diff --git a/IPhreeqc.2005.vcproj.GS.charlton.user b/IPhreeqc.2005.vcproj.GS.charlton.user
new file mode 100644
index 00000000..c884c0c2
--- /dev/null
+++ b/IPhreeqc.2005.vcproj.GS.charlton.user
@@ -0,0 +1,345 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/all/c/advect_c.2005.vcproj b/all/c/advect_c.2005.vcproj
new file mode 100644
index 00000000..b8f78e36
--- /dev/null
+++ b/all/c/advect_c.2005.vcproj
@@ -0,0 +1,992 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/all/c/advect_c.2005.vcproj.GS.charlton.user b/all/c/advect_c.2005.vcproj.GS.charlton.user
new file mode 100644
index 00000000..1a0a0591
--- /dev/null
+++ b/all/c/advect_c.2005.vcproj.GS.charlton.user
@@ -0,0 +1,345 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/all/c/ex19 b/all/c/ex19
new file mode 100644
index 00000000..d33b7dac
--- /dev/null
+++ b/all/c/ex19
@@ -0,0 +1,51 @@
+TITLE Example 19.--Linear, Freundlich and Langmuir isotherms for
+ Cd sorption on loamy sand. Calculates Example 7.1
+ from Appelo and Postma, 2005. Data from Christensen, 1984.
+SURFACE_MASTER_SPECIES
+ Linear Linear
+ Freundlich Freundlich
+ Langmuir Langmuir
+SURFACE_SPECIES
+ Linear = Linear
+ Linear + Cd+2 = LinearCd+2
+ -log_k -100.7 # log10(0.2) - 100
+ -mole_balance LinearCdCl2
+ Freundlich = Freundlich
+ Freundlich + 0.722 Cd+2 = FreundlichCd+2
+ -log_k -102.61 # log10(0.421) + (0.722 - 1) * log10(112.4e6) - 100
+ -no_check
+ -mole_balance FreundlichCdCl2
+ Langmuir = Langmuir
+ Langmuir + Cd+2 = LangmuirCd+2
+ -log_k 6.56 # log10(112.4 / 30.9e-6)
+ -mole_balance LangmuirCdCl2
+SURFACE 1
+ Linear 1e100 1 1
+ Freundlich 1e100 1 1
+ Langmuir 8.45e-8 1 1 # 9.5 / 112.4e6
+ -no_edl
+SOLUTION 1
+ pH 6
+ Ca 1
+ Cl 2
+REACTION 1
+ CdCl2 1
+ 0.7e-6 in 20
+USER_GRAPH Example 19
+ -headings Linear Freundlich Langmuir
+ -chart_title "Sorption Isotherms"
+ -axis_titles "Dissolved Cd, in micrograms per kilogram water" \
+ "Sorbed Cd, in micrograms per gram soil"
+ -plot_tsv_file ex19_meas.tsv
+ -axis_scale x_axis 0 40
+ -axis_scale y_axis 0 6
+ -initial_solutions true
+ -start
+10 x = act("Cd+2") * 112.4e6
+20 PLOT_XY x, mol("LinearCd+2")*112e6, color = Green, symbol = None, line_width = 2
+30 PLOT_XY x, mol("FreundlichCd+2")*112e6, color = Blue, symbol = None, line_width = 2
+40 PLOT_XY x, mol("LangmuirCd+2")*112e6, color = Orange, symbol = None, line_width = 2
+ -end
+PRINT
+ -reset false
+END
\ No newline at end of file
diff --git a/all/c/ex19_meas.tsv b/all/c/ex19_meas.tsv
new file mode 100644
index 00000000..c7f584ce
--- /dev/null
+++ b/all/c/ex19_meas.tsv
@@ -0,0 +1,17 @@
+c/(ug/L) Measured
+3.1 0.86
+6.1 1.12
+5.9 1.71
+7.1 1.68
+8.1 2.03
+9.9 2.46
+12.3 2.85
+13 3.36
+13.6 3.22
+16 3.25
+19.1 3.56
+24.1 3.76
+25.8 4.17
+27.6 4.58
+33.2 4.82
+36.4 5.19
diff --git a/all/c/ic b/all/c/ic
new file mode 100644
index 00000000..00112d7a
--- /dev/null
+++ b/all/c/ic
@@ -0,0 +1,16 @@
+# File ic
+SOLUTION 1-2
+END
+EQUILIBRIUM_PHASES 1
+ CO2(g) -1.5 10
+
+EQUILIBRIUM_PHASES 2
+ Calcite 0 10
+SELECTED_OUTPUT
+ -reset false
+USER_PUNCH
+ -Heading charge H O C Ca pH SR(calcite)
+ 10 PUNCH charge_balance
+ 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca")
+ 30 PUNCH -LA("H+"), SR("calcite")
+END
diff --git a/all/c/phreeqc.dat b/all/c/phreeqc.dat
new file mode 100644
index 00000000..e4f7366d
--- /dev/null
+++ b/all/c/phreeqc.dat
@@ -0,0 +1,1579 @@
+# $Id: phreeqc.dat 3428 2009-03-23 16:31:34Z dlpark $
+SOLUTION_MASTER_SPECIES
+#
+#element species alk gfw_formula element_gfw
+#
+H H+ -1. H 1.008
+H(0) H2 0.0 H
+H(1) H+ -1. 0.0
+E e- 0.0 0.0 0.0
+O H2O 0.0 O 16.00
+O(0) O2 0.0 O
+O(-2) H2O 0.0 0.0
+Ca Ca+2 0.0 Ca 40.08
+Mg Mg+2 0.0 Mg 24.312
+Na Na+ 0.0 Na 22.9898
+K K+ 0.0 K 39.102
+Fe Fe+2 0.0 Fe 55.847
+Fe(+2) Fe+2 0.0 Fe
+Fe(+3) Fe+3 -2.0 Fe
+Mn Mn+2 0.0 Mn 54.938
+Mn(+2) Mn+2 0.0 Mn
+Mn(+3) Mn+3 0.0 Mn
+Al Al+3 0.0 Al 26.9815
+Ba Ba+2 0.0 Ba 137.34
+Sr Sr+2 0.0 Sr 87.62
+Si H4SiO4 0.0 SiO2 28.0843
+Cl Cl- 0.0 Cl 35.453
+C CO3-2 2.0 HCO3 12.0111
+C(+4) CO3-2 2.0 HCO3
+C(-4) CH4 0.0 CH4
+Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
+S SO4-2 0.0 SO4 32.064
+S(6) SO4-2 0.0 SO4
+S(-2) HS- 1.0 S
+N NO3- 0.0 N 14.0067
+N(+5) NO3- 0.0 N
+N(+3) NO2- 0.0 N
+N(0) N2 0.0 N
+N(-3) NH4+ 0.0 N
+B H3BO3 0.0 B 10.81
+P PO4-3 2.0 P 30.9738
+F F- 0.0 F 18.9984
+Li Li+ 0.0 Li 6.939
+Br Br- 0.0 Br 79.904
+Zn Zn+2 0.0 Zn 65.37
+Cd Cd+2 0.0 Cd 112.4
+Pb Pb+2 0.0 Pb 207.19
+Cu Cu+2 0.0 Cu 63.546
+Cu(+2) Cu+2 0.0 Cu
+Cu(+1) Cu+1 0.0 Cu
+
+SOLUTION_SPECIES
+
+H+ = H+
+ log_k 0.000
+ -gamma 9.0000 0.0000
+ -dw 9.31e-9
+e- = e-
+ log_k 0.000
+
+H2O = H2O
+ log_k 0.000
+
+Ca+2 = Ca+2
+ log_k 0.000
+ -gamma 5.0000 0.1650
+ -dw 0.793e-9
+ -millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262
+Mg+2 = Mg+2
+ log_k 0.000
+ -gamma 5.5000 0.2000
+ -dw 0.705e-9
+ -millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457
+Na+ = Na+
+ log_k 0.000
+ -gamma 4.0000 0.0750
+ -dw 1.33e-9
+ -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651
+K+ = K+
+ log_k 0.000
+ -gamma 3.5000 0.0150
+ -dw 1.96e-9
+ -millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151
+Fe+2 = Fe+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.719e-9
+Mn+2 = Mn+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.688e-9
+Al+3 = Al+3
+ log_k 0.000
+ -gamma 9.0000 0.0000
+ -dw 0.559e-9
+Ba+2 = Ba+2
+ log_k 0.000
+ -gamma 5.0000 0.0000
+ -dw 0.848e-9
+Sr+2 = Sr+2
+ log_k 0.000
+ -gamma 5.2600 0.1210
+ -dw 0.794e-9
+ -millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084
+H4SiO4 = H4SiO4
+ log_k 0.000
+ -dw 1.10e-9
+ -millero 56.0 # b, c, d, e and f not reported by Millero, 2000
+Cl- = Cl-
+ log_k 0.000
+ -gamma 3.5000 0.0150
+ -dw 2.03e-9
+ -millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621
+CO3-2 = CO3-2
+ log_k 0.000
+ -gamma 5.4000 0.0000
+ -dw 0.955e-9
+ -millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000
+SO4-2 = SO4-2
+ log_k 0.000
+ -gamma 5.0000 -0.0400
+ -dw 1.07e-9
+ -millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05
+NO3- = NO3-
+ log_k 0.000
+ -gamma 3.0000 0.0000
+ -dw 1.9e-9
+ -millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000
+H3BO3 = H3BO3
+ log_k 0.000
+ -dw 1.1e-9
+ -millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000
+PO4-3 = PO4-3
+ log_k 0.000
+ -gamma 4.0000 0.0000
+ -dw 0.612e-9
+F- = F-
+ log_k 0.000
+ -gamma 3.5000 0.0000
+ -dw 1.46e-9
+ -millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05
+Li+ = Li+
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 1.03e-9
+Br- = Br-
+ log_k 0.000
+ -gamma 3.0000 0.0000
+ -dw 2.01e-9
+ -millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105
+Zn+2 = Zn+2
+ log_k 0.000
+ -gamma 5.0000 0.0000
+ -dw 0.715e-9
+Cd+2 = Cd+2
+ log_k 0.000
+ -dw 0.717e-9
+Pb+2 = Pb+2
+ log_k 0.000
+ -dw 0.945e-9
+Cu+2 = Cu+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.733e-9
+H2O = OH- + H+
+ log_k -14.000
+ delta_h 13.362 kcal
+ -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
+ -gamma 3.5000 0.0000
+ -dw 5.27e-9
+2 H2O = O2 + 4 H+ + 4 e-
+ log_k -86.08
+ delta_h 134.79 kcal
+ -dw 2.35e-9
+2 H+ + 2 e- = H2
+ log_k -3.15
+ delta_h -1.759 kcal
+ -dw 5.1e-9
+CO3-2 + H+ = HCO3-
+ log_k 10.329
+ delta_h -3.561 kcal
+ -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
+ -gamma 5.4000 0.0000
+ -dw 1.18e-9
+ -millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06
+CO3-2 + 2 H+ = CO2 + H2O
+ log_k 16.681
+ delta_h -5.738 kcal
+ -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
+ -dw 1.92e-9
+CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
+ log_k 41.071
+ delta_h -61.039 kcal
+ -dw 1.85e-9
+SO4-2 + H+ = HSO4-
+ log_k 1.988
+ delta_h 3.85 kcal
+ -analytic -56.889 0.006473 2307.9 19.8858 0.0
+ -dw 1.33e-9
+HS- = S-2 + H+
+ log_k -12.918
+ delta_h 12.1 kcal
+ -gamma 5.0000 0.0000
+ -dw 0.731e-9
+SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
+ log_k 33.65
+ delta_h -60.140 kcal
+ -gamma 3.5000 0.0000
+ -dw 1.73e-9
+HS- + H+ = H2S
+ log_k 6.994
+ delta_h -5.300 kcal
+ -analytical -11.17 0.02386 3279.0
+ -dw 2.1e-9
+
+NO3- + 2 H+ + 2 e- = NO2- + H2O
+ log_k 28.570
+ delta_h -43.760 kcal
+ -gamma 3.0000 0.0000
+ -dw 1.91e-9
+2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
+ log_k 207.080
+ delta_h -312.130 kcal
+ -dw 1.96e-9
+NH4+ = NH3 + H+
+ log_k -9.252
+ delta_h 12.48 kcal
+ -analytic 0.6322 -0.001225 -2835.76
+ -dw 2.28e-9
+NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
+ log_k 119.077
+ delta_h -187.055 kcal
+ -gamma 2.5000 0.0000
+ -dw 1.98e-9
+ -millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported
+NH4+ + SO4-2 = NH4SO4-
+ log_k 1.11
+
+H3BO3 = H2BO3- + H+
+ log_k -9.240
+ delta_h 3.224 kcal
+# -analytical 24.3919 0.012078 -1343.9 -13.2258
+
+H3BO3 + F- = BF(OH)3-
+ log_k -0.400
+ delta_h 1.850 kcal
+
+H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
+ log_k 7.63
+ delta_h 1.618 kcal
+
+H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
