 0.000
Ca+2 = Ca+2
log_k 0.000
-dw 0.793e-9
-Vm -17.95 -0.033 6.23e-4 -0.473 4.72e-2 -5.77e-4 -1e-3 4.2 # CaCl2.xls, Laliberte, 2009, 0-127 oC. Gypsum/Anhydrite solubility 0-170 oC, 1-1000 atm.
Mg+2 = Mg+2
log_k 0.000
-dw 0.705e-9
-Vm -21.1 -2.41e-2 -1.06e-5 -0.242 3.39e-2 -4.52e-4 -1e-3 4.3 # MgCl2.xls, Laliberte, 0-100 oC
Na+ = Na+
log_k 0.000
-dw 1.33e-9
-Vm -2.15 0.0193 2.23e-4 6.2e-3 0.015 -2.74e-4 -0.9e-3 0.35 # NaCl.xls, Laliberte, 2009. Halite solubility
K+ = K+
log_k 0.000
-dw 1.96e-9
-Vm 8.14 2.55e-2 2.17e-6 0.168 6.13e-3 -1.66e-4 -1e-3 0.184 # (corrected) KCl.xls, Laliberte, 2009. 0-125 oC.
Fe+2 = Fe+2
log_k 0.000
-dw 0.719e-9
-Vm -23.0 0.04 -8e-4 # Millero, 2001, App 14.
Mn+2 = Mn+2
log_k 0.000
-dw 0.688e-9
-Vm -17 0.02 -8e-4 # Millero, 2001, App 14.
Ba+2 = Ba+2
log_k 0.000
-dw 0.848e-9
-Vm -14 7.8e-3 5.2e-4 -5e-3 0.034 -5.7e-4 -10e-3 1.6 # 0-250 oC. BaCl2.xls, Laliberte, 2009. Barite solubility, Blount 1977, Lyashchenko and Churagulov, 1981. 0-250 oC, 1-500 atm.
Sr+2 = Sr+2
log_k 0.000
-dw 0.794e-9
-Vm -15.4 -0.168 23e-4 0.051 0.075 -9.2e-4 -10e-3 97 # SrCl2.xls, Laliberte, 2009. Celestite solubility, Howell et al., 1992, JCED 37, 464. 0-200 OC, 1-600 atm.
Cl- = Cl-
log_k 0.000
-dw 2.03e-9
-Vm 16.26 0.104 -1.25e-3 0.467 -0.027 2.95e-4 -1e-3 0.04 # 0-100 oC, HCl.xls, Laliberte, 2009. Halite solubility
CO3-2 = CO3-2
log_k 0.000
-dw 0.955e-9
-Vm -10.97 0.38 -3.9e-3 3.23 -0.14 1.12e-3 0 1e-3 # NaHCO3.xls, Na2CO3.xls, Laliberte + PHREEQC speciation
SO4-2 = SO4-2
log_k 0.000
-dw 1.07e-9
-Vm 9.55 0.297 -3e-3 2.06 -0.08 7.08e-4 -10e-3 0.017 # Na2SO4.xls, Laliberte, 2009; Phulela and Pitzer, 1986; Gypsum/Anhydrite solubility. 0-200 oC, 1-1000 atm.
B(OH)3 = B(OH)3
log_k 0.000
-dw 1.1e-9
-millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000
Li+ = Li+
log_k 0.000
-dw 1.03e-9
-Vm -0.37 -0.029 4E-4 # Table 43.4
Br- = Br-
log_k 0.000
-dw 2.01e-9
-millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105
# redox-uncoupled gases
Hdg = Hdg # H2
-Vm 20
Oxg = Oxg # O2
-Vm 35
Mtg = Mtg # CH4
-Vm 33
# -Vm 37.5 8.7e-3 4e-4 0 0 0 5.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
Ntg = Ntg # N2
-Vm 30
H2Sg = H2Sg # H2S
-Vm 34 0.021 3e-4 0 0 0 2.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
log_k -13.998
delta_h 13.345 kcal
# -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
-dw 5.27e-9
-Vm -3.74 -0.02 -3.48E-4 0 0 0 -3.38E-3 # 0 - 200oC, 1 - 1000 atm, pKw(T, rho) from Bandura and Lvov, 2006, J. Phys. Chem. Ref. Data, 35, 15.
