Tony's viscosity with many examples

This commit is contained in:
David Parkhurst 2023-04-03 18:31:48 -06:00
parent 91aa5fd89b
commit fd9eb5ee8a
3 changed files with 432 additions and 254 deletions

291
Amm.dat
View File

@ -1,6 +1,5 @@
# PHREEQC.DAT for calculating pressure dependence of reactions, with
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
@ -64,38 +63,43 @@ SOLUTION_SPECIES
H+ = H+
-gamma 9.0 0
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3.
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos)
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
e- = e-
H2O = H2O
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Ca+2 = Ca+2
-gamma 5.0 0.1650
-dw 0.793e-9 97 3.4 24.6
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
Mg+2 = Mg+2
-gamma 5.5 0.20
-dw 0.705e-9 111 2.4 13.7
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
Na+ = Na+
-gamma 4.0 0.075
-gamma 4.08 0.082 # halite solubility
-dw 1.33e-9 122 1.52 3.70
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# for calculating densities (rho) when I > 3...
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
K+ = K+
-gamma 3.5 0.015
-dw 1.96e-9 395 2.5 21
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
Fe+2 = Fe+2
-gamma 6.0 0
-dw 0.719e-9
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
Mn+2 = Mn+2
-gamma 6.0 0
-dw 0.688e-9
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
Al+3 = Al+3
-gamma 9.0 0
-dw 0.559e-9
@ -103,12 +107,14 @@ Al+3 = Al+3
Ba+2 = Ba+2
-gamma 5.0 0
-gamma 4.0 0.153 # Barite solubility
-dw 0.848e-9 46
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1
-dw 0.848e-9 100
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
Sr+2 = Sr+2
-gamma 5.260 0.121
-dw 0.794e-9 161
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
H4SiO4 = H4SiO4
-dw 1.10e-9
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
@ -116,56 +122,63 @@ Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-dw 2.03e-9 194 1.6 6.9
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
CO3-2 = CO3-2
-gamma 5.4 0
-dw 0.955e-9 0 1.12 2.84
-Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1
-dw 0.955e-9 27.4 13.7 94.1
-Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770
-viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04
SO4-2 = SO4-2
-gamma 5.0 -0.04
-dw 1.07e-9 34 2.08 13.4
-Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1
-dw 1.07e-9 187 2.64 22.6
-Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
-viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143
NO3- = NO3-
-gamma 3.0 0
-dw 1.9e-9 184 1.85 3.85
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
AmmH+ = AmmH+
-gamma 2.5 0
-dw 1.98e-9 312 0.95 4.53
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
-viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945
H3BO3 = H3BO3
-dw 1.1e-9
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
PO4-3 = PO4-3
-gamma 4.0 0
-dw 0.612e-9
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
F- = F-
-gamma 3.5 0
-dw 1.46e-9
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2
-dw 1.46e-9 10
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
Li+ = Li+
-gamma 6.0 0
-dw 1.03e-9 80
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087
Br- = Br-
-gamma 3.0 0
-dw 2.01e-9 258
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
Zn+2 = Zn+2
-gamma 5.0 0
-dw 0.715e-9
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
Cd+2 = Cd+2
-dw 0.717e-9
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