+ log_k 13.67
+ delta_h -1.614 kcal
+
+H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
+ log_k 20.28
+ delta_h -1.846 kcal
+
+PO4-3 + H+ = HPO4-2
+ log_k 12.346
+ delta_h -3.530 kcal
+ -gamma 4.0000 0.0000
+ -dw 0.69e-9
+PO4-3 + 2 H+ = H2PO4-
+ log_k 19.553
+ delta_h -4.520 kcal
+ -gamma 4.5000 0.0000
+ -dw 0.846e-9
+ -millero 33.6 # b, c, d, e and f not reported by Millero, 2000
+H+ + F- = HF
+ log_k 3.18
+ delta_h 3.18 kcal
+ -analytic -2.033 0.012645 429.01
+
+H+ + 2 F- = HF2-
+ log_k 3.760
+ delta_h 4.550 kcal
+
+Ca+2 + H2O = CaOH+ + H+
+ log_k -12.780
+
+Ca+2 + CO3-2 = CaCO3
+ log_k 3.224
+ delta_h 3.545 kcal
+ -analytic -1228.732 -0.299440 35512.75 485.818
+ -dw 4.46e-10 # complexes: calc'd with the Pikal formula
+Ca+2 + CO3-2 + H+ = CaHCO3+
+ log_k 11.435
+ delta_h -0.871 kcal
+ -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
+ -gamma 5.4000 0.0000
+ -dw 5.06e-10
+Ca+2 + SO4-2 = CaSO4
+ log_k 2.300
+ delta_h 1.650 kcal
+ -dw 4.71e-10
+Ca+2 + HSO4- = CaHSO4+
+ log_k 1.08
+
+Ca+2 + PO4-3 = CaPO4-
+ log_k 6.459
+ delta_h 3.100 kcal
+
+Ca+2 + HPO4-2 = CaHPO4
+ log_k 2.739
+ delta_h 3.3 kcal
+
+Ca+2 + H2PO4- = CaH2PO4+
+ log_k 1.408
+ delta_h 3.4 kcal
+
+Ca+2 + F- = CaF+
+ log_k 0.940
+ delta_h 4.120 kcal
+
+Mg+2 + H2O = MgOH+ + H+
+ log_k -11.440
+ delta_h 15.952 kcal
+
+Mg+2 + CO3-2 = MgCO3
+ log_k 2.98
+ delta_h 2.713 kcal
+ -analytic 0.9910 0.00667
+
+Mg+2 + H+ + CO3-2 = MgHCO3+
+ log_k 11.399
+ delta_h -2.771 kcal
+ -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
+
+Mg+2 + SO4-2 = MgSO4
+ log_k 2.370
+ delta_h 4.550 kcal
+
+Mg+2 + PO4-3 = MgPO4-
+ log_k 6.589
+ delta_h 3.100 kcal
+
+Mg+2 + HPO4-2 = MgHPO4
+ log_k 2.87
+ delta_h 3.3 kcal
+
+Mg+2 + H2PO4- = MgH2PO4+
+ log_k 1.513
+ delta_h 3.4 kcal
+
+Mg+2 + F- = MgF+
+ log_k 1.820
+ delta_h 3.200 kcal
+
+Na+ + H2O = NaOH + H+
+ log_k -14.180
+
+Na+ + CO3-2 = NaCO3-
+ log_k 1.270
+ delta_h 8.910 kcal
+ -dw 5.85e-10
+Na+ + HCO3- = NaHCO3
+ log_k -0.25
+ -dw 6.73e-10
+Na+ + SO4-2 = NaSO4-
+ log_k 0.7
+ delta_h 1.120 kcal
+ -dw 6.18e-10
+Na+ + HPO4-2 = NaHPO4-
+ log_k 0.29
+
+Na+ + F- = NaF
+ log_k -0.240
+
+K+ + H2O = KOH + H+
+ log_k -14.460
+
+K+ + SO4-2 = KSO4-
+ log_k 0.850
+ delta_h 2.250 kcal
+ -analytical 3.106 0.0 -673.6
+ -dw 7.46e-10
+
+K+ + HPO4-2 = KHPO4-
+ log_k 0.29
+
+Fe+2 + H2O = FeOH+ + H+
+ log_k -9.500
+ delta_h 13.200 kcal
+
+Fe+2 + Cl- = FeCl+
+ log_k 0.140
+
+Fe+2 + CO3-2 = FeCO3
+ log_k 4.380
+
+Fe+2 + HCO3- = FeHCO3+
+ log_k 2.0
+
+Fe+2 + SO4-2 = FeSO4
+ log_k 2.250
+ delta_h 3.230 kcal
+
+Fe+2 + HSO4- = FeHSO4+
+ log_k 1.08
+
+Fe+2 + 2HS- = Fe(HS)2
+ log_k 8.95
+
+Fe+2 + 3HS- = Fe(HS)3-
+ log_k 10.987
+
+Fe+2 + HPO4-2 = FeHPO4
+ log_k 3.6
+
+Fe+2 + H2PO4- = FeH2PO4+
+ log_k 2.7
+
+Fe+2 + F- = FeF+
+ log_k 1.000
+
+Fe+2 = Fe+3 + e-
+ log_k -13.020
+ delta_h 9.680 kcal
+ -gamma 9.0000 0.0000
+
+Fe+3 + H2O = FeOH+2 + H+
+ log_k -2.19
+ delta_h 10.4 kcal
+
+Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
+ log_k -5.67
+ delta_h 17.1 kcal
+
+Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
+ log_k -12.56
+ delta_h 24.8 kcal
+
+Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
+ log_k -21.6
+ delta_h 31.9 kcal
+
+2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
+ log_k -2.95
+ delta_h 13.5 kcal
+
+3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
+ log_k -6.3
+ delta_h 14.3 kcal
+
+Fe+3 + Cl- = FeCl+2
+ log_k 1.48
+ delta_h 5.6 kcal
+
+Fe+3 + 2 Cl- = FeCl2+
+ log_k 2.13
+
+Fe+3 + 3 Cl- = FeCl3
+ log_k 1.13
+
+Fe+3 + SO4-2 = FeSO4+
+ log_k 4.04
+ delta_h 3.91 kcal
+
+Fe+3 + HSO4- = FeHSO4+2
+ log_k 2.48
+
+Fe+3 + 2 SO4-2 = Fe(SO4)2-
+ log_k 5.38
+ delta_h 4.60 kcal
+
+Fe+3 + HPO4-2 = FeHPO4+
+ log_k 5.43
+ delta_h 5.76 kcal
+
+Fe+3 + H2PO4- = FeH2PO4+2
+ log_k 5.43
+
+Fe+3 + F- = FeF+2
+ log_k 6.2
+ delta_h 2.7 kcal
+
+Fe+3 + 2 F- = FeF2+
+ log_k 10.8
+ delta_h 4.8 kcal
+
+Fe+3 + 3 F- = FeF3
+ log_k 14.0
+ delta_h 5.4 kcal
+
+Mn+2 + H2O = MnOH+ + H+
+ log_k -10.590
+ delta_h 14.400 kcal
+
+Mn+2 + Cl- = MnCl+
+ log_k 0.610
+
+Mn+2 + 2 Cl- = MnCl2
+ log_k 0.250
+
+Mn+2 + 3 Cl- = MnCl3-
+ log_k -0.310
+
+Mn+2 + CO3-2 = MnCO3
+ log_k 4.900
+
+Mn+2 + HCO3- = MnHCO3+
+ log_k 1.95
+
+Mn+2 + SO4-2 = MnSO4
+ log_k 2.250
+ delta_h 3.370 kcal
+
+Mn+2 + 2 NO3- = Mn(NO3)2
+ log_k 0.600
+ delta_h -0.396 kcal
+
+Mn+2 + F- = MnF+
+ log_k 0.840
+
+Mn+2 = Mn+3 + e-
+ log_k -25.510
+ delta_h 25.800 kcal
+
+Al+3 + H2O = AlOH+2 + H+
+ log_k -5.00
+ delta_h 11.49 kcal
+ -analytic -38.253 0.0 -656.27 14.327
+
+Al+3 + 2 H2O = Al(OH)2+ + 2 H+
+ log_k -10.1
+ delta_h 26.90 kcal
+ -analytic 88.500 0.0 -9391.6 -27.121
+
+Al+3 + 3 H2O = Al(OH)3 + 3 H+
+ log_k -16.9
+ delta_h 39.89 kcal
+ -analytic 226.374 0.0 -18247.8 -73.597
+
+Al+3 + 4 H2O = Al(OH)4- + 4 H+
+ log_k -22.7
+ delta_h 42.30 kcal
+ -analytic 51.578 0.0 -11168.9 -14.865
+
+Al+3 + SO4-2 = AlSO4+
+ log_k 3.5
+ delta_h 2.29 kcal
+
+Al+3 + 2SO4-2 = Al(SO4)2-
+ log_k 5.0
+ delta_h 3.11 kcal
+
+Al+3 + HSO4- = AlHSO4+2
+ log_k 0.46
+
+Al+3 + F- = AlF+2
+ log_k 7.000
+ delta_h 1.060 kcal
+
+Al+3 + 2 F- = AlF2+
+ log_k 12.700
+ delta_h 1.980 kcal
+
+Al+3 + 3 F- = AlF3
+ log_k 16.800
+ delta_h 2.160 kcal
+
+Al+3 + 4 F- = AlF4-
+ log_k 19.400
+ delta_h 2.200 kcal
+
+Al+3 + 5 F- = AlF5-2
+ log_k 20.600
+ delta_h 1.840 kcal
+
+Al+3 + 6 F- = AlF6-3
+ log_k 20.600
+ delta_h -1.670 kcal
+
+H4SiO4 = H3SiO4- + H+
+ log_k -9.83
+ delta_h 6.12 kcal
+ -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
+
+H4SiO4 = H2SiO4-2 + 2 H+
+ log_k -23.0
+ delta_h 17.6 kcal
+ -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
+
+H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
+ log_k 30.180
+ delta_h -16.260 kcal
+
+Ba+2 + H2O = BaOH+ + H+
+ log_k -13.470
+
+Ba+2 + CO3-2 = BaCO3
+ log_k 2.71
+ delta_h 3.55 kcal
+ -analytic 0.113 0.008721
+
+Ba+2 + HCO3- = BaHCO3+
+ log_k 0.982
+ delta_h 5.56 kcal
+ -analytical -3.0938 0.013669 0.0 0.0 0.0
+
+Ba+2 + SO4-2 = BaSO4
+ log_k 2.700
+
+Sr+2 + H2O = SrOH+ + H+
+ log_k -13.290
+ -gamma 5.0000 0.0000
+
+Sr+2 + CO3-2 + H+ = SrHCO3+
+ log_k 11.509
+ delta_h 2.489 kcal
+ -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
+ -gamma 5.4000 0.0000
+
+Sr+2 + CO3-2 = SrCO3
+ log_k 2.81
+ delta_h 5.22 kcal
+ -analytic -1.019 0.012826
+
+Sr+2 + SO4-2 = SrSO4
+ log_k 2.290
+ delta_h 2.080 kcal
+
+Li+ + H2O = LiOH + H+
+ log_k -13.640
+
+Li+ + SO4-2 = LiSO4-
+ log_k 0.640
+
+Cu+2 + e- = Cu+
+ log_k 2.720
+ delta_h 1.650 kcal
+ -gamma 2.5000 0.0000
+
+Cu+2 + H2O = CuOH+ + H+
+ log_k -8.000
+ -gamma 4.0000 0.0000
+
+Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
+ log_k -13.680
+
+Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
+ log_k -26.900
+
+Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
+ log_k -39.600
+
+Cu+2 + SO4-2 = CuSO4
+ log_k 2.310
+ delta_h 1.220 kcal
+
+Zn+2 + H2O = ZnOH+ + H+
+ log_k -8.96
+ delta_h 13.4 kcal
+
+Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
+ log_k -16.900
+
+Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
+ log_k -28.400
+
+Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
+ log_k -41.200
+
+Zn+2 + Cl- = ZnCl+
+ log_k 0.43
+ delta_h 7.79 kcal
+
+Zn+2 + 2 Cl- = ZnCl2
+ log_k 0.45
+ delta_h 8.5 kcal
+
+Zn+2 + 3Cl- = ZnCl3-
+ log_k 0.5
+ delta_h 9.56 kcal
+
+Zn+2 + 4Cl- = ZnCl4-2
+ log_k 0.2
+ delta_h 10.96 kcal
+
+Zn+2 + CO3-2 = ZnCO3
+ log_k 5.3
+
+Zn+2 + 2CO3-2 = Zn(CO3)2-2
+ log_k 9.63
+
+Zn+2 + HCO3- = ZnHCO3+
+ log_k 2.1
+
+Zn+2 + SO4-2 = ZnSO4
+ log_k 2.37
+ delta_h 1.36 kcal
+
+Zn+2 + 2SO4-2 = Zn(SO4)2-2
+ log_k 3.28
+
+Cd+2 + H2O = CdOH+ + H+
+ log_k -10.080
+ delta_h 13.1 kcal
+
+Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
+ log_k -20.350
+
+Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
+ log_k -33.300
+
+Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
+ log_k -47.350
+
+Cd+2 + Cl- = CdCl+
+ log_k 1.980
+ delta_h 0.59 kcal
+
+Cd+2 + 2 Cl- = CdCl2
+ log_k 2.600
+ delta_h 1.24 kcal
+
+Cd+2 + 3 Cl- = CdCl3-
+ log_k 2.400
+ delta_h 3.9 kcal
+
+Cd+2 + CO3-2 = CdCO3
+ log_k 2.9
+
+Cd+2 + 2CO3-2 = Cd(CO3)2-2
+ log_k 6.4
+
+Cd+2 + HCO3- = CdHCO3+
+ log_k 1.5
+
+Cd+2 + SO4-2 = CdSO4
+ log_k 2.460
+ delta_h 1.08 kcal
+
+Cd+2 + 2SO4-2 = Cd(SO4)2-2
+ log_k 3.5
+
+Pb+2 + H2O = PbOH+ + H+
+ log_k -7.710
+
+Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
+ log_k -17.120
+
+Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
+ log_k -28.060
+
+Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
+ log_k -39.700
+
+2 Pb+2 + H2O = Pb2OH+3 + H+
+ log_k -6.360
+
+Pb+2 + Cl- = PbCl+
+ log_k 1.600
+ delta_h 4.38 kcal
+
+Pb+2 + 2 Cl- = PbCl2
+ log_k 1.800
+ delta_h 1.08 kcal
+
+Pb+2 + 3 Cl- = PbCl3-
+ log_k 1.700
+ delta_h 2.17 kcal
+
+Pb+2 + 4 Cl- = PbCl4-2
+ log_k 1.380
+ delta_h 3.53 kcal
+
+Pb+2 + CO3-2 = PbCO3
+ log_k 7.240
+
+Pb+2 + 2 CO3-2 = Pb(CO3)2-2
+ log_k 10.640
+
+Pb+2 + HCO3- = PbHCO3+
+ log_k 2.9
+
+Pb+2 + SO4-2 = PbSO4
+ log_k 2.750
+
