Merge remote-tracking branch 'origin/master'

This commit is contained in:
Scott R Charlton 2021-03-16 14:58:47 -06:00
commit 948f243907
22 changed files with 13700 additions and 42 deletions

View File

@ -580,6 +580,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
-delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
@ -897,7 +898,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -909,6 +910,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -1780,7 +1782,12 @@ Pyrolusite
200 SAVE moles * SOLN_VOL
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
@ -1817,11 +1824,10 @@ END
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49-67.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).

View File

@ -0,0 +1,158 @@
# Concrete minerals
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
PRINT; -reset false
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
SO4-AFem # Lothenbach 2019
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -31.57; -Vm 321
CO3-AFem # Lothenbach 2019
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
-log_k -34.59; -Vm 292
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
-log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 °C
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Fe # Lothenbach 2019
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
-log_k -26.3; -Vm 155
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 °C
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

View File

@ -0,0 +1,195 @@
# Concrete minerals for use with
# DATABASE c:\phreeqc\database\pitzer.dat
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
PRINT; -reset false
SOLUTION_MASTER_SPECIES
Al Al(OH)4- 0 Al 26.9815
H(0) H2 0 H
O(0) O2 0 O
SOLUTION_SPECIES
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
PITZER # Using data from Weskolowski, 1992, GCA
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
-B0
Al(OH)4- K+ -0.0669 0 0 8.24e-3
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
-B1
Al(OH)4- K+ 0.668 0 0 -1.93e-2
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
-C0
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
-THETA
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
# Al(OH)4- SO4-2 -0.012
-PSI
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
Al(OH)4- OH- K+ 0 0 0 0
Al(OH)4- K+ Na+ 0 0 0 0
END
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
O2(g)
O2 = O2; -log_k -2.8983
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
H2(g)
H2 = H2; -log_k -3.1050
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
# No Fe(OH)4- in Pitzer...
# SO4-AFem # Lothenbach 2019
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
# -log_k -31.57; -Vm 321
# CO3-AFem # Lothenbach 2019
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
# -log_k -34.59; -Vm 292
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
# -log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

File diff suppressed because it is too large Load Diff

View File

@ -588,6 +588,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
-delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
@ -905,7 +906,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -917,6 +918,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -1487,6 +1489,7 @@ SURFACE_SPECIES
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
RATES
###########
@ -1790,7 +1793,12 @@ Pyrolusite
200 SAVE moles * SOLN_VOL
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
@ -1834,4 +1842,3 @@ END
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).

View File

@ -237,7 +237,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.406
delta_h -2.297 kcal
-analytic -237.04 -0.1077 0 102.25 6.79e5 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
-analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9
Carnallite
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
@ -266,8 +266,9 @@ Diopside
Vm 67.2
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.083
log_k -17.09
delta_h -9.436 kcal
-analytic -120.63 -0.1051 0 54.509 # 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Enstatite
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
@ -911,7 +912,6 @@ SURFACE_SPECIES
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
END
MEAN GAM
CaCl2
@ -974,9 +974,9 @@ END
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49-67.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62-71.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
# for the high P,T Pitzer model and improvements for Calcite.
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.