Pb+2 = Pb+2
-dw 0.945e-9
-Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
Cu+2 = Cu+2
-gamma 6.0 0
-dw 0.733e-9
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
# redox-uncoupled gases
Hdg = Hdg # H2
-dw 5.13e-9
@ -175,19 +188,20 @@ Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
Mtg = Mtg # CH4
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
Ntg = Ntg # N2
-dw 1.96e-9
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-dw 5.27e-9 548 0.52 1e-10
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
@ -198,19 +212,25 @@ H2O = OH- + H+
-delta_h -1.759 kcal
-dw 5.13e-9
-Vm 6.52 0.78 0.12 # supcrt
H+ + Cl- = HCl
-log_k -0.5
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329
-delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-dw 1.18e-9 0 1.43 1e-10
-Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1
-dw 1.18e-9 -163 0.808 -3.18
-Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667
-viscosity 0 0.670 1.03e-2 0 0 0 1.082
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
-delta_h -61.039 kcal
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
SO4-2 + H+ = HSO4-
-log_k 1.988
-delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-dw 1.33e-9
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
@ -242,7 +262,7 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
@ -272,16 +292,19 @@ AmmH+ = Amm + H+
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-dw 2.28e-9
-Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2
-Vm 6.69 2.8 3.58 -2.88 1.43
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
AmmH+ + SO4-2 = AmmHSO4-
-log_k 1.11
-Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2
-log_k 1.1
-delta_h -0.47 kcal
-gamma 0 0
-Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1
-dw 7.46e-10
-viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
@ -302,17 +325,17 @@ PO4-3 + H+ = HPO4-2
-delta_h -3.530 kcal
-gamma 5.0 0
-dw 0.69e-9
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
PO4-3 + 2 H+ = H2PO4-
-log_k 19.553
-delta_h -4.520 kcal
-gamma 5.4 0
-dw 0.846e-9
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
PO4-3 + 3H+ = H3PO4
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
delta_h -10.1 kJ
-Vm 7.47 12.4 6.29 -3.29 0 # ref. 2
-Vm 7.47 12.4 6.29 -3.29 0
H+ + F- = HF
-log_k 3.18
-delta_h 3.18 kcal
@ -372,16 +395,25 @@ Mg+2 + CO3-2 = MgCO3
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
Mg+2 + H+ + CO3-2 = MgHCO3+
-log_k 11.399
-delta_h -2.771 kcal
-delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-gamma 4.0 0
-dw 4.78e-10
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
Mg+2 + SO4-2 = MgSO4
-log_k 2.37
-delta_h 4.550 kcal
-dw 4.45e-10
-Vm 2.4 -0.97 6.1 -2.74 # est'd
-log_k 2.42; -delta_h 19.0 kJ
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-gamma 0 0.20
-Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0
-dw 4.45e-10
-viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0
SO4-2 + MgSO4 = Mg(SO4)2-2
-log_k 0.52; -delta_h -13.6 kJ
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-gamma 7 0.047
-Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2
-Dw 1e-9 -2926 6.10e-2 -5.41
-viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.10 kcal
@ -400,40 +432,43 @@ Mg+2 + F- = MgF+
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
Na+ + CO3-2 = NaCO3-
-log_k 1.27
-delta_h 8.91 kcal
-dw 1.2e-9 0 1e-10 1e-10
-Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1
Na+ + HCO3- = NaHCO3
-log_k -0.25
-delta_h -1 kcal
-dw 6.73e-10
