Squashed 'database/' changes from e39a5d3c..9bf3c42d

9bf3c42d 20240607b pitzer.dat
bab2c2e2 20240607a database22.zip
9064885f 20240607 database2.zip from Tony
a4a7ecab Tony's change to Sr and NH4, SC_Ohm and rate_xmpls, basicsubs.cpp error

git-subtree-dir: database
git-subtree-split: 9bf3c42d7c3df8472e2e83b0138032fe8697990b
This commit is contained in:
Darth Vader 2024-06-07 21:57:02 +00:00
parent 7bdb964b79
commit b27777460b
4 changed files with 351 additions and 365 deletions

27
Amm.dat
View File

@ -62,6 +62,7 @@ Oxg Oxg 0 Oxg 32 # O2 gas
Mtg Mtg 0 Mtg 16.032 # CH4 gas
Sg H2Sg 0 H2Sg 32.064 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-gamma 9 0
@ -112,7 +113,7 @@ Sr+2 = Sr+2
-gamma 5.26 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 160 0.68 0.767 1e-9 0.912
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
Ba+2 = Ba+2
-gamma 5 0
-gamma 4 0.153 # Barite solubility
@ -159,7 +160,7 @@ AmmH+ = AmmH+
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 178 3.747 0 1.22
-dw 1.98e-9 203 1.47 2.644 6.81e-2
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
-dw 1.1e-9
@ -300,19 +301,23 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O
-delta_h -312.13 kcal
-Vm 7 # Pray et al., 1952, IEC 44 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
AmmH+ = Amm + H+
#NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
-dw 2.28e-9
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
AmmH+ + SO4-2 = AmmHSO4-
#NH4+ + SO4-2 = NH4SO4-
-gamma 6.54 -0.08
-log_k 1.106; -delta_h 4.3 kcal
-Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339
@ -669,7 +674,7 @@ H4SiO4 = H3SiO4- + H+
-delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
-gamma 4 0
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23
-delta_h 17.6 kcal
@ -1236,6 +1241,8 @@ CH4(g)
-T_c 190.6; -P_c 45.4; -Omega 0.008
Amm(g)
Amm = Amm
#NH3(g)
# NH3 = NH3
-log_k 1.7966
-analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192
-T_c 405.6; -P_c 111.3; -Omega 0.25
@ -1345,6 +1352,7 @@ EXCHANGE_SPECIES
# -gamma 9.0 0
AmmH+ + X- = AmmHX
# NH4+ + X- = NH4X
-log_k 0.6
-gamma 2.5 0
-delta_h -2.4 # Laudelout et al., 1968
@ -1583,7 +1591,6 @@ HCl H+ 1 Cl- 1
H2SO4 H+ 2 SO4-2 1
HBr H+ 1 Br- 1
RATES
###########
@ -1657,7 +1664,7 @@ K-feldspar
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10

View File

@ -113,7 +113,7 @@ Sr+2 = Sr+2
-gamma 5.26 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 160 0.68 0.767 1e-9 0.912
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
Ba+2 = Ba+2
-gamma 5 0
-gamma 4 0.153 # Barite solubility
@ -160,7 +160,7 @@ NO3- = NO3-
# -gamma 2.5 0
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 178 3.747 0 1.220
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
-dw 1.1e-9
@ -307,8 +307,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 178 3.747 0 1.22
-dw 1.98e-9 203 1.47 2.644 6.81e-2
#AmmH+ = Amm + H+
NH4+ = NH3 + H+
-log_k -9.252
@ -317,11 +316,6 @@ NH4+ = NH3 + H+
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
-dw 2.28e-9
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-gamma 6.54 -0.08
@ -680,7 +674,7 @@ H4SiO4 = H3SiO4- + H+
-delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
-gamma 4 0
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23
-delta_h 17.6 kcal
@ -1670,7 +1664,7 @@ K-feldspar
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10