View File

@ -1,4 +1,85 @@
Version @PHREEQC_VER@: @PHREEQC_DATE@
Summary of Basic functions not include in PhreeqcI help:
ADD_HEADING("NewHeading") Append a new heading to the list of -headings defined
in USER_PUNCH. Note: only useful in PhreeqcRM and takes effect
at next RunString, RunFile, or RunCells.
DEBYE_LENGTH Value of the Debye length.
DELTA_H_PHASE("Calcite") Delta H in KJ/mol. If an analytic expression exists,
Delta H is at reaction temperature; otherwise
Delta H at 25 C.
DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression exists,
Delta H is at reaction temperature, otherwise
Delta H at 25C.
DH_A0(Na+") Debye-Huckel species-specific ion size parameter.
DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient.
DIFF_C("CO3-2") Diffusion coefficient for a species at 25 C.
EOL_NOTAB$ Omits the tab that is normally printed after EOL$.
EQUIV_FRAC("AlX3", 3.0, "X") Equivalent fraction of exchange or surface species.
Second argument is equivalents per mole. Third argument
is exchange or surface name.
ITERATIONS Total number of iterations for the calculation.
NO_NEWLINE$ Omits the new line normally written after printing a USER_PUNCH block.
This function can be used to completely eliminate a line for a cell
(assuming no SELECTED_OUTPUT fields are defined.
SETDIFF_C Sets dw for a species (see SOLUTION_SPECIES), returns
calculated diffusion coefficient at reaction temperature.
SYS("element", count , name$ , Sixth argument is new and determines the sort order,
type$ , moles, 1) 0 sorted by 5th argument, 1, sorted by 3rd argument.
-------------
March 10, 2021
-------------
PHREEQC: New Basic functions return (1) delta H of species,
(2) delta H of a phase, (3) Debye Huckel a0 (species-specific
ion size), and (4) Debye Huckel bdot (species-specific ion
strength coefficient).
DELTA_H_PHASE("Calcite") Delta H in KJ/mol. If an analytic expression exists,
Delta H is at reaction temperature; otherwise
Delta H at 25 C.
DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression exists,
Delta H is at reaction temperature, otherwise
Delta H at 25C.
DH_A0(Na+") Debye-Huckel species-specific ion size parameter.
DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient.
-------------
March 10, 2021
-------------
PHREEQC: Merged changes from Tony Appelo's version.
Bug fix of removal of Donnan layer calculations when kinetic
reactions are zero in Runge-Kutta calculations.
SIs of phases are now printed with the phase mole transfers
found by INVERSE_MODELING. This is useful for checking that
dissolving and precipitating phases are sub- and
supersaturated, respectively.
Modified the -analytical_expression for calcite in
phreeqc.dat, with data from Ellis (1959) and Plummer and
Busenberg (1982) used in pitzer.dat.
Modified the -analytical_expression for dolomite in
phreeqc.dat and pitzer.dat, using data at 25°C from Hemingway
and Robie (1994) and 50-175°C from Bénézeth et al. (2018), GCA
224, 262-275.
-------------
March 2, 2021
@ -135,7 +216,6 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@
Sort by 3rd field (name$):
SYS("element", count , name$ , type$ , moles, 1)
-----------------
February 19, 2021

View File

@ -39,6 +39,7 @@ cxxNumKeyword(io)
this->pitzer_exchange_gammas = true;
this->new_def = false;
this->n_solution = -999;
this->solution_equilibria = false;
//
// Mix exchangers
//

View File

@ -128,6 +128,13 @@ cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map,
v_m = 0;
pr_in = false;
bool first = true;
new_def = false;
solution_equilibria = false;
n_solution = -999;
type = cxxGasPhase::GP_PRESSURE;
total_moles = 0.0;
temperature = 298.15;
//
// Mix
//

View File

@ -1387,6 +1387,22 @@ listtokens(FILE * f, tokenrec * l_buf)
output_msg("LK_SPECIES");
break;
case tokdelta_h_species:
output_msg("DELTA_H_SPECIES");
break;
case tokdelta_h_phase:
output_msg("DELTA_H_PHASE");
break;
case tokdh_a0:
output_msg("DH_A0");
break;
case tokdh_bdot:
output_msg("DH_BDOT");
break;
case toklk_named:
output_msg("LK_NAMED");
break;
@ -2457,6 +2473,31 @@ factor(struct LOC_exec * LINK)
}
break;
case tokdelta_h_phase:
{
const char* str = stringfactor(STR1, LINK);
n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_deltah_p(str);
}
break;
case tokdelta_h_species:
{
const char* str = stringfactor(STR1, LINK);
n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_deltah_s(str);
}
break;
case tokdh_a0:
{
const char* str = stringfactor(STR1, LINK);
n.UU.val = (parse_all) ? 1 : PhreeqcPtr->dh_a0(str);
}
break; case tokdh_bdot:
{
const char* str = stringfactor(STR1, LINK);
n.UU.val = (parse_all) ? 1 : PhreeqcPtr->dh_bdot(str);
}
break;
case toklk_named:
{
const char* str = stringfactor(STR1, LINK);
@ -7416,7 +7457,11 @@ const std::map<const std::string, PBasic::BASIC_TOKEN>::value_type temp_tokens[]
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("lk_species", PBasic::toklk_species),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("lk_named", PBasic::toklk_named),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("lk_phase", PBasic::toklk_phase),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("delta_h_phase", PBasic::tokdelta_h_phase),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("delta_h_species", PBasic::tokdelta_h_species),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("sum_species", PBasic::toksum_species),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("dh_a0", PBasic::tokdh_a0),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("dh_bdot", PBasic::tokdh_bdot),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("sum_gas", PBasic::toksum_gas),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("sum_s_s", PBasic::toksum_s_s),
std::map<const std::string, PBasic::BASIC_TOKEN>::value_type("calc_value", PBasic::tokcalc_value),