+Pb+2 + 2 SO4-2 = Pb(SO4)2-2
+ log_k 3.470
+
+Pb+2 + NO3- = PbNO3+
+ log_k 1.170
+
+PHASES
+
+Calcite
+ CaCO3 = CO3-2 + Ca+2
+ log_k -8.480
+ delta_h -2.297 kcal
+ -analytic -171.9065 -0.077993 2839.319 71.595
+
+Aragonite
+ CaCO3 = CO3-2 + Ca+2
+ log_k -8.336
+ delta_h -2.589 kcal
+ -analytic -171.9773 -0.077993 2903.293 71.595
+
+Dolomite
+ CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
+ log_k -17.090
+ delta_h -9.436 kcal
+
+Siderite
+ FeCO3 = Fe+2 + CO3-2
+ log_k -10.890
+ delta_h -2.480 kcal
+
+Rhodochrosite
+ MnCO3 = Mn+2 + CO3-2
+ log_k -11.130
+ delta_h -1.430 kcal
+
+Strontianite
+ SrCO3 = Sr+2 + CO3-2
+ log_k -9.271
+ delta_h -0.400 kcal
+ -analytic 155.0305 0.0 -7239.594 -56.58638
+
+Witherite
+ BaCO3 = Ba+2 + CO3-2
+ log_k -8.562
+ delta_h 0.703 kcal
+ -analytic 607.642 0.121098 -20011.25 -236.4948
+
+Gypsum
+ CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
+ log_k -4.580
+ delta_h -0.109 kcal
+ -analytic 68.2401 0.0 -3221.51 -25.0627
+
+Anhydrite
+ CaSO4 = Ca+2 + SO4-2
+ log_k -4.360
+ delta_h -1.710 kcal
+ -analytic 197.52 0.0 -8669.8 -69.835
+
+Celestite
+ SrSO4 = Sr+2 + SO4-2
+ log_k -6.630
+ delta_h -1.037 kcal
+ -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
+
+Barite
+ BaSO4 = Ba+2 + SO4-2
+ log_k -9.970
+ delta_h 6.350 kcal
+ -analytic 136.035 0.0 -7680.41 -48.595
+
+Hydroxyapatite
+ Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
+ log_k -3.421
+ delta_h -36.155 kcal
+
+Fluorite
+ CaF2 = Ca+2 + 2 F-
+ log_k -10.600
+ delta_h 4.690 kcal
+ -analytic 66.348 0.0 -4298.2 -25.271
+
+SiO2(a)
+ SiO2 + 2 H2O = H4SiO4
+ log_k -2.710
+ delta_h 3.340 kcal
+ -analytic -0.26 0.0 -731.0
+
+Chalcedony
+ SiO2 + 2 H2O = H4SiO4
+ log_k -3.550
+ delta_h 4.720 kcal
+ -analytic -0.09 0.0 -1032.0
+
+Quartz
+ SiO2 + 2 H2O = H4SiO4
+ log_k -3.980
+ delta_h 5.990 kcal
+ -analytic 0.41 0.0 -1309.0
+
+Gibbsite
+ Al(OH)3 + 3 H+ = Al+3 + 3 H2O
+ log_k 8.110
+ delta_h -22.800 kcal
+
+Al(OH)3(a)
+ Al(OH)3 + 3 H+ = Al+3 + 3 H2O
+ log_k 10.800
+ delta_h -26.500 kcal
+
+Kaolinite
+ Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
+ log_k 7.435
+ delta_h -35.300 kcal
+
+Albite
+ NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
+ log_k -18.002
+ delta_h 25.896 kcal
+
+Anorthite
+ CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
+ log_k -19.714
+ delta_h 11.580 kcal
+
+K-feldspar
+ KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
+ log_k -20.573
+ delta_h 30.820 kcal
+
+K-mica
+ KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
+ log_k 12.703
+ delta_h -59.376 kcal
+
+Chlorite(14A)
+ Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
+ log_k 68.38
+ delta_h -151.494 kcal
+
+Ca-Montmorillonite
+ Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
+ log_k -45.027
+ delta_h 58.373 kcal
+
+Talc
+ Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
+ log_k 21.399
+ delta_h -46.352 kcal
+
+Illite
+ K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
+ log_k -40.267
+ delta_h 54.684 kcal
+
+Chrysotile
+ Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
+ log_k 32.200
+ delta_h -46.800 kcal
+ -analytic 13.248 0.0 10217.1 -6.1894
+
+Sepiolite
+ Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
+ log_k 15.760
+ delta_h -10.700 kcal
+
+Sepiolite(d)
+ Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
+ log_k 18.660
+
+Hematite
+ Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
+ log_k -4.008
+ delta_h -30.845 kcal
+
+Goethite
+ FeOOH + 3 H+ = Fe+3 + 2 H2O
+ log_k -1.000
+ delta_h -14.48 kcal
+
+Fe(OH)3(a)
+ Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
+ log_k 4.891
+
+Pyrite
+ FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
+ log_k -18.479
+ delta_h 11.300 kcal
+
+FeS(ppt)
+ FeS + H+ = Fe+2 + HS-
+ log_k -3.915
+
+Mackinawite
+ FeS + H+ = Fe+2 + HS-
+ log_k -4.648
+
+Sulfur
+ S + 2H+ + 2e- = H2S
+ log_k 4.882
+ delta_h -9.5 kcal
+
+Vivianite
+ Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
+ log_k -36.000
+
+Pyrolusite
+ MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O
+ log_k 41.380
+ delta_h -65.110 kcal
+
+Hausmannite
+ Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
+ log_k 61.030
+ delta_h -100.640 kcal
+
+Manganite
+ MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
+ log_k 25.340
+
+Pyrochroite
+ Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
+ log_k 15.200
+
+Halite
+ NaCl = Na+ + Cl-
+ log_k 1.582
+ delta_h 0.918 kcal
+
+CO2(g)
+ CO2 = CO2
+ log_k -1.468
+ delta_h -4.776 kcal
+ -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
+
+O2(g)
+ O2 = O2
+# log_k -2.960
+# delta_h -1.844 kcal
+ # log K from llnl.dat Aug 23, 2005
+ log_k -2.8983
+ -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005
+
+H2(g)
+ H2 = H2
+ log_k -3.150
+ delta_h -1.759 kcal
+
+H2O(g)
+ H2O = H2O
+ log_k 1.51
+ delta_h -44.03 kJ
+# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
+
+N2(g)
+ N2 = N2
+ log_k -3.260
+ delta_h -1.358 kcal
+
+H2S(g)
+ H2S = H2S
+ log_k -0.997
+ delta_h -4.570 kcal
+
+CH4(g)
+ CH4 = CH4
+ log_k -2.860
+ delta_h -3.373 kcal
+
+NH3(g)
+ NH3 = NH3
+ log_k 1.770
+ delta_h -8.170 kcal
+
+Melanterite
+ FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
+ log_k -2.209
+ delta_h 4.910 kcal
+ -analytic 1.447 -0.004153 0.0 0.0 -214949.0
+
+Alunite
+ KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
+ log_k -1.400
+ delta_h -50.250 kcal
+
+Jarosite-K
+ KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
+ log_k -9.210
+ delta_h -31.280 kcal
+
+Zn(OH)2(e)
+ Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
+ log_k 11.50
+
+Smithsonite
+ ZnCO3 = Zn+2 + CO3-2
+ log_k -10.000
+ delta_h -4.36 kcal
+
+Sphalerite
+ ZnS + H+ = Zn+2 + HS-
+ log_k -11.618
+ delta_h 8.250 kcal
+
+Willemite 289
+ Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
+ log_k 15.33
+ delta_h -33.37 kcal
+
+Cd(OH)2
+ Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
+ log_k 13.650
+
+Otavite 315
+ CdCO3 = Cd+2 + CO3-2
+ log_k -12.1
+ delta_h -0.019 kcal
+
+CdSiO3 328
+ CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
+ log_k 9.06
+ delta_h -16.63 kcal
+
+CdSO4 329
+ CdSO4 = Cd+2 + SO4-2
+ log_k -0.1
+ delta_h -14.74 kcal
+
+Cerrusite 365
+ PbCO3 = Pb+2 + CO3-2
+ log_k -13.13
+ delta_h 4.86 kcal
+
+Anglesite 384
+ PbSO4 = Pb+2 + SO4-2
+ log_k -7.79
+ delta_h 2.15 kcal
+
+Pb(OH)2 389
+ Pb(OH)2 + 2H+ = Pb+2 + 2H2O
+ log_k 8.15
+ delta_h -13.99 kcal
+
+EXCHANGE_MASTER_SPECIES
+ X X-
+EXCHANGE_SPECIES
+ X- = X-
+ log_k 0.0
+
+ Na+ + X- = NaX
+ log_k 0.0
+ -gamma 4.0 0.075
+
+ K+ + X- = KX
+ log_k 0.7
+ -gamma 3.5 0.015
+ delta_h -4.3 # Jardine & Sparks, 1984
+
+ Li+ + X- = LiX
+ log_k -0.08
+ -gamma 6.0 0.0
+ delta_h 1.4 # Merriam & Thomas, 1956
+
+ NH4+ + X- = NH4X
+ log_k 0.6
+ -gamma 2.5 0.0
+ delta_h -2.4 # Laudelout et al., 1968
+
+ Ca+2 + 2X- = CaX2
+ log_k 0.8
+ -gamma 5.0 0.165
+ delta_h 7.2 # Van Bladel & Gheyl, 1980
+
+ Mg+2 + 2X- = MgX2
+ log_k 0.6
+ -gamma 5.5 0.2
+ delta_h 7.4 # Laudelout et al., 1968
+
+ Sr+2 + 2X- = SrX2
+ log_k 0.91
+ -gamma 5.26 0.121
+ delta_h 5.5 # Laudelout et al., 1968
+
+ Ba+2 + 2X- = BaX2
+ log_k 0.91
+ -gamma 5.0 0.0
+ delta_h 4.5 # Laudelout et al., 1968
+
+ Mn+2 + 2X- = MnX2
+ log_k 0.52
+ -gamma 6.0 0.0
+
+ Fe+2 + 2X- = FeX2
+ log_k 0.44
+ -gamma 6.0 0.0
+
+ Cu+2 + 2X- = CuX2
+ log_k 0.6
+ -gamma 6.0 0.0
+
+ Zn+2 + 2X- = ZnX2
+ log_k 0.8
+ -gamma 5.0 0.0
+
+ Cd+2 + 2X- = CdX2
+ log_k 0.8
+ -gamma 0.0 0.0
+
+ Pb+2 + 2X- = PbX2
+ log_k 1.05
+ -gamma 0.0 0.0
+
+ Al+3 + 3X- = AlX3
+ log_k 0.41
+ -gamma 9.0 0.0
+
+ AlOH+2 + 2X- = AlOHX2
+ log_k 0.89
+ -gamma 0.0 0.0
+SURFACE_MASTER_SPECIES
+ Hfo_s Hfo_sOH
+ Hfo_w Hfo_wOH
+SURFACE_SPECIES
+# All surface data from
+# Dzombak and Morel, 1990
+#
+#
+# Acid-base data from table 5.7
+#
+# strong binding site--Hfo_s,
+
+ Hfo_sOH = Hfo_sOH
+ log_k 0.0
+
+ Hfo_sOH + H+ = Hfo_sOH2+
+ log_k 7.29 # = pKa1,int
+
+ Hfo_sOH = Hfo_sO- + H+
+ log_k -8.93 # = -pKa2,int
+
+# weak binding site--Hfo_w
+
+ Hfo_wOH = Hfo_wOH
+ log_k 0.0
+
+ Hfo_wOH + H+ = Hfo_wOH2+
+ log_k 7.29 # = pKa1,int
+
+ Hfo_wOH = Hfo_wO- + H+
+ log_k -8.93 # = -pKa2,int
+
+###############################################
+# CATIONS #
+###############################################
+#
+# Cations from table 10.1 or 10.5
+#
+# Calcium
+ Hfo_sOH + Ca+2 = Hfo_sOHCa+2
+ log_k 4.97
+
+ Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
+ log_k -5.85
+# Strontium
+ Hfo_sOH + Sr+2 = Hfo_sOHSr+2
+ log_k 5.01
+
+ Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
+ log_k -6.58
+
+ Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
+ log_k -17.60
+# Barium
+ Hfo_sOH + Ba+2 = Hfo_sOHBa+2
+ log_k 5.46
+
+ Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
+ log_k -7.2 # table 10.5
+#
+# Cations from table 10.2
+#
+# Cadmium
+ Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
+ log_k 0.47
+
+ Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
+ log_k -2.91
+# Zinc
+ Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
