Tony's changes 2/12/2024

This commit is contained in:
David Parkhurst 2024-02-12 15:50:08 -07:00
parent e0447f7ad5
commit e510f75214
5 changed files with 1567 additions and 1063 deletions

1756
Amm.dat

File diff suppressed because it is too large Load Diff

158
Concrete_PHR.dat Normal file
View File

@ -0,0 +1,158 @@
# Concrete minerals
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
PRINT; -reset false
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
SO4-AFem # Lothenbach 2019
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -31.57; -Vm 321
CO3-AFem # Lothenbach 2019
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
-log_k -34.59; -Vm 292
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
-log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Fe # Lothenbach 2019
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
-log_k -26.3; -Vm 155
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

195
Concrete_PZ.dat Normal file
View File

@ -0,0 +1,195 @@
# Concrete minerals for use with
# DATABASE c:\phreeqc\database\pitzer.dat
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
PRINT; -reset false
SOLUTION_MASTER_SPECIES
Al Al(OH)4- 0 Al 26.9815
H(0) H2 0 H
O(0) O2 0 O
SOLUTION_SPECIES
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
PITZER # Using data from Weskolowski, 1992, GCA
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
-B0
Al(OH)4- K+ -0.0669 0 0 8.24e-3
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
-B1
Al(OH)4- K+ 0.668 0 0 -1.93e-2
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
-C0
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
-THETA
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
# Al(OH)4- SO4-2 -0.012
-PSI
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
Al(OH)4- OH- K+ 0 0 0 0
Al(OH)4- K+ Na+ 0 0 0 0
END
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
O2(g)
O2 = O2; -log_k -2.8983
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
H2(g)
H2 = H2; -log_k -3.1050
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
# No Fe(OH)4- in Pitzer...
# SO4-AFem # Lothenbach 2019
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
# -log_k -31.57; -Vm 321
# CO3-AFem # Lothenbach 2019
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
# -log_k -34.59; -Vm 292
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
# -log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

144
kinetic_rates.dat Normal file
View File

@ -0,0 +1,144 @@
# Subroutines for calculating mineral dissolution rates from Palandri and Kharaka (2004) and Sverdrup et al. (2019).
# It facilitates to use the kinetic rates for various minerals compiled by these authors.
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
# The data are entered in a KINETICS block with -parms. For example:
# KINETICS 1
# Albite_PK
# -formula NaAlSi3O8
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
# RATES
# Albite_PK # Palandri and Kharaka, 2004
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 put(affinity, -99, 1) # store number in memory
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
# 40 SAVE calc_value("Palandri_rate")
# -end
# For an example file using the rates, see: kinetic_rates.phr
# References
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
CALCULATE_VALUES
Palandri_rate
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factor, gas constant
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end
Sverdrup_rate
10 affinity = get(-99, 1)
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factors
70 dif_temp = 1 / TK - 1 / 281
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
90
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
110 aAl = act("Al+3")
120 aSi = act("H4SiO4")
130 R = tot("OrganicMatter")
140
150 REM # rate by H+
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
170 pk_H = pkH - 3 + e_H * dif_temp
180 CAl = CAl * 1e-6
190 CBC = CBC * 1e-6
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
210
220 REM # rate by hydrolysis
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
240 CAl = CAl * 1e-6
250 CBC = CBC * 1e-6
260 CSi = CSi * 1e-6
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
290
300 REM # rate by CO2
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
340
350 REM # rate by Organic Acids
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
370 COrg = COrg * 1e-6
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
400
410 REM # rate by OH-
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
430 CAl = CAl * 1e-6
440 CBC = CBC * 1e-6
450 CSi = CSi * 1e-6
460 pk_OH = pkOH - 3 + e_OH * dif_temp
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
480
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
500 area = sp_area * M0 * (M / M0)^0.67
510
520 rate = roughness * area * rate * affinity
530 SAVE rate * TIME
-end
Hermanska_rate
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # gas constant * Tk, act("H+")
70 RT = 8.314e-3 * TK : aH = act("H+")
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
150 rate_H2O = Ab * exp(- e_H2O / RT)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end