CO3-2 + H+ = HCO3-
log_k 10.3393
delta_h -3.561 kcal
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
-dw 1.18e-9
-Vm 20.4 0.235 -2.2e-3 4.34 -0.146 1.45e-3 -5e-3 5e-3 # NaHCO3.xls, Na2CO3.xls, Laliberte; 1-1400 atm, Read, 1975
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.6767
delta_h -5.738 kcal
-analytic 464.1925 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9
-Vm 26.5 -0.066 0 0 0 0 -9.7E-03 # Data in Duan et al., 2006, MC 98, 131. 1-100 oC, 1-700 atm.
SO4-2 + H+ = HSO4-
log_k 1.979
delta_h 4.91 kcal
-analytic -5.3585 0.0183412 557.2461
-dw 1.33e-9
H2Sg = HSg- + H+
log_k -6.994
delta_h 5.30 kcal
-analytical 11.17 -0.02386 -3279.0
-dw 2.1e-9
-Vm 15 # H2S dissociation, delta_v = -15, Table 43.37.
B(OH)3 + H2O = B(OH)4- + H+
log_k -9.239
delta_h 0 kcal
-Vm 20
3B(OH)3 = B3O3(OH)4- + 2H2O + H+
log_k -7.528
delta_h 0 kcal
4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+
log_k -16.134
delta_h 0 kcal
Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+
log_k -7.589
delta_h 0 kcal
Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+
log_k -7.840
delta_h 0 kcal
Ca+2 + CO3-2 = CaCO3
log_k 3.151
delta_h 3.547 kcal
-analytic -1228.806 -0.299440 35512.75 485.818
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
-Vm 25 0 0 # 1 - 1000 atm, calcite dissolution, McDonald and North, 1974, Can. J. Chem. 52, 3181
Mg+2 + H2O = MgOH+ + H+
log_k -11.809
delta_h 15.419 kcal
Mg+2 + CO3-2 = MgCO3
log_k 2.928
delta_h 2.535 kcal
-analytic -32.225 0.0 1093.486 12.72433
-dw 4.21e-10
-Vm 25 # by analogy with CaCO3
PHASES
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.362
# -analytic 422.950 0.0 -18431. -147.708
-analytic 87.46 0 -3137 -32.8 # 50 - 160oC, 1 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323.
-Vm 46.1 # 136.14 / 2.95
Aragonite
CaCO3 = CO3-2 + Ca+2
log_k -8.336
delta_h -2.589 kcal
-analytic -171.8607 -.077993 2903.293 71.595
-Vm 34.04
Arcanite
K2SO4 = + 1.0000 SO4-- + 2.0000 K+
log_k -1.776
-analytic 2.823 0.0 -1371.2
-Vm 65.5
Bischofite
MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O
log_k 4.455
-analytic 3.524 0.0 277.6
Vm 127.1
Bloedite
Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O
log_k -2.347
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
Vm 147
Brucite
Mg(OH)2 = + 1.0000 Mg++ + 2.0000 OH-
log_k -10.88
-delta_H 4.85 kcal/mol
# -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002
# -Range: 0-300
Vm 24.6
Burkeite
Na6CO3(SO4)2 = + 1.0000 CO3-2 + 2.0000 SO4-- + 6.0000 Na+
log_k -0.772
Vm 152
Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.406
delta_h -2.297 kcal
-analytic -171.8329 -0.077993 2839.319 71.595
-Vm 36.9
Carnallite
KMgCl3:6H2O = K+ + Mg++ + 3Cl- + 6H2O
log_k 4.330
Vm 173.7
Celestite
SrSO4 = Sr+2 + SO4-2
log_k -6.630
-analytic 35.3106 -0.00422837 0. -14.99586 -318312.
-Vm 46.4
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.083
delta_h -9.436 kcal
-Vm 64.5
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.881
-analytical 1.718 0.0 -1073.