View File

@ -113,7 +113,7 @@ Sr+2 = Sr+2
-gamma 5.26 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 160 0.68 0.767 1e-9 0.912
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
Ba+2 = Ba+2
-gamma 5 0
-gamma 4 0.153 # Barite solubility
@ -160,7 +160,7 @@ NO3- = NO3-
# -gamma 2.50
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 178 3.747 0 1.220
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
-dw 1.1e-9
@ -203,7 +203,7 @@ Mtg = Mtg # CH4
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44 1146
-Vm 7 # Pray et al., 1952, IEC 44, 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
H2Sg = H2Sg # H2S
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
@ -307,8 +307,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 178 3.747 0 1.22
-dw 1.98e-9 203 1.47 2.644 6.81e-2
#AmmH+ = Amm + H+
NH4+ = NH3 + H+
-log_k -9.252
@ -317,11 +316,6 @@ NH4+ = NH3 + H+
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
-dw 2.28e-9
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-gamma 6.54 -0.08
@ -1670,7 +1664,7 @@ K-feldspar
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10
@ -2524,7 +2518,7 @@ Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0
Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0
Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0
#
K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 14
K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15
#
Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18
Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2
@ -2902,48 +2896,39 @@ Wollastonite -6.97 700 56 0.4 0 0
# END
# RATES
# Quartz_Rimstidt_Barnes
# #1 rem Specific rate k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol, Rimstidt and Barnes, 1980, GCA 44, 1683
# Quartz_Rimstidt
# #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = 10^-(13.7 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, MSA Rev. 29, 259
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# USE solution 1
# KINETICS 1
# Quartz_Rimstidt_Barnes
# Quartz_Rimstidt
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Rimstidt.et.al
# -headings H Rimstidt
# END
# SOLUTION 1
# pH 7 charge; Na 30; Cl 30
# pH 7 charge; Na 1; Cl 1
# KINETICS 1
# Quartz_Svd
# Quartz_Rimstidt
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Sverdup_NaCl
# END
# USE solution 1
# KINETICS 1
# Quartz_Rimstidt_Barnes
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Rimstidt.et.al._NaCl
# -headings H Rimstidt_1.mM.NaCl
# END
# # Example input file for calculating kinetic dissolution of Montmorillonite,
# # a solid solution with exchangeable cations reacting fast
# # a solid solution with exchangeable cations reacting fast;
# # their ratios are related to the changing solution composition,
# # and their amounts are connected to the kinetic reacting TOT layer.
# #
@ -2982,7 +2967,7 @@ Wollastonite -6.97 700 56 0.4 0 0
# EXCHANGE_MASTER_SPECIES
# X_montm_mg X_montm_mg-0.34
# EXCHANGE_SPECIES
# # The Gapon formulation is easiest...
# # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES
# X_montm_mg-0.34 = X_montm_mg-0.34
# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 #
# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 #
@ -2991,13 +2976,13 @@ Wollastonite -6.97 700 56 0.4 0 0
# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX
# # # uncomment the following lines to see the effect...
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86
# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83
# # # also adapt the log_k`s of the solids...
# # PHASES
# # Montmorillonite(MgMg)
# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4
# # log_k 2.73
# # log_k 2.86
# # Montmorillonite(MgCa)
# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4
# # log_k 2.83

View File

@ -79,7 +79,7 @@ Ca+2 = Ca+2
Sr+2 = Sr+2
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 160 0.68 0.767 1e-9 0.912
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
Ba+2 = Ba+2
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
@ -195,7 +195,7 @@ Mg+2 + CO3-2 = MgCO3
H4SiO4 = H3SiO4- + H+
-log_k -9.83; -delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23; -delta_h 17.6 kcal
-analytic -294.0184 -0.07265 11204.49 108.18466 -1119669
@ -555,7 +555,7 @@ PITZER
H+ SO4-2 0.0298
HCO3- K+ 0.0296 0 0 0.996E-3
HCO3- Mg+2 0.329
HCO3- Na+ -0.018 # ref. 3 new -analytic for calcite
HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite
HCO3- Sr+2 0.12
HSO4- K+ -0.0003
HSO4- Mg+2 0.4746
@ -585,7 +585,7 @@ PITZER
Br- Sr+2 1.7115 0 0 6.5325E-3
Ca+2 Br- 1.613 0 0 6.0375E-3
Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3
Ca+2 HCO3- 2.977 # ref. 3 new -analytic for calcite
Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite
Ca+2 HSO4- 2.53
Ca+2 OH- -0.2303
Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3
@ -605,7 +605,7 @@ PITZER
H+ HSO4- 0.5556
HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3
HCO3- Mg+2 0.6072
HCO3- Na+ 0 # ref. 3 new -analytic for calcite
HCO3- Na+ 0 # ref. 3 + new -analytic for calcite
HSO4- K+ 0.1735
HSO4- Mg+2 1.729
HSO4- Na+ 0.398
@ -623,9 +623,9 @@ PITZER
Ca+2 OH- -5.72
Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3
Fe+2 SO4-2 -42
HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 new -analytic for calcite
HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite
Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3
Mn+2 SO4-2 -40
Mn+2 SO4-2 -40.0
SO4-2 Sr+2 -54.24 0 0 -0.42
-C0
B(OH)4- Na+ 0.0114
@ -707,7 +707,7 @@ PITZER
CO2 K+ 0.051
CO2 Mg+2 0.183
CO2 Na+ 0.085
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
H2Sg SO4-2 0 0 0.679
(H2Sg)2 Na+ 0.0123 0 0.256
@ -750,7 +750,7 @@ PITZER
Cl- H+ Mg+2 -0.011
Cl- H+ Na+ -0.004
Cl- HCO3- Mg+2 -0.096
Cl- HCO3- Na+ 0 # ref. 3 new -analytic for calcite
Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite
Cl- HSO4- H+ 0.013
Cl- HSO4- Na+ -0.006
Cl- K+ Mg+2 -0.022 -14.27 # ref. 3