View File

@ -3,187 +3,192 @@
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
B B(OH)3 0 B 10.81
Ba Ba+2 0 Ba 137.33
Br Br- 0 Br 79.904
C CO3-2 2 HCO3 12.0111
C(4) CO3-2 2 HCO3 12.0111
Ca Ca+2 0 Ca 40.08
Cl Cl- 0 Cl 35.453
E e- 0 0.0 0.0
Fe Fe+2 0 Fe 55.847
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
B B(OH)3 0 B 10.81
Ba Ba+2 0 Ba 137.33
Br Br- 0 Br 79.904
C CO3-2 2 HCO3 12.0111
C(4) CO3-2 2 HCO3 12.0111
Ca Ca+2 0 Ca 40.08
Cl Cl- 0 Cl 35.453
E e- 0 0.0 0.0
Fe Fe+2 0 Fe 55.847
H H+ -1 H 1.008
H(1) H+ -1 0.0
K K+ 0 K 39.0983
Li Li+ 0 Li 6.941
Mg Mg+2 0 Mg 24.305
Mn Mn+2 0 Mn 54.938
Na Na+ 0 Na 22.9898
O H2O 0 O 16.00
O(-2) H2O 0 0.0
S SO4-2 0 SO4 32.064
S(6) SO4-2 0 SO4
Si H4SiO4 0 SiO2 28.0843
Sr Sr+2 0 Sr 87.62
K K+ 0 K 39.0983
Li Li+ 0 Li 6.941
Mg Mg+2 0 Mg 24.305
Mn Mn+2 0 Mn 54.938
Na Na+ 0 Na 22.9898
O H2O 0 O 16.00
O(-2) H2O 0 0.0
S SO4-2 0 SO4 32.064
S(6) SO4-2 0 SO4
Si H4SiO4 0 SiO2 28.0843
Sr Sr+2 0 Sr 87.62
# redox-uncoupled gases
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # Oxygen gas
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # Oxygen gas
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Sg H2Sg 0.0 H2Sg 32.064 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4.
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
-viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
-dw 9.31e-9 721 6.094 0.8090 3.161 24.01 # The dw parameters are defined in ref. 3.
# Dw(25 C) dw_T a a2 visc a3
# Dw(TK) = 9.31e-9 * exp(721 / TK - 721 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.161
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn.
# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-
# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka))
e- = e-
H2O = H2O
-dw 2.299e-9 -254
Li+ = Li+
-dw 1.03e-9 80
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094
-dw 1.03e-9 -3 4.050 5.511 3.0
Na+ = Na+
-dw 1.33e-9 122 1.52 3.70
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# for calculating densities (rho) when I > 3...
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
-viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
-dw 1.33e-9 -116 4.386 -2.808 0.6212
K+ = K+
-dw 1.96e-9 395 2.5 21
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1
-viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
-dw 1.96e-9 258 3.048 1.746 0.4695
Mg+2 = Mg+2
-dw 0.705e-9 111 2.4 13.7
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
-dw 0.705e-9 48 11.92 -2.921 0.9631
Ca+2 = Ca+2
-dw 0.793e-9 97 3.4 24.6
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
-viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
-dw 0.792e-9 -196 11.80 -2.743 0.9738
Sr+2 = Sr+2
-dw 0.794e-9 161
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 80 25 -2.335 3.0
Ba+2 = Ba+2
-dw 0.848e-9 46
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768
-dw 0.848e-9 -35 22.78 -2.560 3.0
Mn+2 = Mn+2
-dw 0.688e-9
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
-dw 0.688e-9
Fe+2 = Fe+2
-dw 0.719e-9
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
-dw 0.719e-9
Cl- = Cl-
-dw 2.03e-9 194 1.6 6.9
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 154 3.209 0.6865 0.7555
CO3-2 = CO3-2
-dw 0.955e-9 225 1.002 3.96
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
-viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
-viscosity -0.117 0.303 1.60e-2 4.4e-4 -2.85e-2 1.432 -2.01
-dw 0.955e-9 17 4.219 0.3648 0.5628 -10
SO4-2 = SO4-2
-dw 1.07e-9 138 3.95 25.9
-Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0
-viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271
-Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786
-viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248
-dw 1.07e-9 7 2.826 0.101 0.6919
B(OH)3 = B(OH)3
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
-dw 1.1e-9
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
Br- = Br-
-dw 2.01e-9 258
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
-viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818
-dw 2.01e-9 117 5.941 -2.583 1e-9
H4SiO4 = H4SiO4
-dw 1.10e-9
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
-dw 1.10e-9
# redox-uncoupled gases
Hdg = Hdg # H2
-dw 5.13e-9
-Vm 6.52 0.78 0.12 # supcrt
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
Oxg = Oxg # O2
-dw 2.35e-9
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
Mtg = Mtg # CH4
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
Ntg = Ntg # N2
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
-Vm 7 # Pray et al., 1952, IEC 44. 1146
-Vm 7 # Pray et al., 1952, IEC 44. 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-dw 5.27e-9 548 0.52 1e-10
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH
-dw 5.27e-9 467 1.779 0.4280 0.3124
CO3-2 + H+ = HCO3-
log_k 10.3393
log_k 10.3393
delta_h -3.561 kcal
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
-dw 1.18e-9 -79.0 0.956 -3.29
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
-viscosity 0 0.633 7.2e-3 0 0 0 1.087
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
-viscosity -1 1.34 -5.06e-3 1.29e-2 1.81e-2 -1.306 1.08
-dw 1.18e-9 -133 3.421 0.2629 1e-9 -10
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.6767
delta_h -5.738 kcal
log_k 16.6767
delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
SO4-2 + H+ = HSO4-
log_k 1.979
delta_h 4.91 kcal
log_k 1.979; delta_h 4.91 kcal
-analytic -5.3585 0.0183412 557.2461
-dw 1.33e-9
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-dw 1.10e-9 165 25 0 1e-9 # a * Vm correction
H2Sg = HSg- + H+
log_k -6.994
delta_h 5.30 kcal
-analytical 11.17 -0.02386 -3279.0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
-dw 1.73e-9
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical 10.227 -0.01384 -2200
-dw 2.1e-9
-Vm 36.41 -71.95 0 0 2.58
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
B(OH)3 + H2O = B(OH)4- + H+
log_k -9.239
log_k -9.239
delta_h 0 kcal
3B(OH)3 = B3O3(OH)4- + 2H2O + H+
log_k -7.528
log_k -7.528
delta_h 0 kcal
4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+
log_k -16.134
log_k -16.134
delta_h 0 kcal
Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+
log_k -7.589
log_k -7.589
delta_h 0 kcal
Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+
log_k -7.840
log_k -7.840
delta_h 0 kcal
# Ca+2 + CO3-2 = CaCO3
# log_k 3.151
# log_k 3.151
# delta_h 3.547 kcal
# -analytic -1228.806 -0.299440 35512.75 485.818
# -dw 4.46e-10 # complexes: calc'd with the Pikal formula
# -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
# -dw 4.46e-10 # complexes: calc'd with the Pikal formula
# -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
Mg+2 + H2O = MgOH+ + H+
log_k -11.809
log_k -11.809
delta_h 15.419 kcal
Mg+2 + CO3-2 = MgCO3
log_k 2.928
log_k 2.928
delta_h 2.535 kcal
-analytic -32.225 0.0 1093.486 12.72433
-dw 4.21e-10
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
-analytic -32.225 0.0 1093.486 12.72433
-dw 4.21e-10
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
H4SiO4 = H3SiO4- + H+
-log_k -9.83; -delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23.0; -delta_h 17.6 kcal
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
@ -191,22 +196,22 @@ H4SiO4 = H2SiO4-2 + 2 H+
PHASES
Akermanite
Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat
log_k 45.23
log_k 45.23
-delta_H -289 kJ/mol
Vm 92.6
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.362
-analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3
-Vm 46.1 # 136.14 / 2.95
-Vm 46.1 # 136.14 / 2.95
Anthophyllite
Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat
log_k 66.80
log_k 66.80
-delta_H -483 kJ/mol
Vm 269
Antigorite
Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat
log_k 477.19
log_k 477.19
-delta_H -3364 kJ/mol
Vm 1745
Aragonite
@ -214,48 +219,48 @@ Aragonite
log_k -8.336
delta_h -2.589 kcal
-analytic -171.8607 -.077993 2903.293 71.595
-Vm 34.04
-Vm 34.04
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
-Vm 65.5
