diff --git a/IPhreeqc.2005.vcproj.GS.charlton.user b/IPhreeqc.2005.vcproj.GS.charlton.user new file mode 100644 index 00000000..c884c0c2 --- /dev/null +++ b/IPhreeqc.2005.vcproj.GS.charlton.user @@ -0,0 +1,345 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/all/c/advect_c.2005.vcproj b/all/c/advect_c.2005.vcproj new file mode 100644 index 00000000..b8f78e36 --- /dev/null +++ b/all/c/advect_c.2005.vcproj @@ -0,0 +1,992 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/all/c/advect_c.2005.vcproj.GS.charlton.user b/all/c/advect_c.2005.vcproj.GS.charlton.user new file mode 100644 index 00000000..1a0a0591 --- /dev/null +++ b/all/c/advect_c.2005.vcproj.GS.charlton.user @@ -0,0 +1,345 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/all/c/ex19 b/all/c/ex19 new file mode 100644 index 00000000..d33b7dac --- /dev/null +++ b/all/c/ex19 @@ -0,0 +1,51 @@ +TITLE Example 19.--Linear, Freundlich and Langmuir isotherms for + Cd sorption on loamy sand. Calculates Example 7.1 + from Appelo and Postma, 2005. Data from Christensen, 1984. +SURFACE_MASTER_SPECIES + Linear Linear + Freundlich Freundlich + Langmuir Langmuir +SURFACE_SPECIES + Linear = Linear + Linear + Cd+2 = LinearCd+2 + -log_k -100.7 # log10(0.2) - 100 + -mole_balance LinearCdCl2 + Freundlich = Freundlich + Freundlich + 0.722 Cd+2 = FreundlichCd+2 + -log_k -102.61 # log10(0.421) + (0.722 - 1) * log10(112.4e6) - 100 + -no_check + -mole_balance FreundlichCdCl2 + Langmuir = Langmuir + Langmuir + Cd+2 = LangmuirCd+2 + -log_k 6.56 # log10(112.4 / 30.9e-6) + -mole_balance LangmuirCdCl2 +SURFACE 1 + Linear 1e100 1 1 + Freundlich 1e100 1 1 + Langmuir 8.45e-8 1 1 # 9.5 / 112.4e6 + -no_edl +SOLUTION 1 + pH 6 + Ca 1 + Cl 2 +REACTION 1 + CdCl2 1 + 0.7e-6 in 20 +USER_GRAPH Example 19 + -headings Linear Freundlich Langmuir + -chart_title "Sorption Isotherms" + -axis_titles "Dissolved Cd, in micrograms per kilogram water" \ + "Sorbed Cd, in micrograms per gram soil" + -plot_tsv_file ex19_meas.tsv + -axis_scale x_axis 0 40 + -axis_scale y_axis 0 6 + -initial_solutions true + -start +10 x = act("Cd+2") * 112.4e6 +20 PLOT_XY x, mol("LinearCd+2")*112e6, color = Green, symbol = None, line_width = 2 +30 PLOT_XY x, mol("FreundlichCd+2")*112e6, color = Blue, symbol = None, line_width = 2 +40 PLOT_XY x, mol("LangmuirCd+2")*112e6, color = Orange, symbol = None, line_width = 2 + -end +PRINT + -reset false +END \ No newline at end of file diff --git a/all/c/ex19_meas.tsv b/all/c/ex19_meas.tsv new file mode 100644 index 00000000..c7f584ce --- /dev/null +++ b/all/c/ex19_meas.tsv @@ -0,0 +1,17 @@ +c/(ug/L) Measured +3.1 0.86 +6.1 1.12 +5.9 1.71 +7.1 1.68 +8.1 2.03 +9.9 2.46 +12.3 2.85 +13 3.36 +13.6 3.22 +16 3.25 +19.1 3.56 +24.1 3.76 +25.8 4.17 +27.6 4.58 +33.2 4.82 +36.4 5.19 diff --git a/all/c/ic b/all/c/ic new file mode 100644 index 00000000..00112d7a --- /dev/null +++ b/all/c/ic @@ -0,0 +1,16 @@ +# File ic +SOLUTION 1-2 +END +EQUILIBRIUM_PHASES 1 + CO2(g) -1.5 10 + +EQUILIBRIUM_PHASES 2 + Calcite 0 10 +SELECTED_OUTPUT + -reset false +USER_PUNCH + -Heading charge H O C Ca pH SR(calcite) + 10 PUNCH charge_balance + 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca") + 30 PUNCH -LA("H+"), SR("calcite") +END diff --git a/all/c/phreeqc.dat b/all/c/phreeqc.dat new file mode 100644 index 00000000..e4f7366d --- /dev/null +++ b/all/c/phreeqc.dat @@ -0,0 +1,1579 @@ +# $Id: phreeqc.dat 3428 2009-03-23 16:31:34Z dlpark $ +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1. H 1.008 +H(0) H2 0.0 H +H(1) H+ -1. 0.0 +E e- 0.0 0.0 0.0 +O H2O 0.0 O 16.00 +O(0) O2 0.0 O +O(-2) H2O 0.0 0.0 +Ca Ca+2 0.0 Ca 40.08 +Mg Mg+2 0.0 Mg 24.312 +Na Na+ 0.0 Na 22.9898 +K K+ 0.0 K 39.102 +Fe Fe+2 0.0 Fe 55.847 +Fe(+2) Fe+2 0.0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0.0 Mn 54.938 +Mn(+2) Mn+2 0.0 Mn +Mn(+3) Mn+3 0.0 Mn +Al Al+3 0.0 Al 26.9815 +Ba Ba+2 0.0 Ba 137.34 +Sr Sr+2 0.0 Sr 87.62 +Si H4SiO4 0.0 SiO2 28.0843 +Cl Cl- 0.0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0.0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0.0 SO4 32.064 +S(6) SO4-2 0.0 SO4 +S(-2) HS- 1.0 S +N NO3- 0.0 N 14.0067 +N(+5) NO3- 0.0 N +N(+3) NO2- 0.0 N +N(0) N2 0.0 N +N(-3) NH4+ 0.0 N +B H3BO3 0.0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0.0 F 18.9984 +Li Li+ 0.0 Li 6.939 +Br Br- 0.0 Br 79.904 +Zn Zn+2 0.0 Zn 65.37 +Cd Cd+2 0.0 Cd 112.4 +Pb Pb+2 0.0 Pb 207.19 +Cu Cu+2 0.0 Cu 63.546 +Cu(+2) Cu+2 0.0 Cu +Cu(+1) Cu+1 0.0 Cu + +SOLUTION_SPECIES + +H+ = H+ + log_k 0.000 + -gamma 9.0000 0.0000 + -dw 9.31e-9 +e- = e- + log_k 0.000 + +H2O = H2O + log_k 0.000 + +Ca+2 = Ca+2 + log_k 0.000 + -gamma 5.0000 0.1650 + -dw 0.793e-9 + -millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262 +Mg+2 = Mg+2 + log_k 0.000 + -gamma 5.5000 0.2000 + -dw 0.705e-9 + -millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457 +Na+ = Na+ + log_k 0.000 + -gamma 4.0000 0.0750 + -dw 1.33e-9 + -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651 +K+ = K+ + log_k 0.000 + -gamma 3.5000 0.0150 + -dw 1.96e-9 + -millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151 +Fe+2 = Fe+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.719e-9 +Mn+2 = Mn+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.688e-9 +Al+3 = Al+3 + log_k 0.000 + -gamma 9.0000 0.0000 + -dw 0.559e-9 +Ba+2 = Ba+2 + log_k 0.000 + -gamma 5.0000 0.0000 + -dw 0.848e-9 +Sr+2 = Sr+2 + log_k 0.000 + -gamma 5.2600 0.1210 + -dw 0.794e-9 + -millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084 +H4SiO4 = H4SiO4 + log_k 0.000 + -dw 1.10e-9 + -millero 56.0 # b, c, d, e and f not reported by Millero, 2000 +Cl- = Cl- + log_k 0.000 + -gamma 3.5000 0.0150 + -dw 2.03e-9 + -millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621 +CO3-2 = CO3-2 + log_k 0.000 + -gamma 5.4000 0.0000 + -dw 0.955e-9 + -millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000 +SO4-2 = SO4-2 + log_k 0.000 + -gamma 5.0000 -0.0400 + -dw 1.07e-9 + -millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05 +NO3- = NO3- + log_k 0.000 + -gamma 3.0000 0.0000 + -dw 1.9e-9 + -millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000 +H3BO3 = H3BO3 + log_k 0.000 + -dw 1.1e-9 + -millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000 +PO4-3 = PO4-3 + log_k 0.000 + -gamma 4.0000 0.0000 + -dw 0.612e-9 +F- = F- + log_k 0.000 + -gamma 3.5000 0.0000 + -dw 1.46e-9 + -millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05 +Li+ = Li+ + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 1.03e-9 +Br- = Br- + log_k 0.000 + -gamma 3.0000 0.0000 + -dw 2.01e-9 + -millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105 +Zn+2 = Zn+2 + log_k 0.000 + -gamma 5.0000 0.0000 + -dw 0.715e-9 +Cd+2 = Cd+2 + log_k 0.000 + -dw 0.717e-9 +Pb+2 = Pb+2 + log_k 0.000 + -dw 0.945e-9 +Cu+2 = Cu+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.733e-9 +H2O = OH- + H+ + log_k -14.000 + delta_h 13.362 kcal + -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 + -gamma 3.5000 0.0000 + -dw 5.27e-9 +2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 + delta_h 134.79 kcal + -dw 2.35e-9 +2 H+ + 2 e- = H2 + log_k -3.15 + delta_h -1.759 kcal + -dw 5.1e-9 +CO3-2 + H+ = HCO3- + log_k 10.329 + delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4000 0.0000 + -dw 1.18e-9 + -millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06 +CO3-2 + 2 H+ = CO2 + H2O + log_k 16.681 + delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + log_k 41.071 + delta_h -61.039 kcal + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + log_k 1.988 + delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 0.0 + -dw 1.33e-9 +HS- = S-2 + H+ + log_k -12.918 + delta_h 12.1 kcal + -gamma 5.0000 0.0000 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.65 + delta_h -60.140 kcal + -gamma 3.5000 0.0000 + -dw 1.73e-9 +HS- + H+ = H2S + log_k 6.994 + delta_h -5.300 kcal + -analytical -11.17 0.02386 3279.0 + -dw 2.1e-9 + +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.570 + delta_h -43.760 kcal + -gamma 3.0000 0.0000 + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + log_k 207.080 + delta_h -312.130 kcal + -dw 1.96e-9 +NH4+ = NH3 + H+ + log_k -9.252 + delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -dw 2.28e-9 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5000 0.0000 + -dw 1.98e-9 + -millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported +NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + +H3BO3 = H2BO3- + H+ + log_k -9.240 + delta_h 3.224 kcal +# -analytical 24.3919 0.012078 -1343.9 -13.2258 + +H3BO3 + F- = BF(OH)3- + log_k -0.400 + delta_h 1.850 kcal + +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 1.618 kcal + +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 + delta_h -1.614 kcal + +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 + delta_h -1.846 kcal + +PO4-3 + H+ = HPO4-2 + log_k 12.346 + delta_h -3.530 kcal + -gamma 4.0000 0.0000 + -dw 0.69e-9 +PO4-3 + 2 H+ = H2PO4- + log_k 19.553 + delta_h -4.520 kcal + -gamma 4.5000 0.0000 + -dw 0.846e-9 + -millero 33.6 # b, c, d, e and f not reported by Millero, 2000 +H+ + F- = HF + log_k 3.18 + delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + +H+ + 2 F- = HF2- + log_k 3.760 + delta_h 4.550 kcal + +Ca+2 + H2O = CaOH+ + H+ + log_k -12.780 + +Ca+2 + CO3-2 = CaCO3 + log_k 3.224 + delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula +Ca+2 + CO3-2 + H+ = CaHCO3+ + log_k 11.435 + delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 5.4000 0.0000 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + log_k 2.300 + delta_h 1.650 kcal + -dw 4.71e-10 +Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 + +Ca+2 + PO4-3 = CaPO4- + log_k 6.459 + delta_h 3.100 kcal + +Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 + delta_h 3.3 kcal + +Ca+2 + H2PO4- = CaH2PO4+ + log_k 1.408 + delta_h 3.4 kcal + +Ca+2 + F- = CaF+ + log_k 0.940 + delta_h 4.120 kcal + +Mg+2 + H2O = MgOH+ + H+ + log_k -11.440 + delta_h 15.952 kcal + +Mg+2 + CO3-2 = MgCO3 + log_k 2.98 + delta_h 2.713 kcal + -analytic 0.9910 0.00667 + +Mg+2 + H+ + CO3-2 = MgHCO3+ + log_k 11.399 + delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + +Mg+2 + SO4-2 = MgSO4 + log_k 2.370 + delta_h 4.550 kcal + +Mg+2 + PO4-3 = MgPO4- + log_k 6.589 + delta_h 3.100 kcal + +Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 + delta_h 3.3 kcal + +Mg+2 + H2PO4- = MgH2PO4+ + log_k 1.513 + delta_h 3.4 kcal + +Mg+2 + F- = MgF+ + log_k 1.820 + delta_h 3.200 kcal + +Na+ + H2O = NaOH + H+ + log_k -14.180 + +Na+ + CO3-2 = NaCO3- + log_k 1.270 + delta_h 8.910 kcal + -dw 5.85e-10 +Na+ + HCO3- = NaHCO3 + log_k -0.25 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + log_k 0.7 + delta_h 1.120 kcal + -dw 6.18e-10 +Na+ + HPO4-2 = NaHPO4- + log_k 0.29 + +Na+ + F- = NaF + log_k -0.240 + +K+ + H2O = KOH + H+ + log_k -14.460 + +K+ + SO4-2 = KSO4- + log_k 0.850 + delta_h 2.250 kcal + -analytical 3.106 0.0 -673.6 + -dw 7.46e-10 + +K+ + HPO4-2 = KHPO4- + log_k 0.29 + +Fe+2 + H2O = FeOH+ + H+ + log_k -9.500 + delta_h 13.200 kcal + +Fe+2 + Cl- = FeCl+ + log_k 0.140 + +Fe+2 + CO3-2 = FeCO3 + log_k 4.380 + +Fe+2 + HCO3- = FeHCO3+ + log_k 2.0 + +Fe+2 + SO4-2 = FeSO4 + log_k 2.250 + delta_h 3.230 kcal + +Fe+2 + HSO4- = FeHSO4+ + log_k 1.08 + +Fe+2 + 2HS- = Fe(HS)2 + log_k 8.95 + +Fe+2 + 3HS- = Fe(HS)3- + log_k 10.987 + +Fe+2 + HPO4-2 = FeHPO4 + log_k 3.6 + +Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + +Fe+2 + F- = FeF+ + log_k 1.000 + +Fe+2 = Fe+3 + e- + log_k -13.020 + delta_h 9.680 kcal + -gamma 9.0000 0.0000 + +Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 + delta_h 10.4 kcal + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 + delta_h 17.1 kcal + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 + delta_h 24.8 kcal + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 + delta_h 31.9 kcal + +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 + delta_h 13.5 kcal + +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 + delta_h 14.3 kcal + +Fe+3 + Cl- = FeCl+2 + log_k 1.48 + delta_h 5.6 kcal + +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + +Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 + delta_h 3.91 kcal + +Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 + +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 4.60 kcal + +Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 + delta_h 5.76 kcal + +Fe+3 + H2PO4- = FeH2PO4+2 + log_k 5.43 + +Fe+3 + F- = FeF+2 + log_k 6.2 + delta_h 2.7 kcal + +Fe+3 + 2 F- = FeF2+ + log_k 10.8 + delta_h 4.8 kcal + +Fe+3 + 3 F- = FeF3 + log_k 14.0 + delta_h 5.4 kcal + +Mn+2 + H2O = MnOH+ + H+ + log_k -10.590 + delta_h 14.400 kcal + +Mn+2 + Cl- = MnCl+ + log_k 0.610 + +Mn+2 + 2 Cl- = MnCl2 + log_k 0.250 + +Mn+2 + 3 Cl- = MnCl3- + log_k -0.310 + +Mn+2 + CO3-2 = MnCO3 + log_k 4.900 + +Mn+2 + HCO3- = MnHCO3+ + log_k 1.95 + +Mn+2 + SO4-2 = MnSO4 + log_k 2.250 + delta_h 3.370 kcal + +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.600 + delta_h -0.396 kcal + +Mn+2 + F- = MnF+ + log_k 0.840 + +Mn+2 = Mn+3 + e- + log_k -25.510 + delta_h 25.800 kcal + +Al+3 + H2O = AlOH+2 + H+ + log_k -5.00 + delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 + delta_h 26.90 kcal + -analytic 88.500 0.0 -9391.6 -27.121 + +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 + delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 + +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 + delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + +Al+3 + SO4-2 = AlSO4+ + log_k 3.5 + delta_h 2.29 kcal + +Al+3 + 2SO4-2 = Al(SO4)2- + log_k 5.0 + delta_h 3.11 kcal + +Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 + +Al+3 + F- = AlF+2 + log_k 7.000 + delta_h 1.060 kcal + +Al+3 + 2 F- = AlF2+ + log_k 12.700 + delta_h 1.980 kcal + +Al+3 + 3 F- = AlF3 + log_k 16.800 + delta_h 2.160 kcal + +Al+3 + 4 F- = AlF4- + log_k 19.400 + delta_h 2.200 kcal + +Al+3 + 5 F- = AlF5-2 + log_k 20.600 + delta_h 1.840 kcal + +Al+3 + 6 F- = AlF6-3 + log_k 20.600 + delta_h -1.670 kcal + +H4SiO4 = H3SiO4- + H+ + log_k -9.83 + delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23.0 + delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.180 + delta_h -16.260 kcal + +Ba+2 + H2O = BaOH+ + H+ + log_k -13.470 + +Ba+2 + CO3-2 = BaCO3 + log_k 2.71 + delta_h 3.55 kcal + -analytic 0.113 0.008721 + +Ba+2 + HCO3- = BaHCO3+ + log_k 0.982 + delta_h 5.56 kcal + -analytical -3.0938 0.013669 0.0 0.0 0.0 + +Ba+2 + SO4-2 = BaSO4 + log_k 2.700 + +Sr+2 + H2O = SrOH+ + H+ + log_k -13.290 + -gamma 5.0000 0.0000 + +Sr+2 + CO3-2 + H+ = SrHCO3+ + log_k 11.509 + delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4000 0.0000 + +Sr+2 + CO3-2 = SrCO3 + log_k 2.81 + delta_h 5.22 kcal + -analytic -1.019 0.012826 + +Sr+2 + SO4-2 = SrSO4 + log_k 2.290 + delta_h 2.080 kcal + +Li+ + H2O = LiOH + H+ + log_k -13.640 + +Li+ + SO4-2 = LiSO4- + log_k 0.640 + +Cu+2 + e- = Cu+ + log_k 2.720 + delta_h 1.650 kcal + -gamma 2.5000 0.0000 + +Cu+2 + H2O = CuOH+ + H+ + log_k -8.000 + -gamma 4.0000 0.0000 + +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.680 + +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.900 + +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.600 + +Cu+2 + SO4-2 = CuSO4 + log_k 2.310 + delta_h 1.220 kcal + +Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 + delta_h 13.4 kcal + +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.900 + +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.400 + +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.200 + +Zn+2 + Cl- = ZnCl+ + log_k 0.43 + delta_h 7.79 kcal + +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 + delta_h 8.5 kcal + +Zn+2 + 3Cl- = ZnCl3- + log_k 0.5 + delta_h 9.56 kcal + +Zn+2 + 4Cl- = ZnCl4-2 + log_k 0.2 + delta_h 10.96 kcal + +Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 + +Zn+2 + 2CO3-2 = Zn(CO3)2-2 + log_k 9.63 + +Zn+2 + HCO3- = ZnHCO3+ + log_k 2.1 + +Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 + delta_h 1.36 kcal + +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + log_k 3.28 + +Cd+2 + H2O = CdOH+ + H+ + log_k -10.080 + delta_h 13.1 kcal + +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.350 + +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.300 + +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.350 + +Cd+2 + Cl- = CdCl+ + log_k 1.980 + delta_h 0.59 kcal + +Cd+2 + 2 Cl- = CdCl2 + log_k 2.600 + delta_h 1.24 kcal + +Cd+2 + 3 Cl- = CdCl3- + log_k 2.400 + delta_h 3.9 kcal + +Cd+2 + CO3-2 = CdCO3 + log_k 2.9 + +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + log_k 6.4 + +Cd+2 + HCO3- = CdHCO3+ + log_k 1.5 + +Cd+2 + SO4-2 = CdSO4 + log_k 2.460 + delta_h 1.08 kcal + +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + log_k 3.5 + +Pb+2 + H2O = PbOH+ + H+ + log_k -7.710 + +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.120 + +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.060 + +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.700 + +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.360 + +Pb+2 + Cl- = PbCl+ + log_k 1.600 + delta_h 4.38 kcal + +Pb+2 + 2 Cl- = PbCl2 + log_k 1.800 + delta_h 1.08 kcal + +Pb+2 + 3 Cl- = PbCl3- + log_k 1.700 + delta_h 2.17 kcal + +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.380 + delta_h 3.53 kcal + +Pb+2 + CO3-2 = PbCO3 + log_k 7.240 + +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.640 + +Pb+2 + HCO3- = PbHCO3+ + log_k 2.9 + +Pb+2 + SO4-2 = PbSO4 + log_k 2.750 + +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.470 + +Pb+2 + NO3- = PbNO3+ + log_k 1.170 + +PHASES + +Calcite + CaCO3 = CO3-2 + Ca+2 + log_k -8.480 + delta_h -2.297 kcal + -analytic -171.9065 -0.077993 2839.319 71.595 + +Aragonite + CaCO3 = CO3-2 + Ca+2 + log_k -8.336 + delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.090 + delta_h -9.436 kcal + +Siderite + FeCO3 = Fe+2 + CO3-2 + log_k -10.890 + delta_h -2.480 kcal + +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + log_k -11.130 + delta_h -1.430 kcal + +Strontianite + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 + delta_h -0.400 kcal + -analytic 155.0305 0.0 -7239.594 -56.58638 + +Witherite + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 + delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.580 + delta_h -0.109 kcal + -analytic 68.2401 0.0 -3221.51 -25.0627 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.360 + delta_h -1.710 kcal + -analytic 197.52 0.0 -8669.8 -69.835 + +Celestite + SrSO4 = Sr+2 + SO4-2 + log_k -6.630 + delta_h -1.037 kcal + -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + +Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.970 + delta_h 6.350 kcal + -analytic 136.035 0.0 -7680.41 -48.595 + +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.421 + delta_h -36.155 kcal + +Fluorite + CaF2 = Ca+2 + 2 F- + log_k -10.600 + delta_h 4.690 kcal + -analytic 66.348 0.0 -4298.2 -25.271 + +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + log_k -2.710 + delta_h 3.340 kcal + -analytic -0.26 0.0 -731.0 + +Chalcedony + SiO2 + 2 H2O = H4SiO4 + log_k -3.550 + delta_h 4.720 kcal + -analytic -0.09 0.0 -1032.0 + +Quartz + SiO2 + 2 H2O = H4SiO4 + log_k -3.980 + delta_h 5.990 kcal + -analytic 0.41 0.0 -1309.0 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.110 + delta_h -22.800 kcal + +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.800 + delta_h -26.500 kcal + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + log_k 7.435 + delta_h -35.300 kcal + +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 + delta_h 25.896 kcal + +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 + delta_h 11.580 kcal + +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 + delta_h 30.820 kcal + +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 + delta_h -59.376 kcal + +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O + log_k 68.38 + delta_h -151.494 kcal + +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 + delta_h 58.373 kcal + +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 + delta_h -46.352 kcal + +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ + log_k -40.267 + delta_h 54.684 kcal + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + log_k 32.200 + delta_h -46.800 kcal + -analytic 13.248 0.0 10217.1 -6.1894 + +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.760 + delta_h -10.700 kcal + +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + log_k 18.660 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 + delta_h -30.845 kcal + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1.000 + delta_h -14.48 kcal + +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 + +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 + delta_h 11.300 kcal + +FeS(ppt) + FeS + H+ = Fe+2 + HS- + log_k -3.915 + +Mackinawite + FeS + H+ = Fe+2 + HS- + log_k -4.648 + +Sulfur + S + 2H+ + 2e- = H2S + log_k 4.882 + delta_h -9.5 kcal + +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36.000 + +Pyrolusite + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.380 + delta_h -65.110 kcal + +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.030 + delta_h -100.640 kcal + +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.340 + +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.200 + +Halite + NaCl = Na+ + Cl- + log_k 1.582 + delta_h 0.918 kcal + +CO2(g) + CO2 = CO2 + log_k -1.468 + delta_h -4.776 kcal + -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + +O2(g) + O2 = O2 +# log_k -2.960 +# delta_h -1.844 kcal + # log K from llnl.dat Aug 23, 2005 + log_k -2.8983 + -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + +H2(g) + H2 = H2 + log_k -3.150 + delta_h -1.759 kcal + +H2O(g) + H2O = H2O + log_k 1.51 + delta_h -44.03 kJ +# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) + +N2(g) + N2 = N2 + log_k -3.260 + delta_h -1.358 kcal + +H2S(g) + H2S = H2S + log_k -0.997 + delta_h -4.570 kcal + +CH4(g) + CH4 = CH4 + log_k -2.860 + delta_h -3.373 kcal + +NH3(g) + NH3 = NH3 + log_k 1.770 + delta_h -8.170 kcal + +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + log_k -2.209 + delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O + log_k -1.400 + delta_h -50.250 kcal + +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + log_k -9.210 + delta_h -31.280 kcal + +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.50 + +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + log_k -10.000 + delta_h -4.36 kcal + +Sphalerite + ZnS + H+ = Zn+2 + HS- + log_k -11.618 + delta_h 8.250 kcal + +Willemite 289 + Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 + log_k 15.33 + delta_h -33.37 kcal + +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.650 + +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 + delta_h -0.019 kcal + +CdSiO3 328 + CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 + log_k 9.06 + delta_h -16.63 kcal + +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 + delta_h -14.74 kcal + +Cerrusite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 4.86 kcal + +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 2.15 kcal + +Pb(OH)2 389 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + log_k 8.15 + delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + log_k 0.0 + + Na+ + X- = NaX + log_k 0.0 + -gamma 4.0 0.075 + + K+ + X- = KX + log_k 0.7 + -gamma 3.5 0.015 + delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + log_k -0.08 + -gamma 6.0 0.0 + delta_h 1.4 # Merriam & Thomas, 1956 + + NH4+ + X- = NH4X + log_k 0.6 + -gamma 2.5 0.0 + delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + log_k 0.8 + -gamma 5.0 0.165 + delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + log_k 0.6 + -gamma 5.5 0.2 + delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + log_k 0.91 + -gamma 5.26 0.121 + delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + log_k 0.91 + -gamma 5.0 0.0 + delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + log_k 0.52 + -gamma 6.0 0.0 + + Fe+2 + 2X- = FeX2 + log_k 0.44 + -gamma 6.0 0.0 + + Cu+2 + 2X- = CuX2 + log_k 0.6 + -gamma 6.0 0.0 + + Zn+2 + 2X- = ZnX2 + log_k 0.8 + -gamma 5.0 0.0 + + Cd+2 + 2X- = CdX2 + log_k 0.8 + -gamma 0.0 0.0 + + Pb+2 + 2X- = PbX2 + log_k 1.05 + -gamma 0.0 0.0 + + Al+3 + 3X- = AlX3 + log_k 0.41 + -gamma 9.0 0.0 + + AlOH+2 + 2X- = AlOHX2 + log_k 0.89 + -gamma 0.0 0.0 +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + log_k 0.0 + + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + log_k 0.0 + + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 # = -pKa2,int + +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + log_k -17.60 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + log_k -3.5 # table 10.5 +# Iron +# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ +# log_k 0.7 # LFER using table 10.5 + +# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ +# log_k -2.5 # LFER using table 10.5 + +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + log_k -11.55 + +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for HFO +# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L +# +# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O +# log_k 12.56 +# +# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O +# log_k 20.62 + +# 9/19/96 +# Added analytical expression for H2S, NH3, KSO4. +# Added species CaHSO4+. +# Added delta H for Goethite. + +RATES + +########### +#K-feldspar +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.16 # 10% K-fsp, 0.1 mm cubes +# -m 1.94 +# -parms 1.36e4 0.1 + +K-feldspar + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp + #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 81 rem decrease rate on precipitation + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles + -end + +########### +#Albite +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.43 # 2% Albite, 0.1 mm cubes +# -parms 2.72e3 0.1 + +Albite + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp + #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... + 50 pk_CO2 = 14.0 + 1677 * dif_temp + #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 81 rem decrease rate on precipitation + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles + -end + +######## +#Calcite +######## +# +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# American Journal of Science, v. 278, p. 179-216. +# +# Example of KINETICS data block for calcite rate: +# +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 5.0 0.6 +Calcite + -start + 1 REM Modified from Plummer and others, 1978 + 2 REM M = current moles of calcite + 3 REM M0 = initial moles of calcite + 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) + 5 REM parm(2) = exponent for M/M0 for surface area correction + 10 REM rate = 0 if no calcite and undersaturated + 20 si_cc = SI("Calcite") + 30 if (M <= 0 and si_cc < 0) then goto 300 + 40 k1 = 10^(0.198 - 444.0 / TK ) + 50 k2 = 10^(2.84 - 2177.0 / TK ) + 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) + 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) + 80 REM surface area calculation + 90 t = 1 + 100 if M0 > 0 then t = M/M0 + 110 if t = 0 then t = 1 + 120 area = PARM(1) * (t)^PARM(2) + 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") + 140 REM 1e-3 converts mmol to mol + 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) + 160 moles = rate * TIME + 170 REM do not dissolve more calcite than present + 180 if (moles > M) then moles = M + 190 if (moles >= 0) then goto 300 + 200 REM do not precipitate more Ca or C(4) than present + 210 temp = TOT("Ca") + 220 mc = TOT("C(4)") + 230 if mc < temp then temp = mc + 240 if -moles > temp then moles = -temp + 300 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 2.0 0.67 .5 -0.11 +Pyrite + -start + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + + 10 if (m <= 0) then goto 200 + 20 if (si("Pyrite") >= 0) then goto 200 + 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time + 40 if (moles > m) then moles = m + 200 save moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for Organic_C rate: +# KINETICS 1 +# Organic_C +# -tol 1e-8 +# # m in mol/kgw +# -m0 5e-3 +# -m 5e-3 +Organic_C + -start + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 + + 10 if (m <= 0) then goto 200 + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time + 80 if (moles > m) then moles = m + 200 save moles + -end + +########### +#Pyrolusite +########### +# +# Postma, and Appelo., GCA 64, 1237 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +Pyrolusite + -start + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 + #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) + #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1.e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles + -end +END + diff --git a/all/fortran/advect.vfproj b/all/fortran/advect.vfproj new file mode 100644 index 00000000..e5277941 --- /dev/null +++ b/all/fortran/advect.vfproj @@ -0,0 +1,133 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/all/fortran/ex19 b/all/fortran/ex19 new file mode 100644 index 00000000..d33b7dac --- /dev/null +++ b/all/fortran/ex19 @@ -0,0 +1,51 @@ +TITLE Example 19.