+ log_k 0.99
+
+ Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
+ log_k -1.99
+# Copper
+ Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
+ log_k 2.89
+
+ Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
+ log_k 0.6 # table 10.5
+# Lead
+ Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
+ log_k 4.65
+
+ Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
+ log_k 0.3 # table 10.5
+#
+# Derived constants table 10.5
+#
+# Magnesium
+ Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
+ log_k -4.6
+# Manganese
+ Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
+ log_k -0.4 # table 10.5
+
+ Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
+ log_k -3.5 # table 10.5
+# Iron
+# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
+# log_k 0.7 # LFER using table 10.5
+
+# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
+# log_k -2.5 # LFER using table 10.5
+
+# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36,
+ Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
+ log_k -0.95
+# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
+ Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
+ log_k -2.98
+
+ Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
+ log_k -11.55
+
+###############################################
+# ANIONS #
+###############################################
+#
+# Anions from table 10.6
+#
+# Phosphate
+ Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
+ log_k 31.29
+
+ Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
+ log_k 25.39
+
+ Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
+ log_k 17.72
+#
+# Anions from table 10.7
+#
+# Borate
+ Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
+ log_k 0.62
+#
+# Anions from table 10.8
+#
+# Sulfate
+ Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
+ log_k 7.78
+
+ Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
+ log_k 0.79
+#
+# Derived constants table 10.10
+#
+ Hfo_wOH + F- + H+ = Hfo_wF + H2O
+ log_k 8.7
+
+ Hfo_wOH + F- = Hfo_wOHF-
+ log_k 1.6
+#
+# Carbonate: Van Geen et al., 1994 reoptimized for HFO
+# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
+#
+# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
+# log_k 12.56
+#
+# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
+# log_k 20.62
+
+# 9/19/96
+# Added analytical expression for H2S, NH3, KSO4.
+# Added species CaHSO4+.
+# Added delta H for Goethite.
+
+RATES
+
+###########
+#K-feldspar
+###########
+#
+# Sverdrup, H.U., 1990, The kinetics of base cation release due to
+# chemical weathering: Lund University Press, Lund, 246 p.
+#
+# Example of KINETICS data block for K-feldspar rate:
+# KINETICS 1
+# K-feldspar
+# -m0 2.16 # 10% K-fsp, 0.1 mm cubes
+# -m 1.94
+# -parms 1.36e4 0.1
+
+K-feldspar
+ -start
+ 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
+ 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
+ 3 rem parm(2) = corrects for field rate relative to lab rate
+ 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
+
+ 10 dif_temp = 1/TK - 1/298
+ 20 pk_H = 12.5 + 3134 * dif_temp
+ 30 pk_w = 15.3 + 1838 * dif_temp
+ 40 pk_OH = 14.2 + 3134 * dif_temp
+ 50 pk_CO2 = 14.6 + 1677 * dif_temp
+ #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC
+ 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
+ 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
+ #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
+ 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
+ 81 rem decrease rate on precipitation
+ 90 if SR("K-feldspar") > 1 then moles = moles * 0.1
+ 100 save moles
+ -end
+
+###########
+#Albite
+###########
+#
+# Sverdrup, H.U., 1990, The kinetics of base cation release due to
+# chemical weathering: Lund University Press, Lund, 246 p.
+#
+# Example of KINETICS data block for Albite rate:
+# KINETICS 1
+# Albite
+# -m0 0.43 # 2% Albite, 0.1 mm cubes
+# -parms 2.72e3 0.1
+
+Albite
+ -start
+ 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
+ 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
+ 3 rem parm(2) = corrects for field rate relative to lab rate
+ 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
+
+ 10 dif_temp = 1/TK - 1/298
+ 20 pk_H = 12.5 + 3359 * dif_temp
+ 30 pk_w = 14.8 + 2648 * dif_temp
+ 40 pk_OH = 13.7 + 3359 * dif_temp
+ #41 rem ^12.9 in Sverdrup, but larger than for oligoclase...
+ 50 pk_CO2 = 14.0 + 1677 * dif_temp
+ #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
+ 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
+ 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
+ #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
+ 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
+ 81 rem decrease rate on precipitation
+ 90 if SR("Albite") > 1 then moles = moles * 0.1
+ 100 save moles
+ -end
+
+########
+#Calcite
+########
+#
+# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978,
+# American Journal of Science, v. 278, p. 179-216.
+#
+# Example of KINETICS data block for calcite rate:
+#
+# KINETICS 1
+# Calcite
+# -tol 1e-8
+# -m0 3.e-3
+# -m 3.e-3
+# -parms 5.0 0.6
+Calcite
+ -start
+ 1 REM Modified from Plummer and others, 1978
+ 2 REM M = current moles of calcite
+ 3 REM M0 = initial moles of calcite
+ 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell)
+ 5 REM parm(2) = exponent for M/M0 for surface area correction
+ 10 REM rate = 0 if no calcite and undersaturated
+ 20 si_cc = SI("Calcite")
+ 30 if (M <= 0 and si_cc < 0) then goto 300
+ 40 k1 = 10^(0.198 - 444.0 / TK )
+ 50 k2 = 10^(2.84 - 2177.0 / TK )
+ 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK )
+ 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK )
+ 80 REM surface area calculation
+ 90 t = 1
+ 100 if M0 > 0 then t = M/M0
+ 110 if t = 0 then t = 1
+ 120 area = PARM(1) * (t)^PARM(2)
+ 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")
+ 140 REM 1e-3 converts mmol to mol
+ 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc))
+ 160 moles = rate * TIME
+ 170 REM do not dissolve more calcite than present
+ 180 if (moles > M) then moles = M
+ 190 if (moles >= 0) then goto 300
+ 200 REM do not precipitate more Ca or C(4) than present
+ 210 temp = TOT("Ca")
+ 220 mc = TOT("C(4)")
+ 230 if mc < temp then temp = mc
+ 240 if -moles > temp then moles = -temp
+ 300 SAVE moles
+ -end
+
+#######
+#Pyrite
+#######
+#
+# Williamson, M.A. and Rimstidt, J.D., 1994,
+# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454.
+#
+# Example of KINETICS data block for pyrite rate:
+# KINETICS 1
+# Pyrite
+# -tol 1e-8
+# -m0 5.e-4
+# -m 5.e-4
+# -parms 2.0 0.67 .5 -0.11
+Pyrite
+ -start
+ 1 rem Williamson and Rimstidt, 1994
+ 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0)
+ 3 rem parm(3) = exp for O2 parm(4) = exp for H+
+
+ 10 if (m <= 0) then goto 200
+ 20 if (si("Pyrite") >= 0) then goto 200
+ 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
+ 30 moles = 10^rate * time
+ 40 if (moles > m) then moles = m
+ 200 save moles
+ -end
+
+##########
+#Organic_C
+##########
+#
+# Example of KINETICS data block for Organic_C rate:
+# KINETICS 1
+# Organic_C
+# -tol 1e-8
+# # m in mol/kgw
+# -m0 5e-3
+# -m 5e-3
+Organic_C
+ -start
+ 1 rem Additive Monod kinetics
+ 2 rem Electron acceptors: O2, NO3, and SO4
+
+ 10 if (m <= 0) then goto 200
+ 20 mO2 = mol("O2")
+ 30 mNO3 = tot("N(5)")
+ 40 mSO4 = tot("S(6)")
+ 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
+ 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
+ 70 moles = rate * m * (m/m0) * time
+ 80 if (moles > m) then moles = m
+ 200 save moles
+ -end
+
+###########
+#Pyrolusite
+###########
+#
+# Postma, and Appelo., GCA 64, 1237
+#
+# Example of KINETICS data block for Pyrolusite
+# KINETICS 1-12
+# Pyrolusite
+# -tol 1.e-7
+# -m0 0.1
+# -m 0.1
+Pyrolusite
+ -start
+ 5 if (m <= 0.0) then goto 200
+ 7 sr_pl = sr("Pyrolusite")
+ 9 if abs(1 - sr_pl) < 0.1 then goto 200
+ 10 if (sr_pl > 1.0) then goto 100
+ #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells)
+ #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5
+ 30 Fe_t = tot("Fe(2)")
+ 32 if Fe_t < 1.e-8 then goto 200
+ 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl)
+ 50 if moles > Fe_t / 2 then moles = Fe_t / 2
+ 70 if moles > m then moles = m
+ 90 goto 200
+ 100 Mn_t = tot("Mn")
+ 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time
+ 120 if moles <= -Mn_t then moles = -Mn_t
+ 200 save moles
+ -end
+END
+
diff --git a/all/fortran/advect.vfproj b/all/fortran/advect.vfproj
new file mode 100644
index 00000000..e5277941
--- /dev/null
+++ b/all/fortran/advect.vfproj
@@ -0,0 +1,133 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/all/fortran/ex19 b/all/fortran/ex19
new file mode 100644
index 00000000..d33b7dac
--- /dev/null
+++ b/all/fortran/ex19
@@ -0,0 +1,51 @@
+TITLE Example 19.--Linear, Freundlich and Langmuir isotherms for
+ Cd sorption on loamy sand. Calculates Example 7.1
+ from Appelo and Postma, 2005. Data from Christensen, 1984.