View File

@ -259,6 +259,10 @@ public:
toklk_species,
toklk_named,
toklk_phase,
tokdelta_h_phase,
tokdelta_h_species,
tokdh_a0,
tokdh_bdot,
toksum_species,
toksum_gas,
toksum_s_s,

View File

@ -35,6 +35,7 @@ cxxNumKeyword(io)
{
this->n_user = this->n_user_end = l_n_user;
eltList.type = cxxNameDouble::ND_ELT_MOLES;
this->new_def = false;
//
// Mix
//

View File

@ -114,6 +114,10 @@ public:
LDBLE calc_logk_n(const char *name);
LDBLE calc_logk_p(const char *name);
LDBLE calc_logk_s(const char *name);
LDBLE calc_deltah_s(const char* name);
LDBLE calc_deltah_p(const char* name);
LDBLE dh_a0(const char* name);
LDBLE dh_bdot(const char* name);
LDBLE calc_surface_charge(const char *surface_name);
LDBLE calc_t_sc(const char *name);
LDBLE diff_layer_total(const char *total_name, const char *surface_name);
@ -1701,7 +1705,7 @@ protected:
bool output_newline;
inline void Set_output_newline(bool tf) { this->output_newline = tf;}
inline bool Get_output_newline() { return this->output_newline;}
LDBLE *llnl_temp, *llnl_adh, *llnl_bdh, *llnl_bdot, *llnl_co2_coefs, a_llnl, b_llnl;
LDBLE *llnl_temp, *llnl_adh, *llnl_bdh, *llnl_bdot, *llnl_co2_coefs, a_llnl, b_llnl, bdot_llnl;
int llnl_count_temp, llnl_count_adh, llnl_count_bdh, llnl_count_bdot,
llnl_count_co2_coefs;

View File

@ -181,7 +181,6 @@ protected:
bool charge_balance;
bool percent_error;
bool new_line;
//bool punch_newline;
// as-is set flags
bool set_user_punch;

View File

@ -432,7 +432,7 @@ cxxSurfaceComp::add(const cxxSurfaceComp & addee, LDBLE extensive)
{
std::ostringstream oss;
oss <<
"Cannot mix surface components related to phase with exchange components related to kinetics, "
"Cannot mix surface components related to phase with surface components related to kinetics, "
<< this->formula;
error_msg(oss.str().c_str(), CONTINUE);
return;

View File

@ -729,6 +729,117 @@ calc_logk_s(const char *name)
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
dh_a0(const char* name)
/* ---------------------------------------------------------------------- */
{
char token[MAX_LENGTH];
struct species* s_ptr;
double a = -999.99;
strcpy(token, name);
s_ptr = s_search(token);
if (s_ptr != NULL)
{
a = s_ptr->dha;
}
return (a);
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
dh_bdot(const char* name)
/* ---------------------------------------------------------------------- */
{
char token[MAX_LENGTH];
struct species* s_ptr;
double b = -999.99;
if (llnl_count_temp > 0)
{
b = bdot_llnl;
}
else
{
strcpy(token, name);
s_ptr = s_search(token);
if (s_ptr != NULL)
{
b = s_ptr->dhb;
}
}
return (b);
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
calc_deltah_p(const char* name)
/* ---------------------------------------------------------------------- */
{
int i, j;
char token[MAX_LENGTH];
struct phase* phase_ptr;
LDBLE lkm, lkp;
LDBLE l_logk[MAX_LOG_K_INDICES];
double dh = -999.99;
strcpy(token, name);
phase_ptr = phase_bsearch(token, &j, FALSE);
if (phase_ptr != NULL)
{
struct reaction* reaction_ptr;
if (phase_ptr->replaced)
reaction_ptr = phase_ptr->rxn_s;
else
reaction_ptr = phase_ptr->rxn;
/*
* Print saturation index
*/
reaction_ptr->logk[delta_v] = calc_delta_v(reaction_ptr, true) -
phase_ptr->logk[vm0];
if (reaction_ptr->logk[delta_v])
mu_terms_in_logk = true;
for (i = 0; i < MAX_LOG_K_INDICES; i++)
{
l_logk[i] = 0.0;
}
//lk = k_calc(reaction_ptr->logk, tk_x, patm_x * PASCAL_PER_ATM);
select_log_k_expression(reaction_ptr->logk, l_logk);
add_other_logk(l_logk, phase_ptr->count_add_logk, phase_ptr->add_logk);
lkm = k_calc(l_logk, tk_x - 1.0, patm_x * PASCAL_PER_ATM);
lkp = k_calc(l_logk, tk_x + 1.0, patm_x * PASCAL_PER_ATM);
dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x, 2.0);
}
return (dh);
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
calc_deltah_s(const char* name)
/* ---------------------------------------------------------------------- */
{
int i;
char token[MAX_LENGTH];
struct species* s_ptr;
LDBLE lkm, lkp, l_logk[MAX_LOG_K_INDICES];
double dh = -999.99;
strcpy(token, name);
s_ptr = s_search(token);
if (s_ptr != NULL)
{
/* calculate delta_v for the reaction... */
s_ptr->logk[delta_v] = calc_delta_v(s_ptr->rxn, false);
for (i = 0; i < MAX_LOG_K_INDICES; i++)
{
l_logk[i] = 0.0;
}
select_log_k_expression(s_ptr->logk, l_logk);
mu_terms_in_logk = true;
add_other_logk(l_logk, s_ptr->count_add_logk, s_ptr->add_logk);
lkm = k_calc(l_logk, tk_x-1.0, patm_x * PASCAL_PER_ATM);
lkp = k_calc(l_logk, tk_x + 1.0, patm_x * PASCAL_PER_ATM);
dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x,2.0);
return (dh);
}
return (0.0);
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
calc_surface_charge(const char *surface_name)
/* ---------------------------------------------------------------------- */
{
@ -738,7 +849,6 @@ calc_surface_charge(const char *surface_name)
LDBLE charge;
struct rxn_token_temp *token_ptr;
struct master *master_ptr;
/*
* Go through species, sum charge
*/