Vm 147
Gaylussite
CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O
log_k -9.421
Glaserite
NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2
log_k -3.803
Glauberite
Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2
log_k -5.245
Vm 99
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
log_k -4.581
delta_h -0.109 kcal
-analytic 90.318 0.0 -4213. -32.641
-Vm 73.9
Barite
BaSO4 = Ba+2 + SO4-2
log_k -9.97
delta_h 6.35 kcal
-analytic 136.035 0.0 -7680.41 -48.595
-Vm 51.9
Halite
NaCl = Cl- + Na+
log_k 1.570
-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
-Vm 27.1
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.635
-analytic -62.666 0.0 1828. 22.187
Vm 132
Kainite
KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O
log_k -0.193
Kalicinite
KHCO3 = K+ + H+ + CO3-2
log_k -10.058
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -0.123
Vm 53.8
Labile_S
Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O
log_k -5.672
Leonhardite
MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O
log_k -0.887
Leonite
K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O
log_k -3.979
Magnesite
MgCO3 = CO3-2 + Mg+2
log_k -7.834
delta_h -6.169
Vm 28.3
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
log_k -1.214
-analytic -3862.234 -1.19856 93713.54 1577.756 0.
Vm 216
Misenite
K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+
log_k -10.806
Nahcolite
NaHCO3 = CO3-2 + H+ + Na+
log_k -10.742
Natron
Na2CO3:10H2O = CO3-2 + 2 Na+ + 10.0000 H2O
log_k -0.825
Nesquehonite
MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O
log_k -5.167
Pentahydrite
MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O
log_k -1.285
Pirssonite
Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O
log_k -9.234
Polyhalite
K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O
log_k -13.744
Vm 218
Portlandite
Ca(OH)2 = Ca+2 + 2 OH-
log_k -5.190
Schoenite
K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O
log_k -4.328
Sylvite
KCl = K+ + Cl-
log_k 0.900
-analytic 3.984 0.0 -919.55
Vm 37.5
Syngenite
K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O
log_k -7.448
Trona
Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O
log_k -11.384
Vm 106
Borax
Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O
log_k 12.464
Vm 223
Boric_acid,s
B(OH)3 = B(OH)3
log_k -0.030
KB5O8:4H2O
KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+
log_k 4.671
K2B4O7:4H2O
K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+
log_k 13.906
NaBO2:4H2O
NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O
log_k 9.568
NaB5O8:5H2O
NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+
log_k 5.895
Teepleite
Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O
log_k 10.840
CO2(g)
CO2 = CO2
log_k -1.468
delta_h -4.776 kcal
-analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
-T_c 304.2 # critical T, K
-P_c 72.80 # critical P, atm
-Omega 0.225 # acentric factor
H2O(g)
H2O = H2O
log_k 1.506; delta_h -44.03 kJ
-T_c 647.3 # critical T, K
-P_c 217.60 # critical P, atm
-Omega 0.344 # acentric factor
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# redox-uncoupled gases
Oxg(g)
Oxg = Oxg
-analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005
T_c 154.6 ; -P_c 49.80 ; -Omega 0.021
Hdg(g)
Hdg = Hdg
-analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005
-T_c 33.2 ; -P_c 12.80 ; -Omega 0.225
Ntg(g)