+SURFACE_MASTER_SPECIES
+ Linear Linear
+ Freundlich Freundlich
+ Langmuir Langmuir
+SURFACE_SPECIES
+ Linear = Linear
+ Linear + Cd+2 = LinearCd+2
+ -log_k -100.7 # log10(0.2) - 100
+ -mole_balance LinearCdCl2
+ Freundlich = Freundlich
+ Freundlich + 0.722 Cd+2 = FreundlichCd+2
+ -log_k -102.61 # log10(0.421) + (0.722 - 1) * log10(112.4e6) - 100
+ -no_check
+ -mole_balance FreundlichCdCl2
+ Langmuir = Langmuir
+ Langmuir + Cd+2 = LangmuirCd+2
+ -log_k 6.56 # log10(112.4 / 30.9e-6)
+ -mole_balance LangmuirCdCl2
+SURFACE 1
+ Linear 1e100 1 1
+ Freundlich 1e100 1 1
+ Langmuir 8.45e-8 1 1 # 9.5 / 112.4e6
+ -no_edl
+SOLUTION 1
+ pH 6
+ Ca 1
+ Cl 2
+REACTION 1
+ CdCl2 1
+ 0.7e-6 in 20
+USER_GRAPH Example 19
+ -headings Linear Freundlich Langmuir
+ -chart_title "Sorption Isotherms"
+ -axis_titles "Dissolved Cd, in micrograms per kilogram water" \
+ "Sorbed Cd, in micrograms per gram soil"
+ -plot_tsv_file ex19_meas.tsv
+ -axis_scale x_axis 0 40
+ -axis_scale y_axis 0 6
+ -initial_solutions true
+ -start
+10 x = act("Cd+2") * 112.4e6
+20 PLOT_XY x, mol("LinearCd+2")*112e6, color = Green, symbol = None, line_width = 2
+30 PLOT_XY x, mol("FreundlichCd+2")*112e6, color = Blue, symbol = None, line_width = 2
+40 PLOT_XY x, mol("LangmuirCd+2")*112e6, color = Orange, symbol = None, line_width = 2
+ -end
+PRINT
+ -reset false
+END
\ No newline at end of file
diff --git a/all/fortran/ex19_meas.tsv b/all/fortran/ex19_meas.tsv
new file mode 100644
index 00000000..c7f584ce
--- /dev/null
+++ b/all/fortran/ex19_meas.tsv
@@ -0,0 +1,17 @@
+c/(ug/L) Measured
+3.1 0.86
+6.1 1.12
+5.9 1.71
+7.1 1.68
+8.1 2.03
+9.9 2.46
+12.3 2.85
+13 3.36
+13.6 3.22
+16 3.25
+19.1 3.56
+24.1 3.76
+25.8 4.17
+27.6 4.58
+33.2 4.82
+36.4 5.19
diff --git a/all/fortran/ic b/all/fortran/ic
new file mode 100644
index 00000000..00112d7a
--- /dev/null
+++ b/all/fortran/ic
@@ -0,0 +1,16 @@
+# File ic
+SOLUTION 1-2
+END
+EQUILIBRIUM_PHASES 1
+ CO2(g) -1.5 10
+
+EQUILIBRIUM_PHASES 2
+ Calcite 0 10
+SELECTED_OUTPUT
+ -reset false
+USER_PUNCH
+ -Heading charge H O C Ca pH SR(calcite)
+ 10 PUNCH charge_balance
+ 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca")
+ 30 PUNCH -LA("H+"), SR("calcite")
+END
diff --git a/all/fortran/phreeqc.dat b/all/fortran/phreeqc.dat
new file mode 100644
index 00000000..e4f7366d
--- /dev/null
+++ b/all/fortran/phreeqc.dat
@@ -0,0 +1,1579 @@
+# $Id: phreeqc.dat 3428 2009-03-23 16:31:34Z dlpark $
+SOLUTION_MASTER_SPECIES
+#
+#element species alk gfw_formula element_gfw
+#
+H H+ -1. H 1.008
+H(0) H2 0.0 H
+H(1) H+ -1. 0.0
+E e- 0.0 0.0 0.0
+O H2O 0.0 O 16.00
+O(0) O2 0.0 O
+O(-2) H2O 0.0 0.0
+Ca Ca+2 0.0 Ca 40.08
+Mg Mg+2 0.0 Mg 24.312
+Na Na+ 0.0 Na 22.9898
+K K+ 0.0 K 39.102
+Fe Fe+2 0.0 Fe 55.847
+Fe(+2) Fe+2 0.0 Fe
+Fe(+3) Fe+3 -2.0 Fe
+Mn Mn+2 0.0 Mn 54.938
+Mn(+2) Mn+2 0.0 Mn
+Mn(+3) Mn+3 0.0 Mn
+Al Al+3 0.0 Al 26.9815
+Ba Ba+2 0.0 Ba 137.34
+Sr Sr+2 0.0 Sr 87.62
+Si H4SiO4 0.0 SiO2 28.0843
+Cl Cl- 0.0 Cl 35.453
+C CO3-2 2.0 HCO3 12.0111
+C(+4) CO3-2 2.0 HCO3
+C(-4) CH4 0.0 CH4
+Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
+S SO4-2 0.0 SO4 32.064
+S(6) SO4-2 0.0 SO4
+S(-2) HS- 1.0 S
+N NO3- 0.0 N 14.0067
+N(+5) NO3- 0.0 N
+N(+3) NO2- 0.0 N
+N(0) N2 0.0 N
+N(-3) NH4+ 0.0 N
+B H3BO3 0.0 B 10.81
+P PO4-3 2.0 P 30.9738
+F F- 0.0 F 18.9984
+Li Li+ 0.0 Li 6.939
+Br Br- 0.0 Br 79.904
+Zn Zn+2 0.0 Zn 65.37
+Cd Cd+2 0.0 Cd 112.4
+Pb Pb+2 0.0 Pb 207.19
+Cu Cu+2 0.0 Cu 63.546
+Cu(+2) Cu+2 0.0 Cu
+Cu(+1) Cu+1 0.0 Cu
+
+SOLUTION_SPECIES
+
+H+ = H+
+ log_k 0.000
+ -gamma 9.0000 0.0000
+ -dw 9.31e-9
+e- = e-
+ log_k 0.000
+
+H2O = H2O
+ log_k 0.000
+
+Ca+2 = Ca+2
+ log_k 0.000
+ -gamma 5.0000 0.1650
+ -dw 0.793e-9
+ -millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262
+Mg+2 = Mg+2
+ log_k 0.000
+ -gamma 5.5000 0.2000
+ -dw 0.705e-9
+ -millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457
+Na+ = Na+
+ log_k 0.000
+ -gamma 4.0000 0.0750
+ -dw 1.33e-9
+ -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651
+K+ = K+
+ log_k 0.000
+ -gamma 3.5000 0.0150
+ -dw 1.96e-9
+ -millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151
+Fe+2 = Fe+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.719e-9
+Mn+2 = Mn+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.688e-9
+Al+3 = Al+3
+ log_k 0.000
+ -gamma 9.0000 0.0000
+ -dw 0.559e-9
+Ba+2 = Ba+2
+ log_k 0.000
+ -gamma 5.0000 0.0000
+ -dw 0.848e-9
+Sr+2 = Sr+2
+ log_k 0.000
+ -gamma 5.2600 0.1210
+ -dw 0.794e-9
+ -millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084
+H4SiO4 = H4SiO4
+ log_k 0.000
+ -dw 1.10e-9
+ -millero 56.0 # b, c, d, e and f not reported by Millero, 2000
+Cl- = Cl-
+ log_k 0.000
+ -gamma 3.5000 0.0150
+ -dw 2.03e-9
+ -millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621
+CO3-2 = CO3-2
+ log_k 0.000
+ -gamma 5.4000 0.0000
+ -dw 0.955e-9
+ -millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000
+SO4-2 = SO4-2
+ log_k 0.000
+ -gamma 5.0000 -0.0400
+ -dw 1.07e-9
+ -millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05
+NO3- = NO3-
+ log_k 0.000
+ -gamma 3.0000 0.0000
+ -dw 1.9e-9
+ -millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000
+H3BO3 = H3BO3
+ log_k 0.000
+ -dw 1.1e-9
+ -millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000
+PO4-3 = PO4-3
+ log_k 0.000
+ -gamma 4.0000 0.0000
+ -dw 0.612e-9
+F- = F-
+ log_k 0.000
+ -gamma 3.5000 0.0000
+ -dw 1.46e-9
+ -millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05
+Li+ = Li+
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 1.03e-9
+Br- = Br-
+ log_k 0.000
+ -gamma 3.0000 0.0000
+ -dw 2.01e-9
+ -millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105
+Zn+2 = Zn+2
+ log_k 0.000
+ -gamma 5.0000 0.0000
+ -dw 0.715e-9
+Cd+2 = Cd+2
+ log_k 0.000
+ -dw 0.717e-9
+Pb+2 = Pb+2
+ log_k 0.000
+ -dw 0.945e-9
+Cu+2 = Cu+2
+ log_k 0.000
+ -gamma 6.0000 0.0000
+ -dw 0.733e-9
+H2O = OH- + H+
+ log_k -14.000
+ delta_h 13.362 kcal
+ -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
+ -gamma 3.5000 0.0000
+ -dw 5.27e-9
+2 H2O = O2 + 4 H+ + 4 e-
+ log_k -86.08
+ delta_h 134.79 kcal
+ -dw 2.35e-9
+2 H+ + 2 e- = H2
+ log_k -3.15
+ delta_h -1.759 kcal
+ -dw 5.1e-9
+CO3-2 + H+ = HCO3-
+ log_k 10.329
+ delta_h -3.561 kcal
+ -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
+ -gamma 5.4000 0.0000
+ -dw 1.18e-9
+ -millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06
+CO3-2 + 2 H+ = CO2 + H2O
+ log_k 16.681
+ delta_h -5.738 kcal
+ -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
+ -dw 1.92e-9
+CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
+ log_k 41.071
+ delta_h -61.039 kcal
+ -dw 1.85e-9
+SO4-2 + H+ = HSO4-
+ log_k 1.988
+ delta_h 3.85 kcal
+ -analytic -56.889 0.006473 2307.9 19.8858 0.0
+ -dw 1.33e-9
+HS- = S-2 + H+
+ log_k -12.918
+ delta_h 12.1 kcal
+ -gamma 5.0000 0.0000
+ -dw 0.731e-9
+SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
+ log_k 33.65
+ delta_h -60.140 kcal
+ -gamma 3.5000 0.0000
+ -dw 1.73e-9
+HS- + H+ = H2S
+ log_k 6.994
+ delta_h -5.300 kcal
+ -analytical -11.17 0.02386 3279.0
+ -dw 2.1e-9
+
+NO3- + 2 H+ + 2 e- = NO2- + H2O
+ log_k 28.570
+ delta_h -43.760 kcal
+ -gamma 3.0000 0.0000
+ -dw 1.91e-9
+2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
+ log_k 207.080
+ delta_h -312.130 kcal
+ -dw 1.96e-9
+NH4+ = NH3 + H+
+ log_k -9.252
+ delta_h 12.48 kcal
+ -analytic 0.6322 -0.001225 -2835.76
+ -dw 2.28e-9
+NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
+ log_k 119.077
+ delta_h -187.055 kcal
+ -gamma 2.5000 0.0000
+ -dw 1.98e-9
+ -millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported
+NH4+ + SO4-2 = NH4SO4-
+ log_k 1.11
+
+H3BO3 = H2BO3- + H+
+ log_k -9.240
+ delta_h 3.224 kcal
+# -analytical 24.3919 0.012078 -1343.9 -13.2258
+
+H3BO3 + F- = BF(OH)3-
+ log_k -0.400
+ delta_h 1.850 kcal
+
+H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
+ log_k 7.63
+ delta_h 1.618 kcal
+
+H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
+ log_k 13.67
+ delta_h -1.614 kcal
+
+H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
+ log_k 20.28
+ delta_h -1.846 kcal
+
+PO4-3 + H+ = HPO4-2
+ log_k 12.346
+ delta_h -3.530 kcal
+ -gamma 4.0000 0.0000
+ -dw 0.69e-9
+PO4-3 + 2 H+ = H2PO4-
+ log_k 19.553
+ delta_h -4.520 kcal
+ -gamma 4.5000 0.0000
+ -dw 0.846e-9
+ -millero 33.6 # b, c, d, e and f not reported by Millero, 2000
+H+ + F- = HF
+ log_k 3.18
+ delta_h 3.18 kcal
+ -analytic -2.033 0.012645 429.01
+
+H+ + 2 F- = HF2-
+ log_k 3.760
+ delta_h 4.550 kcal
+
+Ca+2 + H2O = CaOH+ + H+
+ log_k -12.780
+
+Ca+2 + CO3-2 = CaCO3
+ log_k 3.224