Artinite
Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat
log_k 19.66
log_k 19.66
-delta_H -130 kJ/mol
Vm 97.4
Barite
BaSO4 = Ba+2 + SO4-2
log_k -9.97; delta_h 6.35 kcal
-analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3
-Vm 52.9
-Vm 52.9
Bischofite
MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O
log_k 4.455
log_k 4.455
-analytical_expression 7.526 -1.114e-2 115.7 # ref. 3
Vm 127.1
Bloedite
Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O
log_k -2.347
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
log_k -2.347
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
Vm 147
Brucite
Mg(OH)2 = Mg++ + 2 OH-
log_k -10.88
log_k -10.88
-delta_H 4.85 kcal/mol
Vm 24.6
Burkeite
Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+
log_k -0.772
log_k -0.772
Vm 152
Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.406
log_k -8.406
delta_h -2.297 kcal
-analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9
-Vm 36.9
Carnallite
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
log_k 4.35; -delta_h 1.17
@ -263,105 +268,105 @@ Carnallite
Vm 173.7
Celestite
SrSO4 = Sr+2 + SO4-2
log_k -6.630
log_k -6.630
-analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3
-Vm 46.4
-Vm 46.4
Chalcedony
SiO2 + 2 H2O = H4SiO4
-log_k -3.55; -delta_h 4.720 kcal
-Vm 23.1
-Vm 23.1
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat
-log_k 32.2
-delta_h -46.800 kcal
-analytic 13.248 0.0 10217.1 -6.1894
-Vm 110
-Vm 110
Diopside
CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat
log_k 20.96
log_k 20.96
-delta_H -134 kJ/mol
Vm 67.2
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.09
log_k -17.09
delta_h -9.436 kcal
-analytic -120.63 -0.1051 0 54.509 # 50175°C, Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
-Vm 64.5
Enstatite
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
log_k 11.33
log_k 11.33
-delta_H -83 kJ/mol
Vm 31.3
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.881
log_k -1.881
-analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3
Vm 147
Forsterite
Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat
log_k 27.86
log_k 27.86
-delta_H -206 kJ/mol
Vm 43.7
Gaylussite
CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O
log_k -9.421
log_k -9.421
Glaserite
NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2
log_k -3.803; -delta_h 25
-Vm 123
-Vm 123
Glauberite
Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2
log_k -5.31
log_k -5.31
-analytical_expression 218.142 0 -9285 -77.735 # ref. 3
Vm 100.4
Goergeyite
K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O
log_k -29.5
-analytical_expression 1056.787 0 -52300 -368.06 # ref. 3
-Vm 295.9
-Vm 295.9
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
-log_k -4.58; -delta_h -0.109 kcal
-analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3
-Vm 73.9
-Vm 73.9
Halite
NaCl = Cl- + Na+
log_k 1.570
log_k 1.570
-analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3
-Vm 27.1
-Vm 27.1
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.635
log_k -1.635
-analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3
Vm 132
Huntite
CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat
log_k 10.30
log_k 10.30
-analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2
Vm 130.8
Kainite
KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O
log_k -0.193
log_k -0.193
Kalicinite
KHCO3 = K+ + H+ + CO3-2
log_k -9.94 # Harvie et al., 1984
log_k -9.94 # Harvie et al., 1984
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -0.123
log_k -0.123
-analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3
Vm 53.8
Labile_S
Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O
log_k -5.672
log_k -5.672
Leonhardite
MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O
log_k -0.887
log_k -0.887
Leonite
K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O
log_k -3.979
log_k -3.979
Magnesite
MgCO3 = CO3-2 + Mg+2
log_k -7.834
log_k -7.834
delta_h -6.169
Vm 28.3
MgCl2_2H2O
