# Amm.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1 H 1.008 H(0) H2 0 H H(1) H+ -1 H E e- 1 0 0 O H2O 0 O 16 O(0) O2 0 O O(-2) H2O 0 0 Ca Ca+2 0 Ca 40.08 Mg Mg+2 0 Mg 24.312 Na Na+ 0 Na 22.9898 K K+ 0 K 39.102 Fe Fe+2 0 Fe 55.847 Fe(+2) Fe+2 0 Fe Fe(+3) Fe+3 -2 Fe Mn Mn+2 0 Mn 54.938 Mn(+2) Mn+2 0 Mn Mn(+3) Mn+3 0 Mn Al Al+3 0 Al 26.9815 Ba Ba+2 0 Ba 137.34 Sr Sr+2 0 Sr 87.62 Si H4SiO4 0 SiO2 28.0843 Cl Cl- 0 Cl 35.453 C CO3-2 2 HCO3 12.0111 C(+4) CO3-2 2 HCO3 C(-4) CH4 0 CH4 Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 S(-2) HS- 1 S N NO3- 0 N 14.0067 N(+5) NO3- 0 NO3 N(+3) NO2- 0 NO2 N(0) N2 0 N #N(-3) NH4+ 0 NH4 14.0067 Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 Li Li+ 0 Li 6.939 Br Br- 0 Br 79.904 Zn Zn+2 0 Zn 65.37 Cd Cd+2 0 Cd 112.4 Pb Pb+2 0 Pb 207.19 Cu Cu+2 0 Cu 63.546 Cu(+2) Cu+2 0 Cu Cu(+1) Cu+1 0 Cu # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -gamma 4 0.075 -gamma 4.08 0.082 # halite solubility -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ -gamma 3.5 0.015 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 -gamma 5.5 0.2 -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 -gamma 5 0.165 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 -gamma 6 0 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Mn+2 = Mn+2 -gamma 6 0 -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -dw 0.688e-9 Al+3 = Al+3 -gamma 9 0 -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 -dw 0.559e-9 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 -dw 1.1e-9 Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 -Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl -viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2 -dw 1.07e-9 -77.4 10.14 0.5 0.5549 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 AmmH+ = AmmH+ -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 PO4-3 = PO4-3 -gamma 4 0 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -dw 0.612e-9 F- = F- -gamma 3.5 0 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 -dw 0.715e-9 Cd+2 = Cd+2 -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 -dw 0.717e-9 Pb+2 = Pb+2 -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt -dw 0.945e-9 Cu+2 = Cu+2 -gamma 6 0 -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 # aqueous species H2O = OH- + H+ -gamma 3.5 0 -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.06; -delta_h 138.43 kcal -analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50�C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5 0 -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.14 kcal -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 HS- + H+ = H2S -log_k 6.994; -delta_h -5.3 kcal -analytical -11.17 0.02386 3279 -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 H2Sg = HSg- + H+ -log_k -6.994; -delta_h 5.3 kcal -analytical_expression 11.17 -0.02386 -3279 -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.57 -delta_h -43.76 kcal -gamma 3 0 -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.13 kcal -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 AmmH+ = Amm + H+ #NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- #NH4+ + SO4-2 = NH4SO4- -gamma 3.64 -4.75e-2 -log_k 1.276; -delta_h -3.24 kcal -Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289 -viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61 -dw 1.56e-9 498 25 0.5 0.684 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- -log_k -0.4 -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O -log_k 7.63 -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 -log_k 12.346 -delta_h -3.53 kcal -gamma 5 0 -dw 0.69e-9 -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.52 kcal -gamma 5.4 0 -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 -dw 0.846e-9 PO4-3 + 3 H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- -log_k 3.76 -delta_h 4.55 kcal -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ -log_k -12.78 Ca+2 + CO3-2 = CaCO3 -log_k 3.224; -delta_h 3.545 kcal -analytic -1228.732 -0.29944 35512.75 485.818 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -gamma 0 4.45e-2 -log_k 2.14; -delta_h 24.4 -analytical_expression 1.478 8.29e-3 -538.2 -vm 2.7 2 2 -3.7 -dw 4.71e-9 Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- -log_k 6.459 -delta_h 3.1 kcal -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ -log_k 1.408 -delta_h 3.4 kcal -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ -log_k -11.44 -delta_h 15.952 kcal -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 -log_k 2.98 -delta_h 2.713 kcal -analytic 0.991 0.00667 -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4 0 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 -gamma 0 0.20 -log_k 2.42; -delta_h 19.0 -analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 11.92 -27.758 29.752 -10.302 -0.1 -viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 -log_k 0.52; -delta_h -13.6 -analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2 -viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3 -dw 1.11e-9 -500 3.5 0.5 0.731 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ -log_k 1.513 -delta_h 3.4 kcal -gamma 5.4 0 Mg+2 + F- = MgF+ -log_k 1.82 -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt # Na+ + OH- = NaOH # -log_k -14.7 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 -Vm 7.95 0 0 0 0.609 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- -gamma 3.5 0.1072 -log_k 0.94; -delta_h 8.23 -analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC -Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476 -viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387 -dw 4e-10 -200 3.5 0.5 0.5 2 Na+ + SO4-2 = Na2SO4 -gamma 0 8.85e-2 -log_k -2.37; -delta_h 82 -analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl -Vm 9.405 -15.5 25 8.4 0.25 -viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175 -dw 0.8e-9 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 -log_k -0.35; -delta_h 12 kJ -gamma 0 9.4e-3 -Vm 9.48 0 0 0 -0.542 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 1.18; -delta_h 3 -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC -Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497 -viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195 -dw 1.22e-9 100 25 0.5 2.5 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.2 kcal -gamma 5 0 Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ -log_k -31 -delta_h 30.3 kcal -gamma 5 0 Fe+2 + Cl- = FeCl+ -log_k 0.14 Fe+2 + CO3-2 = FeCO3 -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 -log_k 2.25; -delta_h 3.23 kcal -Vm 5.8 6.5 3.7 -3 -0.09 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 -log_k 8.95 Fe+2 + 3 HS- = Fe(HS)3- -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ -log_k 2.7 -gamma 5.4 0 Fe+2 + F- = FeF+ -log_k 1 Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.68 kcal -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ -log_k -2.19 -delta_h 10.4 kcal -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ -log_k -5.67 -delta_h 17.1 kcal -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ -log_k -12.56 -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ -log_k -21.6 -delta_h 31.9 kcal -gamma 5.4 0 Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ -log_k -2.95 -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ -log_k -6.3 -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 -log_k 1.48 -delta_h 5.6 kcal -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ -log_k 2.13 -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ -log_k 4.04 -delta_h 3.91 kcal -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- -log_k 5.38 -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ -log_k 5.43 -delta_h 5.76 kcal -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 -log_k 5.43 -gamma 5.4 0 Fe+3 + F- = FeF+2 -log_k 6.2 -delta_h 2.7 kcal -gamma 5 0 Fe+3 + 2 F- = FeF2+ -log_k 10.8 -delta_h 4.8 kcal -gamma 5 0 Fe+3 + 3 F- = FeF3 -log_k 14 -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ -log_k -10.59 -delta_h 14.4 kcal -gamma 5 0 Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ -log_k -34.8 -gamma 5 0 Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5 0 -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5 0 -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 -gamma 0 -0.098 -log_k 1.408; -delta_h 21.55 -Vm 1.88 6.5 10 -3 0.1 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5 0 Mn+2 = Mn+3 + e- -log_k -25.51 -delta_h 25.8 kcal -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ -log_k -5 -delta_h 11.49 kcal -analytic -38.253 0 -656.27 14.327 -gamma 5.4 0 -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.9 kcal -gamma 5.4 0 -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ -log_k -16.9 -delta_h 39.89 kcal -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ -log_k -22.7 -delta_h 42.3 kcal -analytic 51.578 0 -11168.9 -14.865 -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ -log_k 3.5 -delta_h 2.29 kcal -gamma 4.5 0 Al+3 + 2 SO4-2 = Al(SO4)2- -log_k 5 -delta_h 3.11 kcal -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 -log_k 0.46 Al+3 + F- = AlF+2 -log_k 7 -delta_h 1.06 kcal -gamma 5.4 