+ delta_h 3.545 kcal
+ -analytic -1228.732 -0.299440 35512.75 485.818
+ -dw 4.46e-10 # complexes: calc'd with the Pikal formula
+Ca+2 + CO3-2 + H+ = CaHCO3+
+ log_k 11.435
+ delta_h -0.871 kcal
+ -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
+ -gamma 5.4000 0.0000
+ -dw 5.06e-10
+Ca+2 + SO4-2 = CaSO4
+ log_k 2.300
+ delta_h 1.650 kcal
+ -dw 4.71e-10
+Ca+2 + HSO4- = CaHSO4+
+ log_k 1.08
+
+Ca+2 + PO4-3 = CaPO4-
+ log_k 6.459
+ delta_h 3.100 kcal
+
+Ca+2 + HPO4-2 = CaHPO4
+ log_k 2.739
+ delta_h 3.3 kcal
+
+Ca+2 + H2PO4- = CaH2PO4+
+ log_k 1.408
+ delta_h 3.4 kcal
+
+Ca+2 + F- = CaF+
+ log_k 0.940
+ delta_h 4.120 kcal
+
+Mg+2 + H2O = MgOH+ + H+
+ log_k -11.440
+ delta_h 15.952 kcal
+
+Mg+2 + CO3-2 = MgCO3
+ log_k 2.98
+ delta_h 2.713 kcal
+ -analytic 0.9910 0.00667
+
+Mg+2 + H+ + CO3-2 = MgHCO3+
+ log_k 11.399
+ delta_h -2.771 kcal
+ -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
+
+Mg+2 + SO4-2 = MgSO4
+ log_k 2.370
+ delta_h 4.550 kcal
+
+Mg+2 + PO4-3 = MgPO4-
+ log_k 6.589
+ delta_h 3.100 kcal
+
+Mg+2 + HPO4-2 = MgHPO4
+ log_k 2.87
+ delta_h 3.3 kcal
+
+Mg+2 + H2PO4- = MgH2PO4+
+ log_k 1.513
+ delta_h 3.4 kcal
+
+Mg+2 + F- = MgF+
+ log_k 1.820
+ delta_h 3.200 kcal
+
+Na+ + H2O = NaOH + H+
+ log_k -14.180
+
+Na+ + CO3-2 = NaCO3-
+ log_k 1.270
+ delta_h 8.910 kcal
+ -dw 5.85e-10
+Na+ + HCO3- = NaHCO3
+ log_k -0.25
+ -dw 6.73e-10
+Na+ + SO4-2 = NaSO4-
+ log_k 0.7
+ delta_h 1.120 kcal
+ -dw 6.18e-10
+Na+ + HPO4-2 = NaHPO4-
+ log_k 0.29
+
+Na+ + F- = NaF
+ log_k -0.240
+
+K+ + H2O = KOH + H+
+ log_k -14.460
+
+K+ + SO4-2 = KSO4-
+ log_k 0.850
+ delta_h 2.250 kcal
+ -analytical 3.106 0.0 -673.6
+ -dw 7.46e-10
+
+K+ + HPO4-2 = KHPO4-
+ log_k 0.29
+
+Fe+2 + H2O = FeOH+ + H+
+ log_k -9.500
+ delta_h 13.200 kcal
+
+Fe+2 + Cl- = FeCl+
+ log_k 0.140
+
+Fe+2 + CO3-2 = FeCO3
+ log_k 4.380
+
+Fe+2 + HCO3- = FeHCO3+
+ log_k 2.0
+
+Fe+2 + SO4-2 = FeSO4
+ log_k 2.250
+ delta_h 3.230 kcal
+
+Fe+2 + HSO4- = FeHSO4+
+ log_k 1.08
+
+Fe+2 + 2HS- = Fe(HS)2
+ log_k 8.95
+
+Fe+2 + 3HS- = Fe(HS)3-
+ log_k 10.987
+
+Fe+2 + HPO4-2 = FeHPO4
+ log_k 3.6
+
+Fe+2 + H2PO4- = FeH2PO4+
+ log_k 2.7
+
+Fe+2 + F- = FeF+
+ log_k 1.000
+
+Fe+2 = Fe+3 + e-
+ log_k -13.020
+ delta_h 9.680 kcal
+ -gamma 9.0000 0.0000
+
+Fe+3 + H2O = FeOH+2 + H+
+ log_k -2.19
+ delta_h 10.4 kcal
+
+Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
+ log_k -5.67
+ delta_h 17.1 kcal
+
+Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
+ log_k -12.56
+ delta_h 24.8 kcal
+
+Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
+ log_k -21.6
+ delta_h 31.9 kcal
+
+2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
+ log_k -2.95
+ delta_h 13.5 kcal
+
+3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
+ log_k -6.3
+ delta_h 14.3 kcal
+
+Fe+3 + Cl- = FeCl+2
+ log_k 1.48
+ delta_h 5.6 kcal
+
+Fe+3 + 2 Cl- = FeCl2+
+ log_k 2.13
+
+Fe+3 + 3 Cl- = FeCl3
+ log_k 1.13
+
+Fe+3 + SO4-2 = FeSO4+
+ log_k 4.04
+ delta_h 3.91 kcal
+
+Fe+3 + HSO4- = FeHSO4+2
+ log_k 2.48
+
+Fe+3 + 2 SO4-2 = Fe(SO4)2-
+ log_k 5.38
+ delta_h 4.60 kcal
+
+Fe+3 + HPO4-2 = FeHPO4+
+ log_k 5.43
+ delta_h 5.76 kcal
+
+Fe+3 + H2PO4- = FeH2PO4+2
+ log_k 5.43
+
+Fe+3 + F- = FeF+2
+ log_k 6.2
+ delta_h 2.7 kcal
+
+Fe+3 + 2 F- = FeF2+
+ log_k 10.8
+ delta_h 4.8 kcal
+
+Fe+3 + 3 F- = FeF3
+ log_k 14.0
+ delta_h 5.4 kcal
+
+Mn+2 + H2O = MnOH+ + H+
+ log_k -10.590
+ delta_h 14.400 kcal
+
+Mn+2 + Cl- = MnCl+
+ log_k 0.610
+
+Mn+2 + 2 Cl- = MnCl2
+ log_k 0.250
+
+Mn+2 + 3 Cl- = MnCl3-
+ log_k -0.310
+
+Mn+2 + CO3-2 = MnCO3
+ log_k 4.900
+
+Mn+2 + HCO3- = MnHCO3+
+ log_k 1.95
+
+Mn+2 + SO4-2 = MnSO4
+ log_k 2.250
+ delta_h 3.370 kcal
+
+Mn+2 + 2 NO3- = Mn(NO3)2
+ log_k 0.600
+ delta_h -0.396 kcal
+
+Mn+2 + F- = MnF+
+ log_k 0.840
+
+Mn+2 = Mn+3 + e-
+ log_k -25.510
+ delta_h 25.800 kcal
+
+Al+3 + H2O = AlOH+2 + H+
+ log_k -5.00
+ delta_h 11.49 kcal
+ -analytic -38.253 0.0 -656.27 14.327
+
+Al+3 + 2 H2O = Al(OH)2+ + 2 H+
+ log_k -10.1
+ delta_h 26.90 kcal
+ -analytic 88.500 0.0 -9391.6 -27.121
+
+Al+3 + 3 H2O = Al(OH)3 + 3 H+
+ log_k -16.9
+ delta_h 39.89 kcal
+ -analytic 226.374 0.0 -18247.8 -73.597
+
+Al+3 + 4 H2O = Al(OH)4- + 4 H+
+ log_k -22.7
+ delta_h 42.30 kcal
+ -analytic 51.578 0.0 -11168.9 -14.865
+
+Al+3 + SO4-2 = AlSO4+
+ log_k 3.5
+ delta_h 2.29 kcal
+
+Al+3 + 2SO4-2 = Al(SO4)2-
+ log_k 5.0
+ delta_h 3.11 kcal
+
+Al+3 + HSO4- = AlHSO4+2
+ log_k 0.46
+
+Al+3 + F- = AlF+2
+ log_k 7.000
+ delta_h 1.060 kcal
+
+Al+3 + 2 F- = AlF2+
+ log_k 12.700
+ delta_h 1.980 kcal
+
+Al+3 + 3 F- = AlF3
+ log_k 16.800
+ delta_h 2.160 kcal
+
+Al+3 + 4 F- = AlF4-
+ log_k 19.400
+ delta_h 2.200 kcal
+
+Al+3 + 5 F- = AlF5-2
+ log_k 20.600
+ delta_h 1.840 kcal
+
+Al+3 + 6 F- = AlF6-3
+ log_k 20.600
+ delta_h -1.670 kcal
+
+H4SiO4 = H3SiO4- + H+
+ log_k -9.83
+ delta_h 6.12 kcal
+ -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
+
+H4SiO4 = H2SiO4-2 + 2 H+
+ log_k -23.0
+ delta_h 17.6 kcal
+ -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
+
+H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
+ log_k 30.180
+ delta_h -16.260 kcal
+
+Ba+2 + H2O = BaOH+ + H+
+ log_k -13.470
+
+Ba+2 + CO3-2 = BaCO3
+ log_k 2.71
+ delta_h 3.55 kcal
+ -analytic 0.113 0.008721
+
+Ba+2 + HCO3- = BaHCO3+
+ log_k 0.982
+ delta_h 5.56 kcal
+ -analytical -3.0938 0.013669 0.0 0.0 0.0
+
+Ba+2 + SO4-2 = BaSO4
+ log_k 2.700
+
+Sr+2 + H2O = SrOH+ + H+
+ log_k -13.290
+ -gamma 5.0000 0.0000
+
+Sr+2 + CO3-2 + H+ = SrHCO3+
+ log_k 11.509
+ delta_h 2.489 kcal
+ -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
+ -gamma 5.4000 0.0000
+
+Sr+2 + CO3-2 = SrCO3
+ log_k 2.81
+ delta_h 5.22 kcal
+ -analytic -1.019 0.012826
+
+Sr+2 + SO4-2 = SrSO4
+ log_k 2.290
+ delta_h 2.080 kcal
+
+Li+ + H2O = LiOH + H+
+ log_k -13.640
+
+Li+ + SO4-2 = LiSO4-
+ log_k 0.640
+
+Cu+2 + e- = Cu+
+ log_k 2.720
+ delta_h 1.650 kcal
+ -gamma 2.5000 0.0000
+
+Cu+2 + H2O = CuOH+ + H+
+ log_k -8.000
+ -gamma 4.0000 0.0000
+
+Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
+ log_k -13.680
+
+Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
+ log_k -26.900
+
+Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
+ log_k -39.600
+
+Cu+2 + SO4-2 = CuSO4
+ log_k 2.310
+ delta_h 1.220 kcal
+
+Zn+2 + H2O = ZnOH+ + H+
+ log_k -8.96
+ delta_h 13.4 kcal
+
+Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
+ log_k -16.900
+
+Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
+ log_k -28.400
+
+Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
+ log_k -41.200
+
+Zn+2 + Cl- = ZnCl+
+ log_k 0.43
+ delta_h 7.79 kcal
+
+Zn+2 + 2 Cl- = ZnCl2
+ log_k 0.45
+ delta_h 8.5 kcal
+
+Zn+2 + 3Cl- = ZnCl3-
+ log_k 0.5
+ delta_h 9.56 kcal
+
+Zn+2 + 4Cl- = ZnCl4-2
+ log_k 0.2
+ delta_h 10.96 kcal
+
+Zn+2 + CO3-2 = ZnCO3
+ log_k 5.3
+
+Zn+2 + 2CO3-2 = Zn(CO3)2-2
+ log_k 9.63
+
+Zn+2 + HCO3- = ZnHCO3+
+ log_k 2.1
+
+Zn+2 + SO4-2 = ZnSO4
+ log_k 2.37
+ delta_h 1.36 kcal
+
+Zn+2 + 2SO4-2 = Zn(SO4)2-2
+ log_k 3.28
+
+Cd+2 + H2O = CdOH+ + H+
+ log_k -10.080
+ delta_h 13.1 kcal
+
+Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
+ log_k -20.350
+
+Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
+ log_k -33.300
+
+Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
+ log_k -47.350
+
+Cd+2 + Cl- = CdCl+
+ log_k 1.980
+ delta_h 0.59 kcal
+
+Cd+2 + 2 Cl- = CdCl2
+ log_k 2.600
+ delta_h 1.24 kcal
+
+Cd+2 + 3 Cl- = CdCl3-
+ log_k 2.400
+ delta_h 3.9 kcal
+
+Cd+2 + CO3-2 = CdCO3
+ log_k 2.9
+
+Cd+2 + 2CO3-2 = Cd(CO3)2-2
+ log_k 6.4
+
+Cd+2 + HCO3- = CdHCO3+
+ log_k 1.5
+
+Cd+2 + SO4-2 = CdSO4
+ log_k 2.460
+ delta_h 1.08 kcal
+
+Cd+2 + 2SO4-2 = Cd(SO4)2-2
+ log_k 3.5
+
+Pb+2 + H2O = PbOH+ + H+
+ log_k -7.710
+
+Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
+ log_k -17.120
+
+Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
+ log_k -28.060
+
+Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
+ log_k -39.700
+
+2 Pb+2 + H2O = Pb2OH+3 + H+
+ log_k -6.360
+
+Pb+2 + Cl- = PbCl+
+ log_k 1.600
+ delta_h 4.38 kcal
+
+Pb+2 + 2 Cl- = PbCl2
+ log_k 1.800
+ delta_h 1.08 kcal
+
+Pb+2 + 3 Cl- = PbCl3-
+ log_k 1.700
+ delta_h 2.17 kcal
+
+Pb+2 + 4 Cl- = PbCl4-2
+ log_k 1.380
+ delta_h 3.53 kcal
+
+Pb+2 + CO3-2 = PbCO3
+ log_k 7.240
+
+Pb+2 + 2 CO3-2 = Pb(CO3)2-2
+ log_k 10.640
+
+Pb+2 + HCO3- = PbHCO3+
+ log_k 2.9
+
+Pb+2 + SO4-2 = PbSO4
+ log_k 2.750
+
+Pb+2 + 2 SO4-2 = Pb(SO4)2-2
+ log_k 3.470
+
+Pb+2 + NO3- = PbNO3+
+ log_k 1.170
+
+PHASES
+
+Calcite
+ CaCO3 = CO3-2 + Ca+2
+ log_k -8.480
+ delta_h -2.297 kcal
+ -analytic -171.9065 -0.077993 2839.319 71.595
+
+Aragonite
+ CaCO3 = CO3-2 + Ca+2