Ntg = Ntg
-analytic -58.453 1.81800E-03 3199 17.909 -27460
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
PITZER
-B0
Na+ Cl- 0.0765 -777.03 -4.4706 0.008946 -3.3158E-6
K+ Cl- 0.04835 0 0 5.794E-4
Mg+2 Cl- 0.35235 0 0 -1.943E-4
Ca+2 Cl- 0.3159 0 0 -1.725E-4
MgOH+ Cl- -0.1
H+ Cl- 0.1775 0 0 -3.081E-4
Li+ Cl- 0.1494 0 0 -1.685E-4
Sr+2 Cl- 0.2858 0 0 0.717E-3
Fe+2 Cl- 0.335925
Mn+2 Cl- 0.327225
Ba+2 Cl- 0.2628 0 0 0.6405E-3
CaB(OH)4+ Cl- 0.12
MgB(OH)4+ Cl- 0.16
Na+ Br- 0.0973 0 0 7.692E-4
K+ Br- 0.0569 0 0 7.39E-4
H+ Br- 0.1960 0 0 -2.049E-4
Mg+2 Br- 0.4327 0 0 -5.625E-5
Ca+2 Br- 0.3816 0 0 -5.2275E-4
Li+ Br- 0.1748 0 0 -1.819E-4
Sr+2 Br- 0.331125 0 0 -0.32775E-3
Ba+2 Br- 0.31455 0 0 -0.33825E-3
Na+ SO4-2 0.01958 0 0 2.367E-3
K+ SO4-2 0.04995 0 0 1.44E-3
Mg+2 SO4-2 0.221 0 0 -0.69E-3
Ca+2 SO4-2 0.2
H+ SO4-2 0.0298
Li+ SO4-2 0.136275 0 0 0.5055E-3
Sr+2 SO4-2 0.200 0 0 -2.9E-3
Fe+2 SO4-2 0.2568
Mn+2 SO4-2 0.2065
Na+ HSO4- 0.0454
K+ HSO4- -0.0003
Mg+2 HSO4- 0.4746
Ca+2 HSO4- 0.2145
H+ HSO4- 0.2065
Fe+2 HSO4- 0.4273
Na+ OH- 0.0864 0 0 7.00E-4
K+ OH- 0.1298
Ca+2 OH- -0.1747
Li+ OH- 0.015
Ba+2 OH- 0.17175
Na+ HCO3- 0.0277 0 0 1.00E-3
K+ HCO3- 0.0296 0 0 0.996E-3
Mg+2 HCO3- 0.329
Ca+2 HCO3- 0.4
Sr+2 HCO3- 0.12
Na+ CO3-2 0.0399 0 0 1.79E-3
K+ CO3-2 0.1488 0 0 1.788E-3
Na+ B(OH)4- -0.0427
Na+ B3O3(OH)4- -0.056
Na+ B4O5(OH)4-2 -0.11
K+ B(OH)4- 0.035
K+ B3O3(OH)4- -0.13
K+ B4O5(OH)4-2 -0.022
-B1
Na+ Cl- 0.2664 0 0 6.1608E-5 1.0715E-6
K+ Cl- 0.2122 0 0 10.71E-4
Mg+2 Cl- 1.6815 0 0 3.6525E-3
Ca+2 Cl- 1.614 0 0 3.9E-3
MgOH+ Cl- 1.658
H+ Cl- 0.2945 0 0 1.419E-4
Li+ Cl- 0.3074 0 0 5.366E-4
Sr+2 Cl- 1.667 0 0 2.8425E-3
Fe+2 Cl- 1.53225
Mn+2 Cl- 1.55025
Ba+2 Cl- 1.49625 0 0 3.2325E-3
Na+ Br- 0.2791 0 0 10.79E-4
K+ Br- 0.2212 0 0 17.40E-4
H+ Br- 0.3564 0 0 4.467E-4
Mg+2 Br- 1.753 0 0 3.8625E-3
Ca+2 Br- 1.613 0 0 6.0375E-3
Li+ Br- 0.2547 0 0 6.636E-4
Sr+2 Br- 1.7115 0 0 6.5325E-3
Ba+2 Br- 1.56975 0 0 6.78E-3
Na+ SO4-2 1.113 0 0 5.6325E-3
K+ SO4-2 0.7793 0 0 6.6975E-3
Mg+2 SO4-2 3.343 0 0 1.53E-2
Ca+2 SO4-2 3.1973 0 0 5.46E-2
Li+ SO4-2 1.2705 0 0 1.41E-3
Sr+2 SO4-2 3.1973 0 0 27.0E-3
Fe+2 SO4-2 3.063
Mn+2 SO4-2 2.9511
Na+ HSO4- 0.398
K+ HSO4- 0.1735
Mg+2 HSO4- 1.729
Ca+2 HSO4- 2.53
H+ HSO4- 0.5556
Fe+2 HSO4- 3.48
Na+ OH- 0.253 0 0 1.34E-4
K+ OH- 0.32
Ca+2 OH- -0.2303
Li+ OH- 0.14
Ba+2 OH- 1.2
Na+ HCO3- 0.0411 0 0 1.10E-3
K+ HCO3- -0.013 0 0 1.104E-3
Mg+2 HCO3- 0.6072
Ca+2 HCO3- 2.977
Na+ CO3-2 1.389 0 0 2.05E-3
K+ CO3-2 1.43 0 0 2.051E-3
Na+ B(OH)4- 0.089
Na+ B3O3(OH)4- -0.910
Na+ B4O5(OH)4-2 -0.40