-Vm 0.431 # ref. 1
# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC
# -log_k 1.27
# -delta_h 8.91 kcal
# -dw 1.2e-9 -400 1e-10 1e-10
# -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1
# -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90
# Na+ + HCO3- = NaHCO3
# -log_k 0.14
# -delta_h -6.71 kcal
# -dw 6.73e-10 -400 1e-10 1e-10
# -Vm 6.22
# -viscosity -0.026 0 0 -0.182 0 3
Na+ + SO4-2 = NaSO4-
-log_k 0.7
-delta_h 1.120 kcal
-gamma 5.4 0
-dw 1.33e-9 0 0.57 1e-10
-Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1
-log_k 0.6; -delta_h -14.4 kJ
-analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC
-gamma 0 0
-Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672
-dw 1.183e-9 438 1e-10 1e-10
-viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
K+ + SO4-2 = KSO4-
-log_k 0.85
-delta_h 2.250 kcal
-analytical 3.106 0.0 -673.6
-gamma 5.4 0
-dw 1.5e-9 0 1e-10 1e10
-Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1
-log_k 0.6; -delta_h -10.4 kJ
-analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC
-gamma 0 8.3e-3
-Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166
-dw 5.11e-10 1694 -0.587 -4.43
-viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
Fe+2 + H2O = FeOH+ + H+
-log_k -9.5
-delta_h 13.20 kcal
@ -451,7 +486,7 @@ Fe+2 + HCO3- = FeHCO3+
Fe+2 + SO4-2 = FeSO4
-log_k 2.25
-delta_h 3.230 kcal
-Vm -13 0 123 # ref. 2
-Vm -13 0 123
Fe+2 + HSO4- = FeHSO4+
-log_k 1.08
Fe+2 + 2HS- = Fe(HS)2
@ -539,14 +574,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+
Mn+2 + Cl- = MnCl+
-log_k 0.61
-gamma 5.0 0
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
Mn+2 + 2 Cl- = MnCl2
-log_k 0.25
-Vm 1e-5 0 144 # ref. 2
-Vm 1e-5 0 144
Mn+2 + 3 Cl- = MnCl3-
-log_k -0.31
-gamma 5.0 0
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
Mn+2 + CO3-2 = MnCO3
-log_k 4.9
Mn+2 + HCO3- = MnHCO3+
@ -555,11 +590,11 @@ Mn+2 + HCO3- = MnHCO3+
Mn+2 + SO4-2 = MnSO4
-log_k 2.25
-delta_h 3.370 kcal
-Vm -1.31 -1.83 62.3 -2.7 # ref. 2
-Vm -1.31 -1.83 62.3 -2.7
Mn+2 + 2 NO3- = Mn(NO3)2
-log_k 0.6
-delta_h -0.396 kcal
-Vm 6.16 0 29.4 0 0.9 # ref. 2
-Vm 6.16 0 29.4 0 0.9
Mn+2 + F- = MnF+
-log_k 0.84
-gamma 5.0 0
@ -572,7 +607,7 @@ Al+3 + H2O = AlOH+2 + H+
-delta_h 11.49 kcal
-analytic -38.253 0.0 -656.27 14.327
-gamma 5.4 0
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353.
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353.
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
-log_k -10.1
-delta_h 26.90 kcal
@ -691,11 +726,11 @@ Cu+2 + Cl- = CuCl+
-log_k 0.43
-delta_h 8.65 kcal
-gamma 4.0 0
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
Cu+2 + 2Cl- = CuCl2
-log_k 0.16
-delta_h 10.56 kcal
-Vm 26.8 0 -136 # ref. 2
-Vm 26.8 0 -136
Cu+2 + 3Cl- = CuCl3-
-log_k -2.29
-delta_h 13.69 kcal
@ -723,7 +758,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
Cu+2 + SO4-2 = CuSO4
-log_k 2.31
-delta_h 1.220 kcal
-Vm 5.21 0 -14.6 # ref. 2
-Vm 5.21 0 -14.6
Cu+2 + 3HS- = Cu(HS)3-
-log_k 25.9
Zn+2 + H2O = ZnOH+ + H+
@ -739,21 +774,21 @@ Zn+2 + Cl- = ZnCl+
-log_k 0.43
-delta_h 7.79 kcal
-gamma 4.0 0
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
Zn+2 + 2 Cl- = ZnCl2
-log_k 0.45
-delta_h 8.5 kcal
-Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2
-Vm -10.1 4.57 241 -2.97 -1e-3
Zn+2 + 3Cl- = ZnCl3-
-log_k 0.5
-delta_h 9.56 kcal
-gamma 4.0 0
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
Zn+2 + 4Cl- = ZnCl4-2
-log_k 0.2
-delta_h 10.96 kcal
-gamma 5.0 0
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