+ log_k -8.336
+ delta_h -2.589 kcal
+ -analytic -171.9773 -0.077993 2903.293 71.595
+
+Dolomite
+ CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
+ log_k -17.090
+ delta_h -9.436 kcal
+
+Siderite
+ FeCO3 = Fe+2 + CO3-2
+ log_k -10.890
+ delta_h -2.480 kcal
+
+Rhodochrosite
+ MnCO3 = Mn+2 + CO3-2
+ log_k -11.130
+ delta_h -1.430 kcal
+
+Strontianite
+ SrCO3 = Sr+2 + CO3-2
+ log_k -9.271
+ delta_h -0.400 kcal
+ -analytic 155.0305 0.0 -7239.594 -56.58638
+
+Witherite
+ BaCO3 = Ba+2 + CO3-2
+ log_k -8.562
+ delta_h 0.703 kcal
+ -analytic 607.642 0.121098 -20011.25 -236.4948
+
+Gypsum
+ CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
+ log_k -4.580
+ delta_h -0.109 kcal
+ -analytic 68.2401 0.0 -3221.51 -25.0627
+
+Anhydrite
+ CaSO4 = Ca+2 + SO4-2
+ log_k -4.360
+ delta_h -1.710 kcal
+ -analytic 197.52 0.0 -8669.8 -69.835
+
+Celestite
+ SrSO4 = Sr+2 + SO4-2
+ log_k -6.630
+ delta_h -1.037 kcal
+ -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
+
+Barite
+ BaSO4 = Ba+2 + SO4-2
+ log_k -9.970
+ delta_h 6.350 kcal
+ -analytic 136.035 0.0 -7680.41 -48.595
+
+Hydroxyapatite
+ Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
+ log_k -3.421
+ delta_h -36.155 kcal
+
+Fluorite
+ CaF2 = Ca+2 + 2 F-
+ log_k -10.600
+ delta_h 4.690 kcal
+ -analytic 66.348 0.0 -4298.2 -25.271
+
+SiO2(a)
+ SiO2 + 2 H2O = H4SiO4
+ log_k -2.710
+ delta_h 3.340 kcal
+ -analytic -0.26 0.0 -731.0
+
+Chalcedony
+ SiO2 + 2 H2O = H4SiO4
+ log_k -3.550
+ delta_h 4.720 kcal
+ -analytic -0.09 0.0 -1032.0
+
+Quartz
+ SiO2 + 2 H2O = H4SiO4
+ log_k -3.980
+ delta_h 5.990 kcal
+ -analytic 0.41 0.0 -1309.0
+
+Gibbsite
+ Al(OH)3 + 3 H+ = Al+3 + 3 H2O
+ log_k 8.110
+ delta_h -22.800 kcal
+
+Al(OH)3(a)
+ Al(OH)3 + 3 H+ = Al+3 + 3 H2O
+ log_k 10.800
+ delta_h -26.500 kcal
+
+Kaolinite
+ Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
+ log_k 7.435
+ delta_h -35.300 kcal
+
+Albite
+ NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
+ log_k -18.002
+ delta_h 25.896 kcal
+
+Anorthite
+ CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
+ log_k -19.714
+ delta_h 11.580 kcal
+
+K-feldspar
+ KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
+ log_k -20.573
+ delta_h 30.820 kcal
+
+K-mica
+ KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
+ log_k 12.703
+ delta_h -59.376 kcal
+
+Chlorite(14A)
+ Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
+ log_k 68.38
+ delta_h -151.494 kcal
+
+Ca-Montmorillonite
+ Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
+ log_k -45.027
+ delta_h 58.373 kcal
+
+Talc
+ Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
+ log_k 21.399
+ delta_h -46.352 kcal
+
+Illite
+ K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
+ log_k -40.267
+ delta_h 54.684 kcal
+
+Chrysotile
+ Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
+ log_k 32.200
+ delta_h -46.800 kcal
+ -analytic 13.248 0.0 10217.1 -6.1894
+
+Sepiolite
+ Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
+ log_k 15.760
+ delta_h -10.700 kcal
+
+Sepiolite(d)
+ Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
+ log_k 18.660
+
+Hematite
+ Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
+ log_k -4.008
+ delta_h -30.845 kcal
+
+Goethite
+ FeOOH + 3 H+ = Fe+3 + 2 H2O
+ log_k -1.000
+ delta_h -14.48 kcal
+
+Fe(OH)3(a)
+ Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
+ log_k 4.891
+
+Pyrite
+ FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
+ log_k -18.479
+ delta_h 11.300 kcal
+
+FeS(ppt)
+ FeS + H+ = Fe+2 + HS-
+ log_k -3.915
+
+Mackinawite
+ FeS + H+ = Fe+2 + HS-
+ log_k -4.648
+
+Sulfur
+ S + 2H+ + 2e- = H2S
+ log_k 4.882
+ delta_h -9.5 kcal
+
+Vivianite
+ Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
+ log_k -36.000
+
+Pyrolusite
+ MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O
+ log_k 41.380
+ delta_h -65.110 kcal
+
+Hausmannite
+ Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
+ log_k 61.030
+ delta_h -100.640 kcal
+
+Manganite
+ MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
+ log_k 25.340
+
+Pyrochroite
+ Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
+ log_k 15.200
+
+Halite
+ NaCl = Na+ + Cl-
+ log_k 1.582
+ delta_h 0.918 kcal
+
+CO2(g)
+ CO2 = CO2
+ log_k -1.468
+ delta_h -4.776 kcal
+ -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
+
+O2(g)
+ O2 = O2
+# log_k -2.960
+# delta_h -1.844 kcal
+ # log K from llnl.dat Aug 23, 2005
+ log_k -2.8983
+ -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005
+
+H2(g)
+ H2 = H2
+ log_k -3.150
+ delta_h -1.759 kcal
+
+H2O(g)
+ H2O = H2O
+ log_k 1.51
+ delta_h -44.03 kJ
+# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
+
+N2(g)
+ N2 = N2
+ log_k -3.260
+ delta_h -1.358 kcal
+
+H2S(g)
+ H2S = H2S
+ log_k -0.997
+ delta_h -4.570 kcal
+
+CH4(g)
+ CH4 = CH4
+ log_k -2.860
+ delta_h -3.373 kcal
+
+NH3(g)
+ NH3 = NH3
+ log_k 1.770
+ delta_h -8.170 kcal
+
+Melanterite
+ FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
+ log_k -2.209
+ delta_h 4.910 kcal
+ -analytic 1.447 -0.004153 0.0 0.0 -214949.0
+
+Alunite
+ KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
+ log_k -1.400
+ delta_h -50.250 kcal
+
+Jarosite-K
+ KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
+ log_k -9.210
+ delta_h -31.280 kcal
+
+Zn(OH)2(e)
+ Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
+ log_k 11.50
+
+Smithsonite
+ ZnCO3 = Zn+2 + CO3-2
+ log_k -10.000
+ delta_h -4.36 kcal
+
+Sphalerite
+ ZnS + H+ = Zn+2 + HS-
+ log_k -11.618
+ delta_h 8.250 kcal
+
+Willemite 289
+ Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
+ log_k 15.33
+ delta_h -33.37 kcal
+
+Cd(OH)2
+ Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
+ log_k 13.650
+
+Otavite 315
+ CdCO3 = Cd+2 + CO3-2
+ log_k -12.1
+ delta_h -0.019 kcal
+
+CdSiO3 328
+ CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
+ log_k 9.06
+ delta_h -16.63 kcal
+
+CdSO4 329
+ CdSO4 = Cd+2 + SO4-2
+ log_k -0.1
+ delta_h -14.74 kcal
+
+Cerrusite 365
+ PbCO3 = Pb+2 + CO3-2
+ log_k -13.13
+ delta_h 4.86 kcal
+
+Anglesite 384
+ PbSO4 = Pb+2 + SO4-2
+ log_k -7.79
+ delta_h 2.15 kcal
+
+Pb(OH)2 389
+ Pb(OH)2 + 2H+ = Pb+2 + 2H2O
+ log_k 8.15
+ delta_h -13.99 kcal
+
+EXCHANGE_MASTER_SPECIES
+ X X-
+EXCHANGE_SPECIES
+ X- = X-
+ log_k 0.0
+
+ Na+ + X- = NaX
+ log_k 0.0
+ -gamma 4.0 0.075
+
+ K+ + X- = KX
+ log_k 0.7
+ -gamma 3.5 0.015
+ delta_h -4.3 # Jardine & Sparks, 1984
+
+ Li+ + X- = LiX
+ log_k -0.08
+ -gamma 6.0 0.0
+ delta_h 1.4 # Merriam & Thomas, 1956
+
+ NH4+ + X- = NH4X
+ log_k 0.6
+ -gamma 2.5 0.0
+ delta_h -2.4 # Laudelout et al., 1968
+
+ Ca+2 + 2X- = CaX2
+ log_k 0.8
+ -gamma 5.0 0.165
+ delta_h 7.2 # Van Bladel & Gheyl, 1980
+
+ Mg+2 + 2X- = MgX2
+ log_k 0.6
+ -gamma 5.5 0.2
+ delta_h 7.4 # Laudelout et al., 1968
+
+ Sr+2 + 2X- = SrX2
+ log_k 0.91
+ -gamma 5.26 0.121
+ delta_h 5.5 # Laudelout et al., 1968
+
+ Ba+2 + 2X- = BaX2
+ log_k 0.91
+ -gamma 5.0 0.0
+ delta_h 4.5 # Laudelout et al., 1968
+
+ Mn+2 + 2X- = MnX2
+ log_k 0.52
+ -gamma 6.0 0.0
+
+ Fe+2 + 2X- = FeX2
+ log_k 0.44
+ -gamma 6.0 0.0
+
+ Cu+2 + 2X- = CuX2
+ log_k 0.6
+ -gamma 6.0 0.0
+
+ Zn+2 + 2X- = ZnX2
+ log_k 0.8
+ -gamma 5.0 0.0
+
+ Cd+2 + 2X- = CdX2
+ log_k 0.8
+ -gamma 0.0 0.0
+
+ Pb+2 + 2X- = PbX2
+ log_k 1.05
+ -gamma 0.0 0.0
+
+ Al+3 + 3X- = AlX3
+ log_k 0.41
+ -gamma 9.0 0.0
+
+ AlOH+2 + 2X- = AlOHX2
+ log_k 0.89
+ -gamma 0.0 0.0
+SURFACE_MASTER_SPECIES
+ Hfo_s Hfo_sOH
+ Hfo_w Hfo_wOH
+SURFACE_SPECIES
+# All surface data from
+# Dzombak and Morel, 1990
+#
+#
+# Acid-base data from table 5.7
+#
+# strong binding site--Hfo_s,
+
+ Hfo_sOH = Hfo_sOH
+ log_k 0.0
+
+ Hfo_sOH + H+ = Hfo_sOH2+
+ log_k 7.29 # = pKa1,int
+
+ Hfo_sOH = Hfo_sO- + H+
+ log_k -8.93 # = -pKa2,int
+
+# weak binding site--Hfo_w
+
+ Hfo_wOH = Hfo_wOH
+ log_k 0.0
+
+ Hfo_wOH + H+ = Hfo_wOH2+
+ log_k 7.29 # = pKa1,int
+
+ Hfo_wOH = Hfo_wO- + H+
+ log_k -8.93 # = -pKa2,int
+
+###############################################
+# CATIONS #
+###############################################
+#
+# Cations from table 10.1 or 10.5
+#
+# Calcium
+ Hfo_sOH + Ca+2 = Hfo_sOHCa+2
+ log_k 4.97
+
+ Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
+ log_k -5.85
+# Strontium
+ Hfo_sOH + Sr+2 = Hfo_sOHSr+2
+ log_k 5.01
+
+ Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
+ log_k -6.58
+
+ Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
+ log_k -17.60
+# Barium
+ Hfo_sOH + Ba+2 = Hfo_sOHBa+2
+ log_k 5.46
+
+ Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
+ log_k -7.2 # table 10.5
+#
+# Cations from table 10.2
+#
+# Cadmium
+ Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