View File

@ -277,13 +277,13 @@ write_banner(void)
char buffer[80];
int len, indent;
screen_msg(
" █▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀█\n");
" █▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀█\n");
screen_msg(
" ║ ║\n");
/* version */
#ifdef NPP
len = sprintf(buffer, "* PHREEQC-%s *", "3.5.2");
len = sprintf(buffer, "* PHREEQC-%s *", "3.6.5");
#else
len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@");
#endif
@ -307,7 +307,7 @@ write_banner(void)
/* date */
#ifdef NPP
len = sprintf(buffer, "%s", "August 1, 2019");
len = sprintf(buffer, "%s", "February 24, 2021");
#else
len = sprintf(buffer, "%s", "@VER_DATE@");
#endif
@ -316,7 +316,7 @@ write_banner(void)
44 - indent - len, ' '));
screen_msg(
" █▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄█\n\n");
" █▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄█\n\n");
return 0;
}
@ -491,7 +491,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie,
}
local_database_file->close();
delete local_database_file;
user_database = (char *) free_check_null(user_database);
user_database = string_duplicate(token);
screen_msg(sformatf("Database file: %s\n\n", token));
@ -499,7 +499,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie,
output_msg(sformatf(" Input file: %s\n", in_file));
output_msg(sformatf(" Output file: %s\n", out_file));
#ifdef NPP
output_msg(sformatf("Using PHREEQC: version 3.5.2, compiled August 1, 2019\n"));
output_msg(sformatf("Using PHREEQC: version 3.6.5, compiled February 24, 2021\n"));
#endif
output_msg(sformatf("Database file: %s\n\n", token));
#ifdef NPP