Zn+2 + H2O + Cl- = ZnOHCl + H+
-log_k -7.48
Zn+2 + 2HS- = Zn(HS)2
@ -769,10 +804,10 @@ Zn+2 + HCO3- = ZnHCO3+
Zn+2 + SO4-2 = ZnSO4
-log_k 2.37
-delta_h 1.36 kcal
-Vm 2.51 0 18.8 # ref. 2
-Vm 2.51 0 18.8
Zn+2 + 2SO4-2 = Zn(SO4)2-2
-log_k 3.28
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
Zn+2 + Br- = ZnBr+
-log_k -0.58
Zn+2 + 2Br- = ZnBr2
@ -798,19 +833,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+
Cd+2 + NO3- = CdNO3+
-log_k 0.4
-delta_h -5.2 kcal
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
Cd+2 + Cl- = CdCl+
-log_k 1.98
-delta_h 0.59 kcal
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
Cd+2 + 2 Cl- = CdCl2
-log_k 2.6
-delta_h 1.24 kcal
-Vm 5.53 # ref. 2
-Vm 5.53
Cd+2 + 3 Cl- = CdCl3-
-log_k 2.4
-delta_h 3.9 kcal
-Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
Cd+2 + CO3-2 = CdCO3
-log_k 2.9
Cd+2 + 2CO3-2 = Cd(CO3)2-2
@ -820,10 +855,10 @@ Cd+2 + HCO3- = CdHCO3+
Cd+2 + SO4-2 = CdSO4
-log_k 2.46
-delta_h 1.08 kcal
-Vm 10.4 0 57.9 # ref. 2
-Vm 10.4 0 57.9
Cd+2 + 2SO4-2 = Cd(SO4)2-2
-log_k 3.5
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
Cd+2 + Br- = CdBr+
-log_k 2.17
-delta_h -0.81 kcal
@ -905,7 +940,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -917,7 +952,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -967,6 +1002,35 @@ Barite
-delta_h 6.35 kcal
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
-Vm 52.9
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
Vm 216
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
-Vm 52.9
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.74; -delta_h 10.57 kJ
-analytical_expression -3.59 6.21e-3
Vm 147
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.57; -delta_h 2.35 kJ
-analytical_expression -1.978 1.38e-3
Vm 132
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -1.16; -delta_h 9.22 kJ
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
Vm 53.8
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
-log_k -3.421
@ -1131,9 +1195,7 @@ CO2(g)
H2O(g)
H2O = H2O
-log_k 1.506; delta_h -44.03 kJ
-T_c 647.3
-P_c 217.60
-Omega 0.344
-T_c 647.3; -P_c 217.60; -Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
O2(g)
O2 = O2
@ -1155,12 +1217,12 @@ H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
Amm(g)
Amm = Amm
@ -1183,13 +1245,13 @@ Ntg(g)
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1827,15 +1889,28 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with

View File

@ -1,6 +1,5 @@
# PHREEQC.DAT for calculating pressure dependence of reactions, with
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
@ -40,7 +39,7 @@ N NO3- 0 N 14.0067
N(+5) NO3- 0 N
N(+3) NO2- 0 N
N(0) N2 0 N
N(-3) NH4+ 0 N 14.0067
N(-3) NH4+ 0 N 14.0067
#Amm AmmH+ 0 AmmH 17.031
B H3BO3 0 B 10.81
P PO4-3 2.0 P 30.9738
@ -64,38 +63,43 @@ SOLUTION_SPECIES
H+ = H+
-gamma 9.0 0
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3.
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos)
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
e- = e-
H2O = H2O
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Ca+2 = Ca+2
-gamma 5.0 0.1650
-dw 0.793e-9 97 3.4 24.6
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
Mg+2 = Mg+2
-gamma 5.5 0.20
-dw 0.705e-9 111 2.4 13.7
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
Na+ = Na+
-gamma 4.0 0.075
-gamma 4.08 0.082 # halite solubility
-dw 1.33e-9 122 1.52 3.70
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# for calculating densities (rho) when I > 3...