0 Al+3 + 2 F- = AlF2+ -log_k 12.7 -delta_h 1.98 kcal -gamma 5.4 0 Al+3 + 3 F- = AlF3 -log_k 16.8 -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- -log_k 19.4 -delta_h 2.2 kcal -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ -log_k -9.83 -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O -log_k 30.18 -delta_h -16.26 kcal -gamma 5 0 -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5 0 Ba+2 + CO3-2 = BaCO3 -log_k 2.71 -delta_h 3.55 kcal -analytic 0.113 0.008721 -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ -log_k 0.982 -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 -log_k 3.457; -delta_h 26.15 -vm -6.25 24.66 -4.38 10.97 0.5 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ -log_k 11.509 -delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 -log_k 2.81 -delta_h 5.22 kcal -analytic -1.019 0.012826 -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- -log_k 0.64 -gamma 5 0 Cu+2 + e- = Cu+ -log_k 2.72 -delta_h 1.65 kcal -gamma 2.5 0 Cu+ + 2 Cl- = CuCl2- -log_k 5.5 -delta_h -0.42 kcal -gamma 4 0 Cu+ + 3 Cl- = CuCl3-2 -log_k 5.7 -delta_h 0.26 kcal -gamma 5 0 Cu+2 + CO3-2 = CuCO3 -log_k 6.73 Cu+2 + 2 CO3-2 = Cu(CO3)2-2 -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ -log_k 2.7 Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4 0 -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2 Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal -Vm 26.8 0 -136 Cu+2 + 3 Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal -gamma 4 0 Cu+2 + 4 Cl- = CuCl4-2 -log_k -4.59 -delta_h 17.78 kcal -gamma 5 0 Cu+2 + F- = CuF+ -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ -log_k -8 -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ -log_k -39.6 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.22 kcal -Vm 5.21 0 -14.6 Cu+2 + 3 HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ -log_k -41.2 Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4 0 -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3 Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4 0 -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4 Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5 0 -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2 HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3 HS- = Zn(HS)3- -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 -log_k 5.3 Zn+2 + 2 CO3-2 = Zn(CO3)2-2 -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 -gamma 0 0.1 -log_k 2.26; -delta_h 16.15 -Vm 0.409 6.5 2 -3 0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 -gamma 0.59 0.1 -log_k 1.15; -delta_h 17.52 -Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 -log_k -0.98 Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ -log_k -47.35 2 Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2 CO3-2 = Cd(CO3)2-2 -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 -gamma 0 0.1 -log_k 1.016; -delta_h 6.84 -Vm 2.11 6.5 10 -3 0.1 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 -gamma 5.201 -0.1 -log_k 2.688; -delta_h 0.19 -Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2 Br- = CdBr2 -log_k 2.9 Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2 F- = CdF2 -log_k 1.5 Cd+2 + HS- = CdHS+ -log_k 10.17 Cd+2 + 2 HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3 HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4 HS- = Cd(HS)4-2 -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ -log_k -6.36 Pb+2 + Cl- = PbCl+ -log_k 1.6 -delta_h 4.38 kcal -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 -log_k 1.8 -delta_h 1.08 kcal -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- -log_k 1.7 -delta_h 2.17 kcal -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 -log_k 1.38 -delta_h 3.53 kcal -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ -log_k 2.9 Pb+2 + SO4-2 = PbSO4 -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 -log_k 3.47 Pb+2 + 2 HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3 HS- = Pb(HS)3- -log_k 16.57 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ -log_k 1.17 Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal Pb+2 + 2 Br- = PbBr2 -log_k 1.44 Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2 F- = PbF2 -log_k 2.56 Pb+2 + 3 F- = PbF3- -log_k 3.42 Pb+2 + 4 F- = PbF4-2 -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250�C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 -log_k -8.336 -delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25�C: Hemingway and Robie, 1994; 50�175�C: B�n�zeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 -log_k -10.89 -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 -log_k -11.13 -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 -log_k -9.271 -delta_h -0.4 kcal -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 -log_k -8.562 -delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.55; -delta_h -6.70 -analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.25; -delta_h -22.4 -analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.89; -delta_h 11.82 -analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O -log_k -0.706; -delta_h 124 -analytical_expression -53.037 0.1242 4562 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 -log_k 0.65; -delta_h -23.1 -analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3 Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.57; -delta_h 2.35 kJ -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O log_k -1.16; -delta_h 9.22 kJ -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- -log_k -10.6 -delta_h 4.69 kcal -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71 -delta_h 3.34 kcal -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55 -delta_h 4.72 kcal -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98 -delta_h 5.99 kcal -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 8.11 -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 10.8 -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 -log_k 7.435 -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 -log_k -19.714 -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 -log_k -20.573 -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 -log_k 32.2 -delta_h -46.8 kcal -analytic 13.248 0 10217.1 -6.1894 -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 15.76 -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O -log_k -1 -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- -log_k -18.479 -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- -log_k -4.648 -Vm 20.45 Sulfur S + 2 H+ + 2 e- = H2S -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O -log_k -36 Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O -log_k 41.38 -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O -log_k 61.03 -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O -log_k 15.2 Halite NaCl = Cl- + Na+ log_k 1.57 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- log_k 0.9 -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ -T_c 647.3; -P_c 217.6; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 -log_k -2.8983 -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 -log_k -3.105 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300�C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100�C -T_c 190.6; -P_c 45.4; -Omega 0.008 Amm(g) Amm = Amm #NH3(g) # NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.818e-3 3199 17.909 -27460 T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100�C -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300�C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 -log_k -2.209 -delta_h 4.91 kcal -analytic 1.447 -0.004153 0 0 -214949 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O -log_k -1.4 -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 -log_k -9.21 -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 -log_k -10 -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- -log_k -11.618 -delta_h 8.25 kcal Willemite 289 Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 -log_k -12.1 -delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 -log_k 9.06 -delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 -log_k -0.1 -delta_h -14.74 kcal Cerussite 365 PbCO3 = Pb+2 + CO3-2 -log_k -13.13 -delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 -log_k -7.79 -delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal GAS_BINARY_PARAMETERS H2O(g) CO2(g) 0.19 H2O(g) H2S(g) 0.19 H2O(g) H2Sg(g) 0.19 H2O(g) CH4(g) 0.49 H2O(g) Mtg(g) 0.49 H2O(g) Methane(g) 0.49 H2O(g) N2(g) 0.49 H2O(g) Ntg(g) 0.49 H2O(g) Ethane(g) 0.49 H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- -log_k 0 Na+ + X- = NaX -log_k 0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6 0 -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX # -log_k 1.0 # -gamma 9.0 0 AmmH+ + X- = AmmHX # NH4+ + X- = NH4X -log_k 0.6 -gamma 2.5 0 -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2 X- = CaX2 -log_k 0.8 -gamma 5 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2 X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2 X- = SrX2 -log_k 0.91 -gamma 5.26 0.121 -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2 X- = BaX2 -log_k 0.91 -gamma 4 0.153 -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2 X- = MnX2 -log_k 0.52 -gamma 6 0 Fe+2 + 2 X- = FeX2 -log_k 0.44 -gamma 6 0 Cu+2 + 2 X- = CuX2 -log_k 0.6 -gamma 6 0 Zn+2 + 2 X- = ZnX2 -log_k 0.8 -gamma 5 0 Cd+2 + 2 X- = CdX2 -log_k 0.8 -gamma 0 0 Pb+2 + 2 X- = PbX2 -log_k 1.05 -gamma 0 0 Al+3 + 3 X- = AlX3 -log_k 0.41 -gamma 9 0 AlOH+2 + 2 X- = AlOHX2 -log_k 0.89 -gamma 0 0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O -log_k 31.29 Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -log_k 12.56 Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 CaSO4 Ca+2 1 SO4-2 1 CaCO3 Ca+2 1 CO3-2 1 Ca(OH)2 Ca+2 1 OH- 2 MgCl2 Mg+2 1 Cl- 2 MgSO4 Mg+2 1 SO4-2 1 MgCO3 Mg+2 1 CO3-2 1 Mg(OH)2 Mg+2 1 OH- 2 NaCl Na+ 1 Cl- 1 Na2SO4 Na+ 2 SO4-2 1 NaHCO3 Na+ 1 HCO3- 1 Na2CO3 Na+ 2 CO3-2 1 NaOH Na+ 1 OH- 1 KCl K+ 1 Cl- 1 K2SO4 K+ 2 SO4-2 1 HCO3 K+ 1 HCO3- 1 K2CO3 K+ 2 CO3-2 1 KOH K+ 1 OH- 1 HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 RATES ########### #Quartz ########### # ####### # Example of quartz kinetic rates block: # KINETICS # Quartz # -m0 158.8 # 90 % Qu # -parms 0.146 1.5 # -step 3.1536e8 in 10 # -tol 1e-12 Quartz -start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end ########### #K-feldspar ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space # Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere # Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.18 # 10% Kspar, 0.1 mm cubes # -m 2.18 # Moles per L pore space # -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate # -time 1.5 year in 40 K-feldspar -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end ########### #Albite ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.46 # 2% Albite, 0.1 mm cubes # -m 0.46 # Moles per L pore space # -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate # -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space # Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere # Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Albite m^2/mol Albite 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM Albite parameters 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end ######## #Calcite ######## # Example of KINETICS data block for calcite rate, # in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start 1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite 2 REM PARM(2) = exponent for M/M0 10 si_cc = SI("Calcite") 20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 30 k1 = 10^(0.198 - 444 / TK ) 40 k2 = 10^(2.84 - 2177 /TK ) 50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) 60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) 80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol 200 SAVE moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 0.3 0.67 .5 -0.11 # -time 1 day in 10 Pyrite -start 1 REM Williamson and Rimstidt, 1994 2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) 3 REM PARM(2) = exp for (M/M0) 4 REM PARM(3) = exp for O2 5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 30 if (SI("Pyrite") >= 0) THEN GOTO 200 40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") 50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) 60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end ########## #Organic_C ########## # # Example of KINETICS data block for SOC (sediment organic carbon): # KINETICS 1 # Organic_C # -formula C # -tol 1e-8 # -m 5e-3 # SOC in mol # -time 30 year in 15 Organic_C -start 1 REM Additive Monod kinetics for SOC (sediment organic carbon) 2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") 30 mNO3 = TOT("N(5)") 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec 70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end ########### #Pyrolusite ########### # # Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 # -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 20 sr_pl = SR("Pyrolusite") 30 if (sr_pl > 1) THEN GOTO 100 40 REM sr_pl <= 1, undersaturated 50 Fe_t = TOT("Fe(2)") 60 if Fe_t < 1e-8 then goto 200 70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) 80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), #precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. # ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-H�ckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-H�ckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions (or fitted). # For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 � m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49�67. # ref. 2: Procedures from ref. 1 using data compiled by Lalibert�, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).