Tony's changes Mar 15, 2024

This commit is contained in:
David Parkhurst 2024-03-15 15:16:12 -06:00
parent 3318883ec1
commit bc1f8f86b2

View File

@ -1,4 +1,3 @@
# with Falkenhage, a in ka from change in vm with T, P, I
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
@ -62,59 +61,58 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-gamma 9.0 0
-gamma 9.0 0
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
-dw 9.31e-9 742 15.0 1 2.353 24.01 # The dw parameters are defined in ref. 3.
-dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3.
# Dw(25 C) dw_T a a2 visc a3
# Dw(TK) = 9.31e-9 * exp(742 / TK - 742 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn.
# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-, SO4-2 + cplxs
# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka))
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn.
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.)
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
e- = e-
H2O = H2O
-dw 2.299e-9 -254
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Li+ = Li+
-gamma 6.0 0 # The apparent volume parameters for Vm are defined in ref. 1 & 2
-gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
-dw 1.03e-9 -23 4.063 5.488 3.0
-dw 1.03e-9 -14 4.03 0.8341 1.679
Na+ = Na+
-gamma 4.0 0.075
-gamma 4.08 0.082 # halite solubility
-gamma 4.0 0.075
-gamma 4.08 0.082 # halite solubility
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# for calculating densities (rho) when I > 3...
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
-dw 1.33e-9 -121 4.383 -2.798 0.6215
-dw 1.33e-9 75 3.627 0 0.7037
K+ = K+
-gamma 3.5 0.015
-gamma 3.5 0.015
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
-dw 1.96e-9 252 3.054 1.729 0.4706
-dw 1.96e-9 254 3.484 0 0.1964
Mg+2 = Mg+2
-gamma 5.5 0.20
-gamma 5.5 0.20
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
-dw 0.705e-9 35 11.92 -2.922 0.9631
-dw 0.705e-9 -4 5.569 0 1.047
Ca+2 = Ca+2
-gamma 5.0 0.1650
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
-gamma 5.0 0.1650
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
-dw 0.792e-9 -198 11.80 -2.745 0.9735
-dw 0.792e-9 34 5.411 0 1.046
Sr+2 = Sr+2
-gamma 5.260 0.121
-gamma 5.260 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 66 25 -2.336 3.0
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
Ba+2 = Ba+2
-gamma 5.0 0
-gamma 4.0 0.153 # Barite solubility
-gamma 5.0 0
-gamma 4.0 0.153 # Barite solubility
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
-dw 0.848e-9 -47 22.67 -2.543 3.0
-dw 0.848e-9 174 10.53 0 3.0
Fe+2 = Fe+2
-gamma 6.0 0
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
@ -131,31 +129,31 @@ H4SiO4 = H4SiO4
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
-dw 1.10e-9
Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 164 3.214 0.6814 0.7554
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 216 3.160 0.2071 0.7432
CO3-2 = CO3-2
-gamma 5.4 0
-Vm 5.65 -0.413 4.32e-2 -5.68 5.56 0 -0.97 150 -7.3e-3 0.866
-viscosity -0.307 0.461 6.91e-3 2.6e-4 -2.02e-2 1.666 -2.215
-dw 0.955e-9 -21 4.372 0.4288 0.7542 -10
-gamma 5.4 0
-Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
SO4-2 = SO4-2
-gamma 5.0 -0.04
-Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
-viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2
-dw 1.07e-9 -3 35 0.3063 1e-9 -10
-dw 1.07e-9 -109 17
NO3- = NO3-
-gamma 3.0 0
-gamma 3.0 0
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
-dw 1.90e-9 150 1.281 0.3876 1e-9 -10
-dw 1.90e-9 104 1.11
#AmmH+ = AmmH+
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 -81 6.274 -4.118 -0.270
# -dw 1.98e-9 178 3.747 0 1.220
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt
-dw 1.1e-9
@ -164,15 +162,15 @@ PO4-3 = PO4-3
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
-dw 0.612e-9
F- = F-
-gamma 3.5 0
-gamma 3.5 0
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
-dw 1.46e-9 11 4.659 -0.176 1e-9
-dw 1.46e-9 -36 4.352
Br- = Br-
-gamma 3.0 0
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
-dw 2.01e-9 121 5.939 -2.588 1e-9
-dw 2.01e-9 139 2.94 0 1.304
Zn+2 = Zn+2
-gamma 5.0 0
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
@ -206,10 +204,10 @@ H2Sg = H2Sg # H2S
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-gamma 3.5 0
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
-dw 5.27e-9 470 1.837 0.4096 0.3330
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
@ -226,13 +224,12 @@ H+ + Cl- = HCl
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329; -delta_h -3.561 kcal
-log_k 10.329; -delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-Vm 6.64 4.47 7.27 -4.78 1.51 0 -2.91 202 3.33e-2 0.895
-viscosity -1 1.059 -1.32e-2 8.98e-2 3.10e-2 -0.974 0.986
-dw 1.18e-9 -133 3.421 0.2629 1e-9 -10
# -dw 1.18e-9 -216 3.397 -9.20e-2 -0.5492 -10
-gamma 5.4 0
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
-dw 1.18e-9 -190 11.386
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
@ -251,10 +248,11 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
SO4-2 + H+ = HSO4-
-log_k 1.988; -delta_h 3.85 kcal
-log_k 1.988; -delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-dw 1.2e-9 1027 25 1.681 1e-9 -10 # a (=25) * mu^1.681
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
-dw 1.22e-9 1000 15.0 2.861
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
@ -296,14 +294,15 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O
-delta_h -312.130 kcal
-Vm 7 # Pray et al., 1952, IEC 44. 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
#AmmH+ = Amm + H+
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-log_k 119.077
-delta_h -187.055 kcal
-gamma 2.5 0
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
-gamma 2.5 0
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 -81 6.274 -4.118 -0.270
-dw 1.98e-9 178 3.747 0 1.220
#AmmH+ = Amm + H+
NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
@ -318,11 +317,10 @@ NH4+ = NH3 + H+