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
K+ = K+
-gamma 3.5 0.015
-dw 1.96e-9 395 2.5 21
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
Fe+2 = Fe+2
-gamma 6.0 0
-dw 0.719e-9
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
Mn+2 = Mn+2
-gamma 6.0 0
-dw 0.688e-9
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
Al+3 = Al+3
-gamma 9.0 0
-dw 0.559e-9
@ -103,12 +107,14 @@ Al+3 = Al+3
Ba+2 = Ba+2
-gamma 5.0 0
-gamma 4.0 0.153 # Barite solubility
-dw 0.848e-9 46
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1
-dw 0.848e-9 100
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
Sr+2 = Sr+2
-gamma 5.260 0.121
-dw 0.794e-9 161
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
H4SiO4 = H4SiO4
-dw 1.10e-9
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
@ -116,56 +122,63 @@ Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-dw 2.03e-9 194 1.6 6.9
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
CO3-2 = CO3-2
-gamma 5.4 0
-dw 0.955e-9 0 1.12 2.84
-Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1
-dw 0.955e-9 27.4 13.7 94.1
-Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770
-viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04
SO4-2 = SO4-2
-gamma 5.0 -0.04
-dw 1.07e-9 34 2.08 13.4
-Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1
-dw 1.07e-9 187 2.64 22.6
-Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
-viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143
NO3- = NO3-
-gamma 3.0 0
-dw 1.9e-9 184 1.85 3.85
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
#AmmH+ = AmmH+
# -gamma 2.5 0
# -dw 1.98e-9 312 0.95 4.53
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
# -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945
H3BO3 = H3BO3
-dw 1.1e-9
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
PO4-3 = PO4-3
-gamma 4.0 0
-dw 0.612e-9
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
F- = F-
-gamma 3.5 0
-dw 1.46e-9
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2
-dw 1.46e-9 10
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
Li+ = Li+
-gamma 6.0 0
-dw 1.03e-9 80
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087
Br- = Br-
-gamma 3.0 0
-dw 2.01e-9 258
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
Zn+2 = Zn+2
-gamma 5.0 0
-dw 0.715e-9
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
Cd+2 = Cd+2
-dw 0.717e-9
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
Pb+2 = Pb+2
-dw 0.945e-9
-Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
Cu+2 = Cu+2
-gamma 6.0 0
-dw 0.733e-9
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
# redox-uncoupled gases
Hdg = Hdg # H2
-dw 5.13e-9
@ -175,19 +188,20 @@ Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
Mtg = Mtg # CH4
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
Ntg = Ntg # N2
-dw 1.96e-9
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-dw 5.27e-9 548 0.52 1e-10
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
@ -198,19 +212,25 @@ H2O = OH- + H+
-delta_h -1.759 kcal
-dw 5.13e-9
-Vm 6.52 0.78 0.12 # supcrt
H+ + Cl- = HCl
-log_k -0.5
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329
-delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-dw 1.18e-9 0 1.43 1e-10
-Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1
-dw 1.18e-9 -163 0.808 -3.18
-Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667
-viscosity 0 0.670 1.03e-2 0 0 0 1.082
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
-delta_h -61.039 kcal
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
SO4-2 + H+ = HSO4-
-log_k 1.988
-delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-dw 1.33e-9
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
@ -242,7 +262,7 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
@ -267,29 +287,34 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O
-delta_h -312.130 kcal
-dw 1.96e-9
-Vm 7 # Pray et al., 1952, IEC 44. 1146
#AmmH+ = Amm + H+
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-log_k 119.077
-delta_h -187.055 kcal
-gamma 2.5 0
-dw 1.98e-9 312 0.95 4.53
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
-viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945
NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-dw 2.28e-9
-Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2
-Vm 6.69 2.8 3.58 -2.88 1.43