View File

@ -2029,14 +2029,31 @@ print_model(struct inverse *inv_ptr)
(double) d3));
}
output_msg(sformatf( "\n%-25.25s %2s %12.12s %12.12s\n",
"Phase mole transfers:", " ", "Minimum", "Maximum"));
// appt, calculate and print SI's
int i1, i2;
LDBLE t_i, p_i, iap, lk, t;
const char *name;
struct rxn_token *rxn_ptr;
struct reaction *reaction_ptr;
output_msg(sformatf( "\n%-25.25s %2s %12.12s %12.12s %-18.18s (Approximate SI in solution ",
"Phase mole transfers:", " ", "Minimum", "Maximum", "Formula"));
for (i = 0; i < inv_ptr->count_solns - 1; i++)
output_msg(sformatf("%d, ", inv_ptr->solns[i]));
solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i]);
t_i = solution_ptr->Get_tc() + 273.15;
p_i = solution_ptr->Get_patm();
output_msg(sformatf("%d at %3d K, %3d atm)\n", inv_ptr->solns[i], int(t_i), int(floor(p_i + 0.5))));
p_i *= PASCAL_PER_ATM;
for (i = col_phases; i < col_redox; i++)
{
if (equal(inv_delta1[i], 0.0, toler) == TRUE &&
equal(min_delta[i], 0.0, toler) == TRUE &&
equal(max_delta[i], 0.0, toler) == TRUE)
continue;
d1 = inv_delta1[i];
d2 = min_delta[i];
d3 = max_delta[i];
@ -2047,11 +2064,62 @@ print_model(struct inverse *inv_ptr)
if (equal(d3, 0.0, MIN_TOTAL_INVERSE) == TRUE)
d3 = 0.0;
output_msg(sformatf(
"%15.15s %12.3e %12.3e %12.3e %s\n", col_name[i],
(double) d1, (double) d2, (double) d3,
inv_ptr->phases[i - col_phases].phase->formula));
}
"%15.15s %12.3e %12.3e %12.3e %-25.25s (", col_name[i],
(double)d1, (double)d2, (double)d3, inv_ptr->phases[i - col_phases].phase->formula));
i1 = 0;
for (; i1 < count_phases; i1++)
{
if (Utilities::strcmp_nocase(phases[i1]->name, col_name[i]))
continue;
reaction_ptr = phases[i1]->rxn_s;
for (i2 = 0; i2 < inv_ptr->count_solns; i2++)
{
solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i2]);
reaction_ptr->logk[delta_v] = calc_delta_v(reaction_ptr, true) - phases[i1]->logk[vm0];
if (reaction_ptr->logk[delta_v])
mu_terms_in_logk = true;
lk = k_calc(reaction_ptr->logk, t_i, p_i);
iap = 0.0;
for (rxn_ptr = reaction_ptr->token + 1; rxn_ptr->s != NULL; rxn_ptr++)
{
t = 0;
if (rxn_ptr->s == s_eminus)
t = -solution_ptr->Get_pe();
else if (!Utilities::strcmp_nocase(rxn_ptr->s->name, "H2O"))
t = log10(solution_ptr->Get_ah2o());
else if (!Utilities::strcmp_nocase(rxn_ptr->s->name, "H+"))
t = -solution_ptr->Get_ph();
else
{
if (rxn_ptr->s->secondary)
name = rxn_ptr->s->secondary->elt->name;
else
name = rxn_ptr->s->primary->elt->name;
t = solution_ptr->Get_master_activity()[name];
}
if (t)
iap += t * rxn_ptr->coef;
else
{
iap = -999; break;
}
}
if (iap == -999)
output_msg(sformatf(" "));
else
output_msg(sformatf("%6.2f", iap - lk));
if (i2 < inv_ptr->count_solns - 1)
output_msg(sformatf(","));
}
}
output_msg(sformatf(")\n"));
}
output_msg(sformatf( "\n%-25.25s\n", "Redox mole transfers:"));
for (i = col_redox; i < col_epsilon; i++)
{

View File

@ -2005,7 +2005,13 @@ set_reaction(int i, int use_mix, int use_kinetics)
/*
* Find surface
*/
dl_type_x = cxxSurface::NO_DL;
if (use.Get_surface_in() && use.Get_kinetics_in() && use.Get_kinetics_ptr() && !use.Get_kinetics_ptr()->Get_use_cvode() && reaction_step > 1)
{
// use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i));
// appt: we may come here with zero kinetic reaction, but surface may have to keep DONNAN_DL
}
else
dl_type_x = cxxSurface::NO_DL;
if (use.Get_surface_in() == TRUE)
{
use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i));

View File

@ -568,7 +568,7 @@ gammas(LDBLE mu)
*/
int i, j;
int ifirst, ilast;
LDBLE f, bdot_llnl, log_g_co2, dln_g_co2, c2_llnl;
LDBLE f, log_g_co2, dln_g_co2, c2_llnl;
LDBLE c1, c2, a, b;
LDBLE muhalf, equiv;
@ -887,7 +887,8 @@ int Phreeqc::gammas_a_f(int i1)
int i, j;
//LDBLE d2, d3, coef = 0, sum = 0;
LDBLE d2, d3, sum = 0;
char name[MAX_LENGTH];
//char name[MAX_LENGTH];
std::string name;
//struct master *m_ptr;
i = i1;
@ -895,7 +896,8 @@ int Phreeqc::gammas_a_f(int i1)
{
if (s_x[i]->rxn_x->token[j].s->type == EX)
{
strcpy(name, s_x[i]->rxn_x->token[j].s->name);
//strcpy(name, s_x[i]->rxn_x->token[j].s->name);
name = s_x[i]->rxn_x->token[j].s->name;
//m_ptr = s_x[i]->rxn_x->token[j].s->primary->elt->master; // appt debug
break;
}
@ -909,7 +911,7 @@ int Phreeqc::gammas_a_f(int i1)
{
if (s_x[i]->rxn_x->token[j].s->type == EX)
{
if (!strcmp(name, s_x[i]->rxn_x->token[j].s->name))
if (!strcmp(name.c_str(), s_x[i]->rxn_x->token[j].s->name))
sum += s_x[i]->moles * s_x[i]->equiv;
break;
}

