before H2S

This commit is contained in:
David Parkhurst 2021-07-06 17:30:19 -06:00
parent a7be9fcfed
commit c1c97a8592
3 changed files with 39 additions and 69 deletions

41
Amm.dat
View File

@ -181,7 +181,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 7.81 2.96 -0.46 # supcrt
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -242,20 +242,13 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-Vm 7.81 2.96 -0.46 # supcrt
H2Sg = HSg- + H+
-log_k -6.994
-delta_h 5.30 kcal
-analytical_expression 11.17 -0.02386 -3279.0
-gamma 3.5 0
-analytical 11.17 -0.02386 -3279.0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.570
-delta_h -43.760 kcal
@ -905,7 +898,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -917,7 +910,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -1119,7 +1112,6 @@ Sylvite
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
@ -1135,6 +1127,8 @@ H2O(g)
-P_c 217.60
-Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# Gases from LLNL...
O2(g)
O2 = O2
-log_k -2.8983
@ -1153,14 +1147,13 @@ N2(g)
-T_c 126.2; -P_c 33.50; -Omega 0.039
H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-log_k -7.9759
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
Amm(g)
Amm = Amm
@ -1183,13 +1176,11 @@ Ntg(g)
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1827,14 +1818,14 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
#
# =============================================================================================

View File

@ -181,7 +181,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 7.81 2.96 -0.46 # supcrt
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -242,20 +242,13 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-Vm 7.81 2.96 -0.46 # supcrt
H2Sg = HSg- + H+
-log_k -6.994
-delta_h 5.30 kcal
-analytical_expression 11.17 -0.02386 -3279.0
-gamma 3.5 0
-analytical 11.17 -0.02386 -3279.0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.570
-delta_h -43.760 kcal
@ -1127,7 +1120,6 @@ Sylvite
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
@ -1143,6 +1135,8 @@ H2O(g)
-P_c 217.60
-Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# Gases from LLNL...
O2(g)
O2 = O2
-log_k -2.8983
@ -1161,9 +1155,8 @@ N2(g)
-T_c 126.2; -P_c 33.50; -Omega 0.039
H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-log_k -7.9759
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
@ -1197,9 +1190,7 @@ Mtg(g)
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1493,7 +1484,7 @@ SURFACE_SPECIES
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
@ -1844,7 +1835,7 @@ END
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49-67.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
#

View File

@ -1,5 +1,5 @@
# Pitzer.DAT for calculating pressure dependence of reactions
# and temperature dependence to 200 °C. With
# and temperature dependence to 200 °C. With
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Details are given at the end of this file.
@ -31,7 +31,7 @@ Sr Sr+2 0 Sr 87.62
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # Oxygen gas
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Sg H2Sg 1.0 H2Sg 34.08 # H2S gas
Sg H2Sg 1.0 H2Sg 34.08
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
@ -103,7 +103,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 7.81 2.96 -0.46 # supcrt
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -133,9 +133,6 @@ H2Sg = HSg- + H+
-analytical 11.17 -0.02386 -3279.0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
B(OH)3 + H2O = B(OH)4- + H+
log_k -9.239
delta_h 0 kcal
@ -271,7 +268,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.09
delta_h -9.436 kcal
-analytic -120.63 -0.1051 0 54.509 # 50175°C, Bénézeth et al., 2018, GCA 224, 262-275.
-analytic -120.63 -0.1051 0 54.509 # 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Enstatite
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
@ -481,11 +478,11 @@ Ntg(g)
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
PITZER
-B0
@ -674,17 +671,12 @@ PITZER
Ca+2 CO2 0.183
Ca+2 H4SiO4 0.238 # ref. 3
Cl- CO2 -0.005
Cl- H2Sg -0.005
Cl- (H2Sg)2 -0.005
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
CO2 HSO4- -0.003
CO2 K+ 0.051
CO2 Mg+2 0.183
CO2 Na+ 0.085
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
H2Sg SO4-2 0 0 0.679
(H2Sg)2 Na+ 0.0123 0 0.256
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
H4SiO4 K+ 0.0298 # ref. 3
H4SiO4 Li+ 0.143 # ref. 3
H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3
@ -696,10 +688,6 @@ PITZER
Cl- H4SiO4 K+ -0.0153 # ref. 3
Cl- H4SiO4 Li+ -0.0196 # ref. 3
CO2 Na+ SO4-2 -0.015
H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
H2Sg Na+ SO4-2 0.157
(H2Sg)2 Cl- Na+ 0.0119
(H2Sg)2 Na+ SO4-2 -0.167
-PSI
B(OH)4- Cl- Na+ -0.0073
B3O3(OH)4- Cl- Na+ -0.024
@ -980,15 +968,15 @@ END
# W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
# for the high P,T Pitzer model and improvements for Calcite.
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.