K+ B(OH)4- 0.14
-B2
Mg+2 SO4-2 -37.23 0 0 -0.253
Ca+2 SO4-2 -54.24 0 0 -0.516
Sr+2 SO4-2 -54.24 0 0 -0.42
Fe+2 SO4-2 -42.0
Mn+2 SO4-2 -40.0
Ca+2 OH- -5.72
-C0
Na+ Cl- 0.00127 33.317 0.09421 -4.655E-5
K+ Cl- -0.00084 0 0 -5.095E-5
Mg+2 Cl- 0.00519 0 0 -1.64933E-4
Ca+2 Cl- -0.00034
H+ Cl- 0.0008 0 0 6.213E-5
Li+ Cl- 0.00359 0 0 -4.520E-5
Sr+2 Cl- -0.00130
Fe+2 Cl- -0.00860725
Mn+2 Cl- -0.0204972
Ba+2 Cl- -0.0193782 0 0 -1.53796E-4
Na+ Br- 0.00116 0 0 -9.30E-5
K+ Br- -0.00180 0 0 -7.004E-5
H+ Br- 0.00827 0 0 -5.685E-5
Mg+2 Br- 0.00312
Ca+2 Br- -0.00257
Li+ Br- 0.0053 0 0 -2.813E-5
Sr+2 Br- 0.00122506
Ba+2 Br- -0.0159576
Na+ SO4-2 0.00497 0 0 -4.87904E-4
Mg+2 SO4-2 0.025 0 0 0.523E-3
H+ SO4-2 0.0438
Li+ SO4-2 -0.00399338 0 0 -2.33345E-4
Fe+2 SO4-2 0.0209
Mn+2 SO4-2 0.01636
Na+ OH- 0.0044 0 0 -18.94E-5
K+ OH- 0.0041
K+ HCO3- -0.008
Na+ CO3-2 0.0044
K+ CO3-2 -0.0015
Na+ B(OH)4- 0.0114
-THETA
K+ Na+ -0.012
Mg+2 Na+ 0.07
Ca+2 Na+ 0.07
Sr+2 Na+ 0.051
H+ Na+ 0.036
Ca+2 K+ 0.032
H+ K+ 0.005
Ca+2 Mg+2 0.007
H+ Mg+2 0.1
H+ Ca+2 0.092
SO4-2 Cl- 0.02
HSO4- Cl- -0.006
OH- Cl- -0.05
HCO3- Cl- 0.03
CO3-2 Cl- -0.02
B(OH)4- Cl- -0.065
B3O3(OH)4- Cl- 0.12
B4O5(OH)4-2 Cl- 0.074
OH- Br- -0.065
OH- SO4-2 -0.013
HCO3- SO4-2 0.01
CO3-2 SO4-2 0.02
B(OH)4- SO4-2 -0.012
B3O3(OH)4- SO4-2 0.10
B4O5(OH)4-2 SO4-2 0.12
CO3-2 OH- 0.1
CO3-2 HCO3- -0.04
B3O3(OH)4- HCO3- -0.10
B4O5(OH)4-2 HCO3- -0.087
-LAMBDA
Na+ CO2 0.08
K+ CO2 0.051
Mg+2 CO2 0.183
Ca+2 CO2 0.183
Cl- CO2 -0.005
SO4-2 CO2 0.097
HSO4- CO2 -0.003
Na+ B(OH)3 -0.097
K+ B(OH)3 -0.14
Cl- B(OH)3 0.091
SO4-2 B(OH)3 0.018
B3O3(OH)4- B(OH)3 -0.20
-ZETA
H+ Cl- B(OH)3 -0.0102
Na+ SO4-2 B(OH)3 0.046
Na+ SO4-2 CO2 -0.02
-PSI
Na+ K+ Cl- -0.0018
Na+ K+ Br- -0.0022
Na+ K+ SO4-2 -0.010
Na+ K+ HCO3- -0.003
Na+ K+ CO3-2 0.003
Na+ Ca+2 Cl- -0.007
Na+ Sr+2 Cl- -0.0021
Na+ Ca+2 SO4-2 -0.055
Na+ Mg+2 Cl- -0.012
Na+ Mg+2 SO4-2 -0.015
Na+ H+ Cl- -0.004
Na+ H+ Br- -0.012
Na+ H+ HSO4- -0.0129
K+ Ca+2 Cl- -0.025
K+ Mg+2 Cl- -0.022
K+ Mg+2 SO4-2 -0.048
K+ H+ Cl- -0.011
K+ H+ Br- -0.021
K+ H+ SO4-2 0.197
K+ H+ HSO4- -0.0265
Ca+2 Mg+2 Cl- -0.012
Ca+2 Mg+2 SO4-2 0.024
Ca+2 H+ Cl- -0.015
Mg+2 MgOH+ Cl- 0.028
Mg+2 H+ Cl- -0.011
Mg+2 H+ HSO4- -0.0178
Cl- Br- K+ 0.0000
Cl- SO4-2 Na+ 0.0014
Cl- SO4-2 Ca+2 -0.018
Cl- SO4-2 Mg+2 -0.004
Cl- HSO4- Na+ -0.006
Cl- HSO4- H+ 0.013
Cl- OH- Na+ -0.006
Cl- OH- K+ -0.006
Cl- OH- Ca+2 -0.025
Cl- HCO3- Na+ -0.015
Cl- HCO3- Mg+2 -0.096
Cl- CO3-2 Na+ 0.0085
Cl- CO3-2 K+ 0.004
Cl- B(OH)4- Na+ -0.0073
Cl- B3O3(OH)4- Na+ -0.024
Cl- B4O5(OH)4-2 Na+ 0.026