View File

@ -57,7 +57,7 @@ prep(void)
//if (!same_model && !switch_numerical)
// numerical_fixed_volume = false;
if (same_model == FALSE /*|| switch_numerical*/)
if (same_model == FALSE || !my_array/*|| switch_numerical*/)
{
clear();
setup_unknowns();

View File

@ -1,4 +1,4 @@
#include "Utils.h"
#include "Utils.h"
#include "Phreeqc.h"
#include "phqalloc.h"
#include "Exchange.h"
@ -2650,7 +2650,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
// decompose A in LU : store L in A[..][0..1] and U in A[..][2] ...
for (i = 1; i <= count_cells + 1; i++)
{
A[i - 1][2] = A[i - 1][2] / A[i - 1][1];
A[i - 1][2] /= A[i - 1][1];
A[i][1] -= A[i][0] * A[i - 1][2];
}
// solve Ct2 in A.Ct2 = L.U.Ct2 = Ct1, Ct1 was put in Ct2 ...
@ -2786,7 +2786,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
}
dVc = j_0e * current_cells[ifirst].R;
cell_data[ifirst + 1].potV = cell_data[ifirst].potV + dVc;
for (i = ifirst + 1; i < ilast; i++)
for (i = ifirst + 1; i <= ilast; i++)
{
dVc = current_cells[i].R * (current_x - current_cells[i].dif);
//if (((dV_dcell && (dVc * j_0e > 0)) ||
@ -2825,7 +2825,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
}
current_A = current_x / DDt * F_C_MOL;
for (i = ifirst; i <= ilast + stagnant + ((bcon_last == 2 || (dV_dcell && stagnant)) ? 1 : 0); i++)
for (i = ifirst; i <= ilast + stagnant + (bcon_last == 2 ? 1 : 0); i++)
{
if (i <= ilast + 1)
{
@ -2977,7 +2977,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
if (icell == c && sptr_stag && ct[c1].m_s[cp].tot_stag)
dum = ct[c1].m_s[cp].tot_stag;
if (dum2 + ct[icell].m_s[cp].tot2 - dum < min_mol &&
(dV_dcell || (icell >= 0 && icell <= ilast)/* || (icell == ilast && bcon_last == 2)*/))
(dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)))
{
dum2 = moles_from_redox_states(sptr2, ct[icell].m_s[cp].name);
if (ct[icell + 1].dl_s > 1e-8)
@ -3016,7 +3016,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
//ct[icell].J_ij_sum -= dum * ct[icell].m_s[cp].charge;
}
if (dV_dcell || (icell >= 0 && icell < ilast)/* || (icell == ilast && bcon_last == 2)*/)
if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2))
{
dum = ct[icell].m_s[cp].tot1;
if (stagnant && icell == c && dV_dcell)
@ -3072,7 +3072,7 @@ diffuse_implicit(LDBLE DDt, int stagnant)
}
// reduce oscillations in the column-boundary cells, but not for H and O, and current_A is not adjusted...
if (icell == il1 - incr && ct[0].m_s != NULL && dV_dcell * ct[0].m_s[cp].charge < 0 && strcmp(ct[0].m_s[cp].name, "H") && strcmp(ct[0].m_s[cp].name, "O") && c > 3 && mixrun > 1)
if (dV_dcell && icell == il1 - incr && dV_dcell * ct[0].m_s[cp].charge < 0 && strcmp(ct[0].m_s[cp].name, "H") && strcmp(ct[0].m_s[cp].name, "O") && c > 3 && mixrun > 1)
{
dummy = Utilities::Rxn_find(Rxn_solution_map, 0)->Get_totals()[ct[0].m_s[cp].name] / ct[0].kgw * (1 - ct[0].dl_s);
if (dummy > 1e-6)