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-log_k 1.11
-Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2
-log_k 1.1
-delta_h -0.47 kcal
-gamma 0 0
-Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1
-dw 7.46e-10
-viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
@ -310,17 +335,17 @@ PO4-3 + H+ = HPO4-2
-delta_h -3.530 kcal
-gamma 5.0 0
-dw 0.69e-9
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
PO4-3 + 2 H+ = H2PO4-
-log_k 19.553
-delta_h -4.520 kcal
-gamma 5.4 0
-dw 0.846e-9
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
PO4-3 + 3H+ = H3PO4
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
delta_h -10.1 kJ
-Vm 7.47 12.4 6.29 -3.29 0 # ref. 2
-Vm 7.47 12.4 6.29 -3.29 0
H+ + F- = HF
-log_k 3.18
-delta_h 3.18 kcal
@ -380,16 +405,25 @@ Mg+2 + CO3-2 = MgCO3
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
Mg+2 + H+ + CO3-2 = MgHCO3+
-log_k 11.399
-delta_h -2.771 kcal
-delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-gamma 4.0 0
-dw 4.78e-10
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
Mg+2 + SO4-2 = MgSO4
-log_k 2.37
-delta_h 4.550 kcal
-dw 4.45e-10
-Vm 2.4 -0.97 6.1 -2.74 # est'd
-log_k 2.42; -delta_h 19.0 kJ
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-gamma 0 0.20
-Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0
-dw 4.45e-10
-viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0
SO4-2 + MgSO4 = Mg(SO4)2-2
-log_k 0.52; -delta_h -13.6 kJ
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-gamma 7 0.047
-Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2
-Dw 1e-9 -2926 6.10e-2 -5.41
-viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.10 kcal
@ -408,40 +442,43 @@ Mg+2 + F- = MgF+
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
Na+ + CO3-2 = NaCO3-
-log_k 1.27
-delta_h 8.91 kcal
-dw 1.2e-9 0 1e-10 1e-10
-Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1
Na+ + HCO3- = NaHCO3
-log_k -0.25
-delta_h -1 kcal
-dw 6.73e-10
-Vm 0.431 # ref. 1
# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC
# -log_k 1.27
# -delta_h 8.91 kcal
# -dw 1.2e-9 -400 1e-10 1e-10
# -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1
# -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90
# Na+ + HCO3- = NaHCO3
# -log_k 0.14
# -delta_h -6.71 kcal
# -dw 6.73e-10 -400 1e-10 1e-10
# -Vm 6.22
# -viscosity -0.026 0 0 -0.182 0 3
Na+ + SO4-2 = NaSO4-
-log_k 0.7
-delta_h 1.120 kcal
-gamma 5.4 0
-dw 1.33e-9 0 0.57 1e-10
-Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1
-log_k 0.6; -delta_h -14.4 kJ
-analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC
-gamma 0 0
-Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672
-dw 1.183e-9 438 1e-10 1e-10
-viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
K+ + SO4-2 = KSO4-
-log_k 0.85
-delta_h 2.250 kcal
-analytical 3.106 0.0 -673.6
-gamma 5.4 0
-dw 1.5e-9 0 1e-10 1e10
-Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1
-log_k 0.6; -delta_h -10.4 kJ
-analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC
-gamma 0 8.3e-3
-Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166
-dw 5.11e-10 1694 -0.587 -4.43
-viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
Fe+2 + H2O = FeOH+ + H+
-log_k -9.5
-delta_h 13.20 kcal
@ -459,7 +496,7 @@ Fe+2 + HCO3- = FeHCO3+
Fe+2 + SO4-2 = FeSO4
-log_k 2.25
-delta_h 3.230 kcal
-Vm -13 0 123 # ref. 2
-Vm -13 0 123
Fe+2 + HSO4- = FeHSO4+
-log_k 1.08
Fe+2 + 2HS- = Fe(HS)2
@ -547,14 +584,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+
Mn+2 + Cl- = MnCl+
-log_k 0.61
-gamma 5.0 0
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
Mn+2 + 2 Cl- = MnCl2
-log_k 0.25
-Vm 1e-5 0 144 # ref. 2
-Vm 1e-5 0 144
Mn+2 + 3 Cl- = MnCl3-
-log_k -0.31
-gamma 5.0 0
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
Mn+2 + CO3-2 = MnCO3
-log_k 4.9
Mn+2 + HCO3- = MnHCO3+
@ -563,11 +600,11 @@ Mn+2 + HCO3- = MnHCO3+
Mn+2 + SO4-2 = MnSO4
-log_k 2.25
-delta_h 3.370 kcal
-Vm -1.31 -1.83 62.3 -2.7 # ref. 2
-Vm -1.31 -1.83 62.3 -2.7
Mn+2 + 2 NO3- = Mn(NO3)2
-log_k 0.6
-delta_h -0.396 kcal
-Vm 6.16 0 29.4 0 0.9 # ref. 2
-Vm 6.16 0 29.4 0 0.9
Mn+2 + F- = MnF+
-log_k 0.84
-gamma 5.0 0
@ -580,7 +617,7 @@ Al+3 + H2O = AlOH+2 + H+
-delta_h 11.49 kcal
-analytic -38.253 0.0 -656.27 14.327
-gamma 5.4 0
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353.
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353.