@ -376,51 +381,51 @@ Mirabilite
Vm 216
Misenite
K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+
log_k -10.806
log_k -10.806
Nahcolite
NaHCO3 = CO3-2 + H+ + Na+
log_k -10.742
log_k -10.742
Vm 38.0
Natron
Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O
log_k -0.825
log_k -0.825
Nesquehonite
MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O
log_k -5.167
log_k -5.167
Pentahydrite
MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O
log_k -1.285
log_k -1.285
Pirssonite
Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O
log_k -9.234
log_k -9.234
Polyhalite
K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O
log_k -13.744
log_k -13.744
Vm 218
Portlandite
Ca(OH)2 = Ca+2 + 2 OH-
log_k -5.190
log_k -5.190
Quartz
SiO2 + 2 H2O = H4SiO4
-log_k -3.98; -delta_h 5.990 kcal
-Vm 22.67
-Vm 22.67
Schoenite
K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O
log_k -4.328
log_k -4.328
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
-log_k 18.66
-Vm 162
-Vm 162
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
-log_k 15.760
-delta_h -10.700 kcal
-Vm 154
-Vm 154
SiO2(a)
SiO2 + 2 H2O = H4SiO4
-log_k -2.71; -delta_h 3.340 kcal
-analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3
-Vm 25.7
-Vm 25.7
Sylvite
KCl = K+ + Cl-
log_k 0.90; -delta_h 8
@ -429,42 +434,42 @@ Sylvite
Syngenite
K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O
log_k -6.43; -delta_h -32.65 # ref. 3
-Vm 127.3
-Vm 127.3
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat
-log_k 21.399
-delta_h -46.352 kcal
-Vm 140
-Vm 140
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
-Vm 52.9
-Vm 52.9
Trona
Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O
log_k -11.384
log_k -11.384
Vm 106
Borax
Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O
log_k 12.464
log_k 12.464
Vm 223
Boric_acid,s
B(OH)3 = B(OH)3
log_k -0.030
log_k -0.030
KB5O8:4H2O
KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+
log_k 4.671
log_k 4.671
K2B4O7:4H2O
K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+
log_k 13.906
log_k 13.906
NaBO2:4H2O
NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O
log_k 9.568
log_k 9.568
NaB5O8:5H2O
NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+
log_k 5.895
log_k 5.895
Teepleite
Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O
log_k 10.840
log_k 10.840
CO2(g)
CO2 = CO2
log_k -1.468
@ -778,7 +783,7 @@ EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
log_k 0.0
log_k 0.0
Na+ + X- = NaX
log_k 0.0
@ -846,7 +851,7 @@ SURFACE_SPECIES
log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
@ -871,7 +876,7 @@ SURFACE_SPECIES
log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
log_k -7.2 # table 10.5
log_k -7.2 # table 10.5
#
# Derived constants table 10.5
#
@ -880,10 +885,10 @@ SURFACE_SPECIES
log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
log_k -0.4 # table 10.5
log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
log_k -3.5 # table 10.5
log_k -3.5 # table 10.5
# Iron
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
# log_k 0.7 # LFER using table 10.5
@ -892,17 +897,17 @@ SURFACE_SPECIES
# log_k -2.5 # LFER using table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k -0.95
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.98
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
log_k -11.55
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
log_k -11.55
###############################################
# ANIONS #
# ANIONS #
###############################################
#
# Anions from table 10.6
@ -975,14 +980,14 @@ END
# H2O 0.49 0.19 0.19 0.49
# =============================================================================================
# The molar volumes of solids are entered with
# -Vm vm cm3/mol
# -Vm vm cm3/mol
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# --------------------
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
# The volume (cm3/mol) is
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)