SO4-2 HSO4- Na+ -0.0094
SO4-2 HSO4- K+ -0.0677
SO4-2 HSO4- Mg+2 -0.0425
SO4-2 OH- Na+ -0.009
SO4-2 OH- K+ -0.050
SO4-2 HCO3- Na+ -0.005
SO4-2 HCO3- Mg+2 -0.161
SO4-2 CO3-2 Na+ -0.005
SO4-2 CO3-2 K+ -0.009
OH- CO3-2 Na+ -0.017
OH- CO3-2 K+ -0.01
OH- Br- Na+ -0.018
OH- Br- K+ -0.014
HCO3- CO3-2 Na+ 0.002
HCO3- CO3-2 K+ 0.012
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
log_k 0.0
Na+ + X- = NaX
log_k 0.0
K+ + X- = KX
log_k 0.7
delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
log_k -0.08
delta_h 1.4 # Merriam & Thomas, 1956
Ca+2 + 2X- = CaX2
log_k 0.8
delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2X- = MgX2
log_k 0.6
delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2X- = SrX2
log_k 0.91
delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2X- = BaX2
log_k 0.91
delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2X- = MnX2
log_k 0.52
Fe+2 + 2X- = FeX2
log_k 0.44
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
log_k 0.0
Hfo_sOH + H+ = Hfo_sOH2+
log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
log_k 0.0
Hfo_wOH + H+ = Hfo_wOH2+
log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
log_k -17.60
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
log_k -7.2 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
log_k -3.5 # table 10.5
# Iron
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
# log_k 0.7 # LFER using table 10.5
# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
# log_k -2.5 # LFER using table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O
log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
log_k 0.79
#
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
#
# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
# log_k 12.56
#
# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
# log_k 20.62
END
MEAN GAM
CaCl2
CaSO4
CaCO3
Ca(OH)2
MgCl2
MgSO4
MgCO3
Mg(OH)2
NaCl
Na2SO4
NaHCO3
Na2CO3
NaOH
KCl
K2SO4
KHCO3
K2CO3
KOH
HCl
H2SO4
HBr
END
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
# hard-coded in calc_PR():
# kij CH4 CO2 H2S N2
# H2O 0.49 0.19 0.19 0.49
# =============================================================================================
# Temperature- and pressure-dependent volumina of species and phases are calculated from
# coefficients entered as: -Vm a b c d e f kappaC b_Av
# The volume is Vm(t, P, I) = a + b * t + c * t^2
# + z^2 / 2 * Av * f(I^0.5) + (d + e * t + f * t^2) * I
# - kappaC * (P - 1).
# t is temperature in oC.
# z is charge of the solute species.