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
-log_k -10.1
-delta_h 26.90 kcal
@ -699,11 +736,11 @@ Cu+2 + Cl- = CuCl+
-log_k 0.43
-delta_h 8.65 kcal
-gamma 4.0 0
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
Cu+2 + 2Cl- = CuCl2
-log_k 0.16
-delta_h 10.56 kcal
-Vm 26.8 0 -136 # ref. 2
-Vm 26.8 0 -136
Cu+2 + 3Cl- = CuCl3-
-log_k -2.29
-delta_h 13.69 kcal
@ -731,7 +768,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
Cu+2 + SO4-2 = CuSO4
-log_k 2.31
-delta_h 1.220 kcal
-Vm 5.21 0 -14.6 # ref. 2
-Vm 5.21 0 -14.6
Cu+2 + 3HS- = Cu(HS)3-
-log_k 25.9
Zn+2 + H2O = ZnOH+ + H+
@ -747,21 +784,21 @@ Zn+2 + Cl- = ZnCl+
-log_k 0.43
-delta_h 7.79 kcal
-gamma 4.0 0
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
Zn+2 + 2 Cl- = ZnCl2
-log_k 0.45
-delta_h 8.5 kcal
-Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2
-Vm -10.1 4.57 241 -2.97 -1e-3
Zn+2 + 3Cl- = ZnCl3-
-log_k 0.5
-delta_h 9.56 kcal
-gamma 4.0 0
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
Zn+2 + 4Cl- = ZnCl4-2
-log_k 0.2
-delta_h 10.96 kcal
-gamma 5.0 0
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
Zn+2 + H2O + Cl- = ZnOHCl + H+
-log_k -7.48
Zn+2 + 2HS- = Zn(HS)2
@ -777,10 +814,10 @@ Zn+2 + HCO3- = ZnHCO3+
Zn+2 + SO4-2 = ZnSO4
-log_k 2.37
-delta_h 1.36 kcal
-Vm 2.51 0 18.8 # ref. 2
-Vm 2.51 0 18.8
Zn+2 + 2SO4-2 = Zn(SO4)2-2
-log_k 3.28
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
Zn+2 + Br- = ZnBr+
-log_k -0.58
Zn+2 + 2Br- = ZnBr2
@ -806,19 +843,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+
Cd+2 + NO3- = CdNO3+
-log_k 0.4
-delta_h -5.2 kcal
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
Cd+2 + Cl- = CdCl+
-log_k 1.98
-delta_h 0.59 kcal
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
Cd+2 + 2 Cl- = CdCl2
-log_k 2.6
-delta_h 1.24 kcal
-Vm 5.53 # ref. 2
-Vm 5.53
Cd+2 + 3 Cl- = CdCl3-
-log_k 2.4
-delta_h 3.9 kcal
-Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
Cd+2 + CO3-2 = CdCO3
-log_k 2.9
Cd+2 + 2CO3-2 = Cd(CO3)2-2
@ -828,10 +865,10 @@ Cd+2 + HCO3- = CdHCO3+
Cd+2 + SO4-2 = CdSO4
-log_k 2.46
-delta_h 1.08 kcal
-Vm 10.4 0 57.9 # ref. 2
-Vm 10.4 0 57.9
Cd+2 + 2SO4-2 = Cd(SO4)2-2
-log_k 3.5
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
Cd+2 + Br- = CdBr+
-log_k 2.17
-delta_h -0.81 kcal
@ -913,7 +950,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -925,7 +962,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -975,6 +1012,35 @@ Barite
-delta_h 6.35 kcal
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
-Vm 52.9
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
Vm 216
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
-Vm 52.9
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.74; -delta_h 10.57 kJ
-analytical_expression -3.59 6.21e-3
Vm 147
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.57; -delta_h 2.35 kJ
-analytical_expression -1.978 1.38e-3
Vm 132
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -1.16; -delta_h 9.22 kJ
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
Vm 53.8
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
-log_k -3.421
@ -1139,9 +1205,7 @@ CO2(g)
H2O(g)
H2O = H2O
-log_k 1.506; delta_h -44.03 kJ
-T_c 647.3
-P_c 217.60
-Omega 0.344
-T_c 647.3; -P_c 217.60; -Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
O2(g)
O2 = O2
@ -1163,12 +1227,12 @@ H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
#Amm(g)
# Amm = Amm
@ -1193,13 +1257,13 @@ Ntg(g)
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1838,15 +1902,28 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with

View File

@ -1,8 +1,7 @@
# Pitzer.DAT for calculating pressure dependence of reactions
# and temperature dependence to 200 °C. With
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using
# diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
B B(OH)3 0 B 10.81
@ -37,54 +36,66 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4.