--Linear, Freundlich and Langmuir isotherms for + Cd sorption on loamy sand. Calculates Example 7.1 + from Appelo and Postma, 2005. Data from Christensen, 1984. +SURFACE_MASTER_SPECIES + Linear Linear + Freundlich Freundlich + Langmuir Langmuir +SURFACE_SPECIES + Linear = Linear + Linear + Cd+2 = LinearCd+2 + -log_k -100.7 # log10(0.2) - 100 + -mole_balance LinearCdCl2 + Freundlich = Freundlich + Freundlich + 0.722 Cd+2 = FreundlichCd+2 + -log_k -102.61 # log10(0.421) + (0.722 - 1) * log10(112.4e6) - 100 + -no_check + -mole_balance FreundlichCdCl2 + Langmuir = Langmuir + Langmuir + Cd+2 = LangmuirCd+2 + -log_k 6.56 # log10(112.4 / 30.9e-6) + -mole_balance LangmuirCdCl2 +SURFACE 1 + Linear 1e100 1 1 + Freundlich 1e100 1 1 + Langmuir 8.45e-8 1 1 # 9.5 / 112.4e6 + -no_edl +SOLUTION 1 + pH 6 + Ca 1 + Cl 2 +REACTION 1 + CdCl2 1 + 0.7e-6 in 20 +USER_GRAPH Example 19 + -headings Linear Freundlich Langmuir + -chart_title "Sorption Isotherms" + -axis_titles "Dissolved Cd, in micrograms per kilogram water" \ + "Sorbed Cd, in micrograms per gram soil" + -plot_tsv_file ex19_meas.tsv + -axis_scale x_axis 0 40 + -axis_scale y_axis 0 6 + -initial_solutions true + -start +10 x = act("Cd+2") * 112.4e6 +20 PLOT_XY x, mol("LinearCd+2")*112e6, color = Green, symbol = None, line_width = 2 +30 PLOT_XY x, mol("FreundlichCd+2")*112e6, color = Blue, symbol = None, line_width = 2 +40 PLOT_XY x, mol("LangmuirCd+2")*112e6, color = Orange, symbol = None, line_width = 2 + -end +PRINT + -reset false +END \ No newline at end of file diff --git a/all/fortran/ex19_meas.tsv b/all/fortran/ex19_meas.tsv new file mode 100644 index 00000000..c7f584ce --- /dev/null +++ b/all/fortran/ex19_meas.tsv @@ -0,0 +1,17 @@ +c/(ug/L) Measured +3.1 0.86 +6.1 1.12 +5.9 1.71 +7.1 1.68 +8.1 2.03 +9.9 2.46 +12.3 2.85 +13 3.36 +13.6 3.22 +16 3.25 +19.1 3.56 +24.1 3.76 +25.8 4.17 +27.6 4.58 +33.2 4.82 +36.4 5.19 diff --git a/all/fortran/ic b/all/fortran/ic new file mode 100644 index 00000000..00112d7a --- /dev/null +++ b/all/fortran/ic @@ -0,0 +1,16 @@ +# File ic +SOLUTION 1-2 +END +EQUILIBRIUM_PHASES 1 + CO2(g) -1.5 10 + +EQUILIBRIUM_PHASES 2 + Calcite 0 10 +SELECTED_OUTPUT + -reset false +USER_PUNCH + -Heading charge H O C Ca pH SR(calcite) + 10 PUNCH charge_balance + 20 PUNCH TOTMOLE("H"), TOTMOLE("O"), TOTMOLE("C"), TOTMOLE("Ca") + 30 PUNCH -LA("H+"), SR("calcite") +END diff --git a/all/fortran/phreeqc.dat b/all/fortran/phreeqc.dat new file mode 100644 index 00000000..e4f7366d --- /dev/null +++ b/all/fortran/phreeqc.dat @@ -0,0 +1,1579 @@ +# $Id: phreeqc.dat 3428 2009-03-23 16:31:34Z dlpark $ +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1. H 1.008 +H(0) H2 0.0 H +H(1) H+ -1. 0.0 +E e- 0.0 0.0 0.0 +O H2O 0.0 O 16.00 +O(0) O2 0.0 O +O(-2) H2O 0.0 0.0 +Ca Ca+2 0.0 Ca 40.08 +Mg Mg+2 0.0 Mg 24.312 +Na Na+ 0.0 Na 22.9898 +K K+ 0.0 K 39.102 +Fe Fe+2 0.0 Fe 55.847 +Fe(+2) Fe+2 0.0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0.0 Mn 54.938 +Mn(+2) Mn+2 0.0 Mn +Mn(+3) Mn+3 0.0 Mn +Al Al+3 0.0 Al 26.9815 +Ba Ba+2 0.0 Ba 137.34 +Sr Sr+2 0.0 Sr 87.62 +Si H4SiO4 0.0 SiO2 28.0843 +Cl Cl- 0.0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0.0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0.0 SO4 32.064 +S(6) SO4-2 0.0 SO4 +S(-2) HS- 1.0 S +N NO3- 0.0 N 14.0067 +N(+5) NO3- 0.0 N +N(+3) NO2- 0.0 N +N(0) N2 0.0 N +N(-3) NH4+ 0.0 N +B H3BO3 0.0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0.0 F 18.9984 +Li Li+ 0.0 Li 6.939 +Br Br- 0.0 Br 79.904 +Zn Zn+2 0.0 Zn 65.37 +Cd Cd+2 0.0 Cd 112.4 +Pb Pb+2 0.0 Pb 207.19 +Cu Cu+2 0.0 Cu 63.546 +Cu(+2) Cu+2 0.0 Cu +Cu(+1) Cu+1 0.0 Cu + +SOLUTION_SPECIES + +H+ = H+ + log_k 0.000 + -gamma 9.0000 0.0000 + -dw 9.31e-9 +e- = e- + log_k 0.000 + +H2O = H2O + log_k 0.000 + +Ca+2 = Ca+2 + log_k 0.000 + -gamma 5.0000 0.1650 + -dw 0.793e-9 + -millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262 +Mg+2 = Mg+2 + log_k 0.000 + -gamma 5.5000 0.2000 + -dw 0.705e-9 + -millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457 +Na+ = Na+ + log_k 0.000 + -gamma 4.0000 0.0750 + -dw 1.33e-9 + -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651 +K+ = K+ + log_k 0.000 + -gamma 3.5000 0.0150 + -dw 1.96e-9 + -millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151 +Fe+2 = Fe+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.719e-9 +Mn+2 = Mn+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.688e-9 +Al+3 = Al+3 + log_k 0.000 + -gamma 9.0000 0.0000 + -dw 0.559e-9 +Ba+2 = Ba+2 + log_k 0.000 + -gamma 5.0000 0.0000 + -dw 0.848e-9 +Sr+2 = Sr+2 + log_k 0.000 + -gamma 5.2600 0.1210 + -dw 0.794e-9 + -millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084 +H4SiO4 = H4SiO4 + log_k 0.000 + -dw 1.10e-9 + -millero 56.0 # b, c, d, e and f not reported by Millero, 2000 +Cl- = Cl- + log_k 0.000 + -gamma 3.5000 0.0150 + -dw 2.03e-9 + -millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621 +CO3-2 = CO3-2 + log_k 0.000 + -gamma 5.4000 0.0000 + -dw 0.955e-9 + -millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000 +SO4-2 = SO4-2 + log_k 0.000 + -gamma 5.0000 -0.0400 + -dw 1.07e-9 + -millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05 +NO3- = NO3- + log_k 0.000 + -gamma 3.0000 0.0000 + -dw 1.9e-9 + -millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000 +H3BO3 = H3BO3 + log_k 0.000 + -dw 1.1e-9 + -millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000 +PO4-3 = PO4-3 + log_k 0.000 + -gamma 4.0000 0.0000 + -dw 0.612e-9 +F- = F- + log_k 0.000 + -gamma 3.5000 0.0000 + -dw 1.46e-9 + -millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05 +Li+ = Li+ + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 1.03e-9 +Br- = Br- + log_k 0.000 + -gamma 3.0000 0.0000 + -dw 2.01e-9 + -millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105 +Zn+2 = Zn+2 + log_k 0.000 + -gamma 5.0000 0.0000 + -dw 0.715e-9 +Cd+2 = Cd+2 + log_k 0.000 + -dw 0.717e-9 +Pb+2 = Pb+2 + log_k 0.000 + -dw 0.945e-9 +Cu+2 = Cu+2 + log_k 0.000 + -gamma 6.0000 0.0000 + -dw 0.733e-9 +H2O = OH- + H+ + log_k -14.000 + delta_h 13.362 kcal + -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 + -gamma 3.5000 0.0000 + -dw 5.27e-9 +2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 + delta_h 134.79 kcal + -dw 2.35e-9 +2 H+ + 2 e- = H2 + log_k -3.15 + delta_h -1.759 kcal + -dw 5.1e-9 +CO3-2 + H+ = HCO3- + log_k 10.329 + delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4000 0.0000 + -dw 1.18e-9 + -millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06 +CO3-2 + 2 H+ = CO2 + H2O + log_k 16.681 + delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + log_k 41.071 + delta_h -61.039 kcal + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + log_k 1.988 + delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 0.0 + -dw 1.33e-9 +HS- = S-2 + H+ + log_k -12.918 + delta_h 12.1 kcal + -gamma 5.0000 0.0000 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.65 + delta_h -60.140 kcal + -gamma 3.5000 0.0000 + -dw 1.73e-9 +HS- + H+ = H2S + log_k 6.994 + delta_h -5.300 kcal + -analytical -11.17 0.02386 3279.0 + -dw 2.1e-9 + +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.570 + delta_h -43.760 kcal + -gamma 3.0000 0.0000 + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + log_k 207.080 + delta_h -312.130 kcal + -dw 1.96e-9 +NH4+ = NH3 + H+ + log_k -9.252 + delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -dw 2.28e-9 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5000 0.0000 + -dw 1.98e-9 + -millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported +NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + +H3BO3 = H2BO3- + H+ + log_k -9.240 + delta_h 3.224 kcal +# -analytical 24.3919 0.012078 -1343.9 -13.2258 + +H3BO3 + F- = BF(OH)3- + log_k -0.400 + delta_h 1.850 kcal + +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 1.618 kcal + +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 + delta_h -1.614 kcal + +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 + delta_h -1.846 kcal + +PO4-3 + H+ = HPO4-2 + log_k 12.346 + delta_h -3.530 kcal + -gamma 4.0000 0.0000 + -dw 0.69e-9 +PO4-3 + 2 H+ = H2PO4- + log_k 19.553 + delta_h -4.520 kcal + -gamma 4.5000 0.0000 + -dw 0.846e-9 + -millero 33.6 # b, c, d, e and f not reported by Millero, 2000 +H+ + F- = HF + log_k 3.18 + delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + +H+ + 2 F- = HF2- + log_k 3.760 + delta_h 4.550 kcal + +Ca+2 + H2O = CaOH+ + H+ + log_k -12.780 + +Ca+2 + CO3-2 = CaCO3 + log_k 3.224 + delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula +Ca+2 + CO3-2 + H+ = CaHCO3+ + log_k 11.435 + delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 5.4000 0.0000 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + log_k 2.300 + delta_h 1.650 kcal + -dw 4.71e-10 +Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 + +Ca+2 + PO4-3 = CaPO4- + log_k 6.459 + delta_h 3.100 kcal + +Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 + delta_h 3.3 kcal + +Ca+2 + H2PO4- = CaH2PO4+ + log_k 1.408 + delta_h 3.4 kcal + +Ca+2 + F- = CaF+ + log_k 0.940 + delta_h 4.120 kcal + +Mg+2 + H2O = MgOH+ + H+ + log_k -11.440 + delta_h 15.952 kcal + +Mg+2 + CO3-2 = MgCO3 + log_k 2.98 + delta_h 2.713 kcal + -analytic 0.9910 0.00667 + +Mg+2 + H+ + CO3-2 = MgHCO3+ + log_k 11.399 + delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + +Mg+2 + SO4-2 = MgSO4 + log_k 2.370 + delta_h 4.550 kcal + +Mg+2 + PO4-3 = MgPO4- + log_k 6.589 + delta_h 3.100 kcal + +Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 + delta_h 3.3 kcal + +Mg+2 + H2PO4- = MgH2PO4+ + log_k 1.513 + delta_h 3.4 kcal + +Mg+2 + F- = MgF+ + log_k 1.820 + delta_h 3.200 kcal + +Na+ + H2O = NaOH + H+ + log_k -14.180 + +Na+ + CO3-2 = NaCO3- + log_k 1.270 + delta_h 8.910 kcal + -dw 5.85e-10 +Na+ + HCO3- = NaHCO3 + log_k -0.25 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + log_k 0.7 + delta_h 1.120 kcal + -dw 6.18e-10 +Na+ + HPO4-2 = NaHPO4- + log_k 0.29 + +Na+ + F- = NaF + log_k -0.240 + +K+ + H2O = KOH + H+ + log_k -14.460 + +K+ + SO4-2 = KSO4- + log_k 0.850 + delta_h 2.250 kcal + -analytical 3.106 0.0 -673.6 + -dw 7.46e-10 + +K+ + HPO4-2 = KHPO4- + log_k 0.29 + +Fe+2 + H2O = FeOH+ + H+ + log_k -9.500 + delta_h 13.200 kcal + +Fe+2 + Cl- = FeCl+ + log_k 0.140 + +Fe+2 + CO3-2 = FeCO3 + log_k 4.380 + +Fe+2 + HCO3- = FeHCO3+ + log_k 2.0 + +Fe+2 + SO4-2 = FeSO4 + log_k 2.250 + delta_h 3.230 kcal + +Fe+2 + HSO4- = FeHSO4+ + log_k 1.08 + +Fe+2 + 2HS- = Fe(HS)2 + log_k 8.95 + +Fe+2 + 3HS- = Fe(HS)3- + log_k 10.987 + +Fe+2 + HPO4-2 = FeHPO4 + log_k 3.6 + +Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + +Fe+2 + F- = FeF+ + log_k 1.000 + +Fe+2 = Fe+3 + e- + log_k -13.020 + delta_h 9.680 kcal + -gamma 9.0000 0.0000 + +Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 + delta_h 10.4 kcal + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 + delta_h 17.1 kcal + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 + delta_h 24.8 kcal + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 + delta_h 31.9 kcal + +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 + delta_h 13.5 kcal + +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 + delta_h 14.3 kcal + +Fe+3 + Cl- = FeCl+2 + log_k 1.48 + delta_h 5.6 kcal + +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + +Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 + delta_h 3.91 kcal + +Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 + +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 4.60 kcal + +Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 + delta_h 5.76 kcal + +Fe+3 + H2PO4- = FeH2PO4+2 + log_k 5.43 + +Fe+3 + F- = FeF+2 + log_k 6.2 + delta_h 2.7 kcal + +Fe+3 + 2 F- = FeF2+ + log_k 10.8 + delta_h 4.8 kcal + +Fe+3 + 3 F- = FeF3 + log_k 14.0 + delta_h 5.4 kcal + +Mn+2 + H2O = MnOH+ + H+ + log_k -10.590 + delta_h 14.400 kcal + +Mn+2 + Cl- = MnCl+ + log_k 0.610 + +Mn+2 + 2 Cl- = MnCl2 + log_k 0.250 + +Mn+2 + 3 Cl- = MnCl3- + log_k -0.310 + +Mn+2 + CO3-2 = MnCO3 + log_k 4.900 + +Mn+2 + HCO3- = MnHCO3+ + log_k 1.95 + +Mn+2 + SO4-2 = MnSO4 + log_k 2.250 + delta_h 3.370 kcal + +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.600 + delta_h -0.396 kcal + +Mn+2 + F- = MnF+ + log_k 0.840 + +Mn+2 = Mn+3 + e- + log_k -25.510 + delta_h 25.800 kcal + +Al+3 + H2O = AlOH+2 + H+ + log_k -5.00 + delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 + delta_h 26.90 kcal + -analytic 88.500 0.0 -9391.6 -27.121 + +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 + delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 + +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 + delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + +Al+3 + SO4-2 = AlSO4+ + log_k 3.5 + delta_h 2.29 kcal + +Al+3 + 2SO4-2 = Al(SO4)2- + log_k 5.0 + delta_h 3.11 kcal + +Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 + +Al+3 + F- = AlF+2 + log_k 7.000 + delta_h 1.060 kcal + +Al+3 + 2 F- = AlF2+ + log_k 12.700 + delta_h 1.980 kcal + +Al+3 + 3 F- = AlF3 + log_k 16.800 + delta_h 2.160 kcal + +Al+3 + 4 F- = AlF4- + log_k 19.400 + delta_h 2.200 kcal + +Al+3 + 5 F- = AlF5-2 + log_k 20.600 + delta_h 1.840 kcal + +Al+3 + 6 F- = AlF6-3 + log_k 20.600 + delta_h -1.670 kcal + +H4SiO4 = H3SiO4- + H+ + log_k -9.83 + delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23.0 + delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.180 + delta_h -16.260 kcal + +Ba+2 + H2O = BaOH+ + H+ + log_k -13.470 + +Ba+2 + CO3-2 = BaCO3 + log_k 2.71 + delta_h 3.55 kcal + -analytic 0.113 0.008721 + +Ba+2 + HCO3- = BaHCO3+ + log_k 0.982 + delta_h 5.56 kcal + -analytical -3.0938 0.013669 0.0 0.0 0.0 + +Ba+2 + SO4-2 = BaSO4 + log_k 2.700 + +Sr+2 + H2O = SrOH+ + H+ + log_k -13.290 + -gamma 5.0000 0.0000 + +Sr+2 + CO3-2 + H+ = SrHCO3+ + log_k 11.509 + delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4000 0.0000 + +Sr+2 + CO3-2 = SrCO3 + log_k 2.81 + delta_h 5.22 kcal + -analytic -1.019 0.012826 + +Sr+2 + SO4-2 = SrSO4 + log_k 2.290 + delta_h 2.080 kcal + +Li+ + H2O = LiOH + H+ + log_k -13.640 + +Li+ + SO4-2 = LiSO4- + log_k 0.640 + +Cu+2 + e- = Cu+ + log_k 2.720 + delta_h 1.650 kcal + -gamma 2.5000 0.0000 + +Cu+2 + H2O = CuOH+ + H+ + log_k -8.000 + -gamma 4.0000 0.0000 + +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.680 + +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.900 + +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.600 + +Cu+2 + SO4-2 = CuSO4 + log_k 2.310 + delta_h 1.220 kcal + +Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 + delta_h 13.4 kcal + +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.900 + +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.400 + +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.200 + +Zn+2 + Cl- = ZnCl+ + log_k 0.43 + delta_h 7.79 kcal + +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 + delta_h 8.5 kcal + +Zn+2 + 3Cl- = ZnCl3- + log_k 0.5 + delta_h 9.56 kcal + +Zn+2 + 4Cl- = ZnCl4-2 + log_k 0.2 + delta_h 10.96 kcal + +Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 + +Zn+2 + 2CO3-2 = Zn(CO3)2-2 + log_k 9.63 + +Zn+2 + HCO3- = ZnHCO3+ + log_k 2.1 + +Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 + delta_h 1.36 kcal + +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + log_k 3.28 + +Cd+2 + H2O = CdOH+ + H+ + log_k -10.080 + delta_h 13.1 kcal + +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.350 + +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.300 + +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.350 + +Cd+2 + Cl- = CdCl+ + log_k 1.980 + delta_h 0.59 kcal + +Cd+2 + 2 Cl- = CdCl2 + log_k 2.600 + delta_h 1.24 kcal + +Cd+2 + 3 Cl- = CdCl3- + log_k 2.400 + delta_h 3.9 kcal + +Cd+2 + CO3-2 = CdCO3 + log_k 2.9 + +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + log_k 6.4 + +Cd+2 + HCO3- = CdHCO3+ + log_k 1.5 + +Cd+2 + SO4-2 = CdSO4 + log_k 2.460 + delta_h 1.08 kcal + +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + log_k 3.5 + +Pb+2 + H2O = PbOH+ + H+ + log_k -7.710 + +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.120 + +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.060 + +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.700 + +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.360 + +Pb+2 + Cl- = PbCl+ + log_k 1.600 + delta_h 4.38 kcal + +Pb+2 + 2 Cl- = PbCl2 + log_k 1.800 + delta_h 1.08 kcal + +Pb+2 + 3 Cl- = PbCl3- + log_k 1.700 + delta_h 2.17 kcal + +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.380 + delta_h 3.53 kcal + +Pb+2 + CO3-2 = PbCO3 + log_k 7.240 + +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.640 + +Pb+2 + HCO3- = PbHCO3+ + log_k 2.9 + +Pb+2 + SO4-2 = PbSO4 + log_k 2.750 + +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.470 + +Pb+2 + NO3- = PbNO3+ + log_k 1.170 + +PHASES + +Calcite + CaCO3 = CO3-2 + Ca+2 + log_k -8.480 + delta_h -2.297 kcal + -analytic -171.9065 -0.077993 2839.319 71.595 + +Aragonite + CaCO3 = CO3-2 + Ca+2 + log_k -8.336 + delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.090 + delta_h -9.436 kcal + +Siderite + FeCO3 = Fe+2 + CO3-2 + log_k -10.890 + delta_h -2.480 kcal + +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + log_k -11.130 + delta_h -1.430 kcal + +Strontianite + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 + delta_h -0.400 kcal + -analytic 155.0305 0.0 -7239.594 -56.58638 + +Witherite + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 + delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.580 + delta_h -0.109 kcal + -analytic 68.2401 0.0 -3221.51 -25.0627 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.360 + delta_h -1.710 kcal + -analytic 197.52 0.0 -8669.8 -69.835 + +Celestite + SrSO4 = Sr+2 + SO4-2 + log_k -6.630 + delta_h -1.037 kcal + -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + +Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.970 + delta_h 6.350 kcal + -analytic 136.035 0.0 -7680.41 -48.595 + +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.421 + delta_h -36.155 kcal + +Fluorite + CaF2 = Ca+2 + 2 F- + log_k -10.600 + delta_h 4.690 kcal + -analytic 66.348 0.0 -4298.2 -25.271 + +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + log_k -2.710 + delta_h 3.340 kcal + -analytic -0.26 0.0 -731.0 + +Chalcedony + SiO2 + 2 H2O = H4SiO4 + log_k -3.550 + delta_h 4.720 kcal + -analytic -0.09 0.0 -1032.0 + +Quartz + SiO2 + 2 H2O = H4SiO4 + log_k -3.980 + delta_h 5.990 kcal + -analytic 0.41 0.0 -1309.0 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.110 + delta_h -22.800 kcal + +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.800 + delta_h -26.500 kcal + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + log_k 7.435 + delta_h -35.300 kcal + +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 + delta_h 25.896 kcal + +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 + delta_h 11.580 kcal + +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 + delta_h 30.820 kcal + +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 + delta_h -59.376 kcal + +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O + log_k 68.38 + delta_h -151.494 kcal + +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 + delta_h 58.373 kcal + +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 + delta_h -46.352 kcal + +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ + log_k -40.267 + delta_h 54.684 kcal + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + log_k 32.200 + delta_h -46.800 kcal + -analytic 13.248 0.0 10217.1 -6.1894 + +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.760 + delta_h -10.700 kcal + +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + log_k 18.660 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 + delta_h -30.845 kcal + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1.000 + delta_h -14.48 kcal + +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 + +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 + delta_h 11.300 kcal + +FeS(ppt) + FeS + H+ = Fe+2 + HS- + log_k -3.915 + +Mackinawite + FeS + H+ = Fe+2 + HS- + log_k -4.648 + +Sulfur + S + 2H+ + 2e- = H2S + log_k 4.882 + delta_h -9.5 kcal + +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36.000 + +Pyrolusite + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.380 + delta_h -65.110 kcal + +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.030 + delta_h -100.640 kcal + +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.340 + +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.200 + +Halite + NaCl = Na+ + Cl- + log_k 1.582 + delta_h 0.918 kcal + +CO2(g) + CO2 = CO2 + log_k -1.468 + delta_h -4.776 kcal + -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + +O2(g) + O2 = O2 +# log_k -2.960 +# delta_h -1.844 kcal + # log K from llnl.dat Aug 23, 2005 + log_k -2.8983 + -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + +H2(g) + H2 = H2 + log_k -3.150 + delta_h -1.759 kcal + +H2O(g) + H2O = H2O + log_k 1.51 + delta_h -44.03 kJ +# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) + +N2(g) + N2 = N2 + log_k -3.260 + delta_h -1.358 kcal + +H2S(g) + H2S = H2S + log_k -0.997 + delta_h -4.570 kcal + +CH4(g) + CH4 = CH4 + log_k -2.860 + delta_h -3.373 kcal + +NH3(g) + NH3 = NH3 + log_k 1.770 + delta_h -8.170 kcal + +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + log_k -2.209 + delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O + log_k -1.400 + delta_h -50.250 kcal + +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + log_k -9.210 + delta_h -31.280 kcal + +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.50 + +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + log_k -10.000 + delta_h -4.36 kcal + +Sphalerite + ZnS + H+ = Zn+2 + HS- + log_k -11.618 + delta_h 8.250 kcal + +Willemite 289 + Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 + log_k 15.33 + delta_h -33.37 kcal + +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.650 + +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 + delta_h -0.019 kcal + +CdSiO3 328 + CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 + log_k 9.06 + delta_h -16.63 kcal + +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 + delta_h -14.74 kcal + +Cerrusite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 4.86 kcal + +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 2.15 kcal + +Pb(OH)2 389 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + log_k 8.15 + delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + log_k 0.0 + + Na+ + X- = NaX + log_k 0.0 + -gamma 4.0 0.075 + + K+ + X- = KX + log_k 0.7 + -gamma 3.5 0.015 + delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + log_k -0.08 + -gamma 6.0 0.0 + delta_h 1.4 # Merriam & Thomas, 1956 + + NH4+ + X- = NH4X + log_k 0.6 + -gamma 2.5 0.0 + delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + log_k 0.8 + -gamma 5.0 0.165 + delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + log_k 0.6 + -gamma 5.5 0.2 + delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + log_k 0.91 + -gamma 5.26 0.121 + delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + log_k 0.91 + -gamma 5.0 0.0 + delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + log_k 0.52 + -gamma 6.0 0.0 + + Fe+2 + 2X- = FeX2 + log_k 0.44 + -gamma 6.0 0.0 + + Cu+2 + 2X- = CuX2 + log_k 0.6 + -gamma 6.0 0.0 + + Zn+2 + 2X- = ZnX2 + log_k 0.8 + -gamma 5.0 0.0 + + Cd+2 + 2X- = CdX2 + log_k 0.8 + -gamma 0.0 0.0 + + Pb+2 + 2X- = PbX2 + log_k 1.05 + -gamma 0.0 0.0 + + Al+3 + 3X- = AlX3 + log_k 0.41 + -gamma 9.0 0.0 + + AlOH+2 + 2X- = AlOHX2 + log_k 0.89 + -gamma 0.0 0.0 +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + log_k 0.0 + + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + log_k 0.0 + + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 # = -pKa2,int + +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + log_k -17.60 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + log_k -3.5 # table 10.5 +# Iron +# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ +# log_k 0.7 # LFER using table 10.5 + +# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ +# log_k -2.5 # LFER using table 10.5 + +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + log_k -11.55 + +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for HFO +# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L +# +# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O +# log_k 12.56 +# +# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O +# log_k 20.62 + +# 9/19/96 +# Added analytical expression for H2S, NH3, KSO4. +# Added species CaHSO4+. +# Added delta H for Goethite. + +RATES + +########### +#K-feldspar +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.16 # 10% K-fsp, 0.1 mm cubes +# -m 1.94 +# -parms 1.36e4 0.1 + +K-feldspar + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp + #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 81 rem decrease rate on precipitation + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles + -end + +########### +#Albite +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.43 # 2% Albite, 0.1 mm cubes +# -parms 2.72e3 0.1 + +Albite + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp + #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... + 50 pk_CO2 = 14.0 + 1677 * dif_temp + #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 81 rem decrease rate on precipitation + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles + -end + +######## +#Calcite +######## +# +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# American Journal of Science, v. 278, p. 179-216. +# +# Example of KINETICS data block for calcite rate: +# +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 5.0 0.6 +Calcite + -start + 1 REM Modified from Plummer and others, 1978 + 2 REM M = current moles of calcite + 3 REM M0 = initial moles of calcite + 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) + 5 REM parm(2) = exponent for M/M0 for surface area correction + 10 REM rate = 0 if no calcite and undersaturated + 20 si_cc = SI("Calcite") + 30 if (M <= 0 and si_cc < 0) then goto 300 + 40 k1 = 10^(0.198 - 444.0 / TK ) + 50 k2 = 10^(2.84 - 2177.0 / TK ) + 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) + 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) + 80 REM surface area calculation + 90 t = 1 + 100 if M0 > 0 then t = M/M0 + 110 if t = 0 then t = 1 + 120 area = PARM(1) * (t)^PARM(2) + 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") + 140 REM 1e-3 converts mmol to mol + 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) + 160 moles = rate * TIME + 170 REM do not dissolve more calcite than present + 180 if (moles > M) then moles = M + 190 if (moles >= 0) then goto 300 + 200 REM do not precipitate more Ca or C(4) than present + 210 temp = TOT("Ca") + 220 mc = TOT("C(4)") + 230 if mc < temp then temp = mc + 240 if -moles > temp then moles = -temp + 300 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 2.0 0.67 .5 -0.11 +Pyrite + -start + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + + 10 if (m <= 0) then goto 200 + 20 if (si("Pyrite") >= 0) then goto 200 + 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time + 40 if (moles > m) then moles = m + 200 save moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for Organic_C rate: +# KINETICS 1 +# Organic_C +# -tol 1e-8 +# # m in mol/kgw +# -m0 5e-3 +# -m 5e-3 +Organic_C + -start + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 + + 10 if (m <= 0) then goto 200 + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time + 80 if (moles > m) then moles = m + 200 save moles + -end + +########### +#Pyrolusite +########### +# +# Postma, and Appelo., GCA 64, 1237 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +Pyrolusite + -start + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 + #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) + #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1.e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles + -end +END +