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-gamma 6.0 -0.27
-log_k 1.27; -delta_h 4.9 kcal
-Vm 10.45 0 -12.26 0 2.578 0 12.67 0 -2.60e-2 0.3516
-viscosity 0.139 0 0 7.95e-3 2.73e-2 1.38 0.127
-dw 1.35e-9 500 25 3 1e-9 -10
-log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal
-Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410
-viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758
-dw 1.35e-9 500 12.50 3.0
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
@ -429,7 +427,7 @@ SO4-2 + MgSO4 = Mg(SO4)2-2
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0
-viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0
-dw 0.69e-9 -661 35 -0.7452 0.4817 -10
-dw 0.99e-9 -200 17 4 1.1758
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.10 kcal
@ -448,26 +446,19 @@ Mg+2 + F- = MgF+
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC
# -log_k 1.27
# -delta_h 8.91 kcal
# -dw 1.2e-9 -400 1e-10 1e-10
# -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1
# -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90
Na+ + HCO3- = NaHCO3
-log_k -0.18; -delta_h 23 kJ
# -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271.
-gamma 0 0.23
-Vm 11.58 0 0 0 1.894
-viscosity 1 -1.035 -4.78e-2 0.274 -6.27e-2 -4.17e-2 1.0
-dw 6.73e-10 -400 1e-10 1e-10
-log_k -0.06; -delta_h 23 kJ
-gamma 0 0.1
-Vm 7.95 0 0 0 0.609
-viscosity -4e-2 -2.717 1.67e-5
-dw 6.73e-10
Na+ + SO4-2 = NaSO4-
-gamma 5.5 0
-gamma 5.5 0
-log_k 0.6; -delta_h -14.4 kJ
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
-Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604
-viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0
-dw 0.85e-9 -100 35 2.643 0.4323 -10
-dw 1.13e-9 -98 13.13 0.627 0.6047
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
@ -475,13 +466,18 @@ Na+ + HPO4-2 = NaHPO4-
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
K+ + HCO3- = KHCO3
-log_k -0.35; -delta_h 12 kJ
-gamma 0 9.4e-3
-Vm 9.48 0 0 0 -0.542
-viscosity 0.7 -1.289 9e-2
K+ + SO4-2 = KSO4-
-gamma 5.4 0.19
-log_k 0.6; -delta_h -10.4 kJ
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
-Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2
-viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224
-dw 0.52e-9 300 35 1.110 0.8 -10
-dw 0.85e-9 200 10.66 0 1.80
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
@ -1600,6 +1596,192 @@ Quartz
50 SAVE moles * TIME
-end
#INCLUDE$ \phreeqc\database\kinetic_rates.dat
# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
# The data are entered in a KINETICS block with -parms, the 'parms' are stored in memory by the RATES block, and used by Calc_value("name").
# For example:
# KINETICS 1
# Albite_PK
# -formula NaAlSi3O8
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
# In the RATES block, the parms are stored in memory (put(parm(i), -99, i)), and retrieved by the subroutine calc_value("Palandri_rate"), as e.g. roughness = get(-99, 3).
# RATES
# Albite_PK # Palandri and Kharaka, 2004
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 put(affinity, -99, 1) # store number in memory
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
# 40 SAVE calc_value("Palandri_rate")
# -end
# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html
# References
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
# KINETICS 1
# Albite_PK
# -formula NaAlSi3O8
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
# RATES
# Albite_PK # Palandri and Kharaka, 2004
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 put(affinity, -99, 1) # store value in memory
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
# 40 SAVE calc_value("Palandri_rate")
# -end
# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html
# References
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
CALCULATE_VALUES
Palandri_rate
# in KINETICS, define 11 parms:
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factor, gas constant
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end
Sverdrup_rate
# in KINETICS, define 34 parms:
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
10 affinity = get(-99, 1)
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factors
70 dif_temp = 1 / TK - 1 / 281
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
90
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
110 aAl = act("Al+3")
120 aSi = act("H4SiO4")
130 R = tot("OrganicMatter")
140
150 REM # rate by H+
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
170 pk_H = pkH - 3 + e_H * dif_temp
180 CAl = CAl * 1e-6
190 CBC = CBC * 1e-6
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
210
220 REM # rate by hydrolysis
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
240 CAl = CAl * 1e-6
250 CBC = CBC * 1e-6
260 CSi = CSi * 1e-6
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
290
300 REM # rate by CO2
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
340
350 REM # rate by Organic Acids
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
370 COrg = COrg * 1e-6
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
400
410 REM # rate by OH-
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
430 CAl = CAl * 1e-6
440 CBC = CBC * 1e-6
450 CSi = CSi * 1e-6
460 pk_OH = pkOH - 3 + e_OH * dif_temp
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
480
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
500 area = sp_area * M0 * (M / M0)^0.67
510
520 rate = roughness * area * rate * affinity
530 SAVE rate * TIME
-end
Hermanska_rate
# in KINETICS, define 14 parms:
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
# (Note that logk25 values are not used, they were transformed to A's.)
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # gas constant * Tk, act("H+")
70 RT = 8.314e-3 * TK : aH = act("H+")
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
150 rate_H2O = Ab * exp(- e_H2O / RT)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end
###########
#K-feldspar
###########