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos)
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
-viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5
e- = e-
H2O = H2O
Li+ = Li+
-dw 1.03e-9 80
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094
Na+ = Na+
-dw 1.33e-9 122 1.52 3.70
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# for calculating densities (rho) when I > 3...
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
-viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062
K+ = K+
-dw 1.96e-9 395 2.5 21
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 # ref. 1
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1
-viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682
Mg+2 = Mg+2
-dw 0.705e-9 111 2.4 13.7
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50
Ca+2 = Ca+2
-dw 0.793e-9 97 3.4 24.6
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
-dw 0.793e-9 97 3.4 24.6
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
-viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282
Sr+2 = Sr+2
-dw 0.794e-9 161
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
Ba+2 = Ba+2
-dw 0.848e-9 46
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768
Mn+2 = Mn+2
-dw 0.688e-9
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
Fe+2 = Fe+2
-dw 0.719e-9
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
Cl- = Cl-
-dw 2.03e-9 194 1.6 6.9
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
CO3-2 = CO3-2
-dw 0.955e-9 0 1.12 2.84
-Vm 4.91 0 0 -5.41 4.76 0 0.386 89.7 -1.57e-2 1 # ref. 1
-dw 0.955e-9 225 1.002 3.96
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
-viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754
SO4-2 = SO4-2
-dw 1.07e-9 34 4.46 25.9
-Vm -7.77 43.17 141.1 -42.45 3.794 0 4.97 26.5 -5.77e-2 0.45 # ref. 1
-dw 1.07e-9 138 3.95 25.9
-Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0
-viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271
B(OH)3 = B(OH)3
-dw 1.1e-9
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
Br- = Br-
-dw 2.01e-9 258
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
-viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818
H4SiO4 = H4SiO4
-dw 1.10e-9
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
@ -97,36 +108,38 @@ Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
Mtg = Mtg # CH4
-dw 1.85e-9
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
Ntg = Ntg # N2
-dw 1.96e-9
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-dw 5.27e-9 548 0.52 1e-10
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH
CO3-2 + H+ = HCO3-
log_k 10.3393
delta_h -3.561 kcal
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
-dw 1.18e-9 0 1.43 1e-10
-Vm 8.54 0 -11.7 0 1.6 0 0 116 0 1 # ref. 1
-dw 1.18e-9 -79.0 0.956 -3.29
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
-viscosity 0 0.633 7.2e-3 0 0 0 1.087
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.6767
delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
SO4-2 + H+ = HSO4-
log_k 1.979
delta_h 4.91 kcal
-analytic -5.3585 0.0183412 557.2461
-dw 1.33e-9
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
H2Sg = HSg- + H+
log_k -6.994
delta_h 5.30 kcal
@ -240,7 +253,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.406
delta_h -2.297 kcal
-analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
-analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9
Carnallite
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
@ -271,7 +284,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.09
delta_h -9.436 kcal
-analytic -120.63 -0.1051 0 54.509 # 50175°C, Bénézeth et al., 2018, GCA 224, 262-275.
-analytic -120.63 -0.1051 0 54.509 # 50175°C, Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Enstatite
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
@ -481,11 +494,11 @@ Ntg(g)
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
PITZER
-B0
@ -676,7 +689,7 @@ PITZER
Cl- CO2 -0.005
Cl- H2Sg -0.005
Cl- (H2Sg)2 -0.005
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
CO2 HSO4- -0.003
CO2 K+ 0.051
CO2 Mg+2 0.183
@ -980,18 +993,31 @@ END
# W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 5.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
# for the high P,T Pitzer model and improvements for Calcite.
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 5: Appelo and Parkhurst in prep., for parameters see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with