+ log_k 0.47
+
+ Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
+ log_k -2.91
+# Zinc
+ Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
+ log_k 0.99
+
+ Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
+ log_k -1.99
+# Copper
+ Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
+ log_k 2.89
+
+ Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
+ log_k 0.6 # table 10.5
+# Lead
+ Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
+ log_k 4.65
+
+ Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
+ log_k 0.3 # table 10.5
+#
+# Derived constants table 10.5
+#
+# Magnesium
+ Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
+ log_k -4.6
+# Manganese
+ Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
+ log_k -0.4 # table 10.5
+
+ Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
+ log_k -3.5 # table 10.5
+# Iron
+# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
+# log_k 0.7 # LFER using table 10.5
+
+# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
+# log_k -2.5 # LFER using table 10.5
+
+# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36,
+ Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
+ log_k -0.95
+# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
+ Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
+ log_k -2.98
+
+ Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
+ log_k -11.55
+
+###############################################
+# ANIONS #
+###############################################
+#
+# Anions from table 10.6
+#
+# Phosphate
+ Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
+ log_k 31.29
+
+ Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
+ log_k 25.39
+
+ Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
+ log_k 17.72
+#
+# Anions from table 10.7
+#
+# Borate
+ Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
+ log_k 0.62
+#
+# Anions from table 10.8
+#
+# Sulfate
+ Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
+ log_k 7.78
+
+ Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
+ log_k 0.79
+#
+# Derived constants table 10.10
+#
+ Hfo_wOH + F- + H+ = Hfo_wF + H2O
+ log_k 8.7
+
+ Hfo_wOH + F- = Hfo_wOHF-
+ log_k 1.6
+#
+# Carbonate: Van Geen et al., 1994 reoptimized for HFO
+# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
+#
+# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
+# log_k 12.56
+#
+# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
+# log_k 20.62
+
+# 9/19/96
+# Added analytical expression for H2S, NH3, KSO4.
+# Added species CaHSO4+.
+# Added delta H for Goethite.
+
+RATES
+
+###########
+#K-feldspar
+###########
+#
+# Sverdrup, H.U., 1990, The kinetics of base cation release due to
+# chemical weathering: Lund University Press, Lund, 246 p.
+#
+# Example of KINETICS data block for K-feldspar rate:
+# KINETICS 1
+# K-feldspar
+# -m0 2.16 # 10% K-fsp, 0.1 mm cubes
+# -m 1.94
+# -parms 1.36e4 0.1
+
+K-feldspar
+ -start
+ 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
+ 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
+ 3 rem parm(2) = corrects for field rate relative to lab rate
+ 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
+
+ 10 dif_temp = 1/TK - 1/298
+ 20 pk_H = 12.5 + 3134 * dif_temp
+ 30 pk_w = 15.3 + 1838 * dif_temp
+ 40 pk_OH = 14.2 + 3134 * dif_temp
+ 50 pk_CO2 = 14.6 + 1677 * dif_temp
+ #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC
+ 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
+ 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
+ #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
+ 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
+ 81 rem decrease rate on precipitation
+ 90 if SR("K-feldspar") > 1 then moles = moles * 0.1
+ 100 save moles
+ -end
+
+###########
+#Albite
+###########
+#
+# Sverdrup, H.U., 1990, The kinetics of base cation release due to
+# chemical weathering: Lund University Press, Lund, 246 p.
+#
+# Example of KINETICS data block for Albite rate:
+# KINETICS 1
+# Albite
+# -m0 0.43 # 2% Albite, 0.1 mm cubes
+# -parms 2.72e3 0.1
+
+Albite
+ -start
+ 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
+ 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
+ 3 rem parm(2) = corrects for field rate relative to lab rate
+ 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
+
+ 10 dif_temp = 1/TK - 1/298
+ 20 pk_H = 12.5 + 3359 * dif_temp
+ 30 pk_w = 14.8 + 2648 * dif_temp
+ 40 pk_OH = 13.7 + 3359 * dif_temp
+ #41 rem ^12.9 in Sverdrup, but larger than for oligoclase...
+ 50 pk_CO2 = 14.0 + 1677 * dif_temp
+ #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
+ 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
+ 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
+ #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4
+ 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
+ 81 rem decrease rate on precipitation
+ 90 if SR("Albite") > 1 then moles = moles * 0.1
+ 100 save moles
+ -end
+
+########
+#Calcite
+########
+#
+# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978,
+# American Journal of Science, v. 278, p. 179-216.
+#
+# Example of KINETICS data block for calcite rate:
+#
+# KINETICS 1
+# Calcite
+# -tol 1e-8
+# -m0 3.e-3
+# -m 3.e-3
+# -parms 5.0 0.6
+Calcite
+ -start
+ 1 REM Modified from Plummer and others, 1978
+ 2 REM M = current moles of calcite
+ 3 REM M0 = initial moles of calcite
+ 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell)
+ 5 REM parm(2) = exponent for M/M0 for surface area correction
+ 10 REM rate = 0 if no calcite and undersaturated
+ 20 si_cc = SI("Calcite")
+ 30 if (M <= 0 and si_cc < 0) then goto 300
+ 40 k1 = 10^(0.198 - 444.0 / TK )
+ 50 k2 = 10^(2.84 - 2177.0 / TK )
+ 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK )
+ 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK )
+ 80 REM surface area calculation
+ 90 t = 1
+ 100 if M0 > 0 then t = M/M0
+ 110 if t = 0 then t = 1
+ 120 area = PARM(1) * (t)^PARM(2)
+ 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")
+ 140 REM 1e-3 converts mmol to mol
+ 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc))
+ 160 moles = rate * TIME
+ 170 REM do not dissolve more calcite than present
+ 180 if (moles > M) then moles = M
+ 190 if (moles >= 0) then goto 300
+ 200 REM do not precipitate more Ca or C(4) than present
+ 210 temp = TOT("Ca")
+ 220 mc = TOT("C(4)")
+ 230 if mc < temp then temp = mc
+ 240 if -moles > temp then moles = -temp
+ 300 SAVE moles
+ -end
+
+#######
+#Pyrite
+#######
+#
+# Williamson, M.A. and Rimstidt, J.D., 1994,
+# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454.
+#
+# Example of KINETICS data block for pyrite rate:
+# KINETICS 1
+# Pyrite
+# -tol 1e-8
+# -m0 5.e-4
+# -m 5.e-4
+# -parms 2.0 0.67 .5 -0.11
+Pyrite
+ -start
+ 1 rem Williamson and Rimstidt, 1994
+ 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0)
+ 3 rem parm(3) = exp for O2 parm(4) = exp for H+
+
+ 10 if (m <= 0) then goto 200
+ 20 if (si("Pyrite") >= 0) then goto 200
+ 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
+ 30 moles = 10^rate * time
+ 40 if (moles > m) then moles = m
+ 200 save moles
+ -end
+
+##########
+#Organic_C
+##########
+#
+# Example of KINETICS data block for Organic_C rate:
+# KINETICS 1
+# Organic_C
+# -tol 1e-8
+# # m in mol/kgw
+# -m0 5e-3
+# -m 5e-3
+Organic_C
+ -start
+ 1 rem Additive Monod kinetics
+ 2 rem Electron acceptors: O2, NO3, and SO4
+
+ 10 if (m <= 0) then goto 200
+ 20 mO2 = mol("O2")
+ 30 mNO3 = tot("N(5)")
+ 40 mSO4 = tot("S(6)")
+ 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
+ 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
+ 70 moles = rate * m * (m/m0) * time
+ 80 if (moles > m) then moles = m
+ 200 save moles
+ -end
+
+###########
+#Pyrolusite
+###########
+#
+# Postma, and Appelo., GCA 64, 1237
+#
+# Example of KINETICS data block for Pyrolusite
+# KINETICS 1-12
+# Pyrolusite
+# -tol 1.e-7
+# -m0 0.1
+# -m 0.1
+Pyrolusite
+ -start
+ 5 if (m <= 0.0) then goto 200
+ 7 sr_pl = sr("Pyrolusite")
+ 9 if abs(1 - sr_pl) < 0.1 then goto 200
+ 10 if (sr_pl > 1.0) then goto 100
+ #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells)
+ #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5
+ 30 Fe_t = tot("Fe(2)")
+ 32 if Fe_t < 1.e-8 then goto 200
+ 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl)
+ 50 if moles > Fe_t / 2 then moles = Fe_t / 2
+ 70 if moles > m then moles = m
+ 90 goto 200
+ 100 Mn_t = tot("Mn")
+ 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time
+ 120 if moles <= -Mn_t then moles = -Mn_t
+ 200 save moles
+ -end
+END
+