# Av is the Debye-Hueckel limiting slope, cf. Redlich and Meyer, Chem. Rev. 64, 221.
# b_Av constrains the Debye-Hueckel slope: f(I^0.5) = ln(1 + b_Av * I^0.5) / b_Av,
# I is ionic strength. If b_Av = 0, f(I^0.5) = I^0.5.
# kappaC is a compression constant, cm3/mol/atm.
# Av (P, T) is calculated using the dielectric constant of water from Bradley and Pitzer, 1979, JPC 83, 1599,
# and the compressibility of pure water.
# The density of pure water (0 < P < 3 atm, -20 < t < 100) is calculated with eqn 2.6 from
# Wagner and Pruss, 2002, J. Phys. Chem. Ref. Data 31, 387. At higher P,T with polynomials
# interpolated from IAPWS table 3 (2007).
#
# Data for species' a-b-c-d-e-f-kappaC-b_Av were fitted or taken primarily from
# Millero, 1983, Chpt. 43 in Chem. Ocean. vol. 8, Table 43.4,
# Millero, 2001, The Physical Chemistry of Natural Waters. Wiley, Appendix 14,
# Laliberte, 2009, J. Chem. Eng. Data 54, 1725, **.xls data sets in the Supplementary Information.
# H+ has the reference volume of 0 at all P, T.
# OH- is fitted from Bandura and Lvov, 2006, J. Phys. Chem. Ref. Data, 35, 15, 0-200 oC, 1-2000 atm.
# For Cl-, a-b-c-d-e-f-kappaC-b_Av were obtained from densities of HCl solutions up to 176 oC, 1 - 280 atm.
# The a..f-kappaC-b_Av values of cations were extracted from the densities of cation-Cl-solutions.
# Other anions then follow from the measured densities of cation-anion solutions.
# If -Vm is not defined, the a-f values from -Millero a b c d e f (if available) will be used for calculating
# Vm(t).
#
# redox-uncoupled gases have been added for H2 (Hdg), O2 (Oxg), CH4 (Mtg), N2 (Ntg),
# H2S (H2Sg, species HSg-, etc.).
#
# Data for minerals' a (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).

View File

@ -0,0 +1,25 @@
DATABASE C:\Programs\phreeqc-trunk\database\redox\redox.dat
SOLUTION_MASTER_SPECIES
Acetate HAcetate 0.0 Acetate 59.
SOLUTION_SPECIES
HAcetate = HAcetate
log_k 0
HAcetate = Acetate- + H+
log_k -4.7572
SOLUTION 1 Goethite reduction by organic matter
pH 7
Na 1 charge
Acetate 2
Amm 1
EQUILIBRIUM_PHASES 1
redoxGoethite 0 0.05
REACTION 1
Acetate -1.0
CH3COO 0.7
Ferric -5.6
Ferrous 5.6
CH3COO 0.3
C5H7O2Amm -0.12
0.1 mmol
END

1037
redox/redox.dat Normal file

File diff suppressed because it is too large Load Diff

14830
sit.dat Normal file

File diff suppressed because it is too large Load Diff

1708
vreeqc.dat Normal file

File diff suppressed because it is too large Load Diff

3846
wateq4f.dat Normal file

File diff suppressed because it is too large Load Diff