# pitzer.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 B B(OH)3 0 B 10.81 Ba Ba+2 0 Ba 137.33 Br Br- 0 Br 79.904 C CO3-2 2 HCO3 12.0111 C(4) CO3-2 2 HCO3 12.0111 Ca Ca+2 0 Ca 40.08 Cl Cl- 0 Cl 35.453 E e- 1 0.0 0.0 Fe Fe+2 0 Fe 55.847 H H+ -1 H 1.008 H(1) H+ -1 0.0 K K+ 0 K 39.0983 Li Li+ 0 Li 6.941 Mg Mg+2 0 Mg 24.305 Mn Mn+2 0 Mn 54.938 Na Na+ 0 Na 22.9898 O H2O 0 O 16.00 O(-2) H2O 0 0.0 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 Si H4SiO4 0 SiO2 28.0843 Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # Oxygen gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 -dw 9.31e-9 838 4.02 -1.836 0.415 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.415 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 Li+ = Li+ -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2 For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -dw 0.848e-9 174 10.53 0 3 Mn+2 = Mn+2 -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 -dw 0.688e-9 Fe+2 = Fe+2 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Cl- = Cl- -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 -Vm 8.569 -10.4 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 -viscosity 0 0.296 3.63e-2 2e-4 -1.9e-2 1.881 -1.754 -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 -viscosity -4.1e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.21 -dw 1.07e-9 -63 0.397 0.982 1.01 B(OH)3 = B(OH)3 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2 # supcrt -dw 1.1e-9 Br- = Br- -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 -dw 1.1e-9 # redox-uncoupled gases Hdg = Hdg # H2 -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- log_k 10.3393; delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 -viscosity 0 0.633 7.2e-3 0 0 0 1.087 -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -viscosity 1.15e-2 9.82e-2 3.59e-2 0 0 0 0.266 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 -dw 0.731e-9 1e3 7.082 3 0.86 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.3 kcal -analytical 11.17 -0.02386 -3279 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ log_k -9.239 delta_h 0 kcal 3 B(OH)3 = B3O3(OH)4- + 2 H2O + H+ log_k -7.528 delta_h 0 kcal 4 B(OH)3 = B4O5(OH)4-2 + 3 H2O + 2 H+ log_k -16.134 delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ log_k -7.589 delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ log_k -7.84 delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 # -dw 4.46e-10 # complexes: calc'd with the Pikal formula # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 log_k 2.928 delta_h 2.535 kcal -analytic -32.225 0 1093.486 12.72433 -dw 4.21e-10 -Vm -.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23; -delta_h 17.6 kcal -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 PHASES Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat log_k 45.23 -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.362 -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 -Vm 46.1 # 136.14 / 2.95 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat log_k 66.8 -delta_H -483 kJ/mol Vm 269 # Antigorite # Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat # log_k 477.19 # seawater is impossibly supersaturated # -delta_H -3364 kJ/mol # Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 log_k -8.336 delta_h -2.589 kcal -analytic -171.8607 -.077993 2903.293 71.595 -Vm 34.04 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat log_k 19.66 -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.97; delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 -Vm 52.9 Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O log_k 4.455 -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O log_k -2.347 -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite Mg(OH)2 = Mg+2 + 2 OH- log_k -10.88 -delta_H 4.85 kcal/mol Vm 24.6 Burkeite Na6CO3(SO4)2 = CO3-2 + 2 SO4-2 + 6 Na+ log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 log_k -8.406 delta_h -2.297 kcal -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O log_k 4.35; -delta_h 1.17 -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 log_k -6.63 -analytic -7.14 6.11E-3 75 0 0 -1.79E-5 # ref. 3 -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55; -delta_h 4.72 kcal -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat -log_k 32.2 -delta_h -46.8 kcal -analytic 13.248 0 10217.1 -6.1894 -Vm 110 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat log_k 20.96 -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.09 delta_h -9.436 kcal -analytic -120.63 -0.1051 0 54.509 # 50�175�C, B�n�zeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat log_k 11.33 -delta_H -83 kJ/mol Vm 31.3 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.881 -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat log_k 27.86 -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O log_k -9.421 Glaserite NaK3(SO4)2 = Na+ + 3 K+ + 2 SO4-2 log_k -3.803; -delta_h 25 -Vm 123 Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 log_k -5.31 -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite K2Ca5(SO4)6H2O = 2 K+ + 5 Ca+2 + 6 SO4-2 + H2O log_k -29.5 -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58; -delta_h -0.109 kcal -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 -Vm 73.9 Halite NaCl = Cl- + Na+ log_k 1.57 -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 -Vm 27.1 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.635 -analytical_expression -0.733 -2.8e-3 -8.57e-3 # ref. 3 Vm 132 Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat log_k 10.3 -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O log_k -0.193 Kalicinite KHCO3 = K+ + H+ + CO3-2 log_k -9.94 # Harvie et al., 1984 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O log_k -0.123 -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S Na4Ca(SO4)3:2H2O = 4 Na+ + Ca+2 + 3 SO4-2 + 2 H2O log_k -5.672 Leonhardite MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O log_k -0.887 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O log_k -3.979 Magnesite MgCO3 = CO3-2 + Mg+2 log_k -7.834 delta_h -6.169 Vm 28.3 MgCl2_2H2O MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O -analytical_expression -10.273 0 7.403e3 # ref. 3 MgCl2_4H2O MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O -analytical_expression 12.98 -2.013e-2 # ref. 3 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ log_k -10.806 Nahcolite NaHCO3 = CO3-2 + H+ + Na+ log_k -10.742 Vm 38 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O log_k -0.825 Nesquehonite MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O log_k -5.167 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O log_k -1.285 Pirssonite Na2Ca(CO3)2:2H2O = 2 Na+ + Ca+2 + 2 CO3-2 + 2 H2O log_k -9.234 Polyhalite K2MgCa2(SO4)4:2H2O = 2 K+ + Mg+2 + 2 Ca+2 + 4 SO4-2 + 2 H2O log_k -13.744 Vm 218 Portlandite Ca(OH)2 = Ca+2 + 2 OH- log_k -5.19 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98; -delta_h 5.99 kcal -Vm 22.67 Schoenite K2Mg(SO4)2:6H2O = 2 K+ + Mg+2 + 2 SO4-2 + 6 H2O log_k -4.328 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 18.66 -Vm 162 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 15.76 -delta_h -10.7 kcal -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71; -delta_h 3.34 kcal -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 -Vm 25.7 Sylvite KCl = K+ + Cl- log_k 0.9; -delta_h 8 -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 Vm 37.5 Syngenite K2Ca(SO4)2:H2O = 2 K+ + Ca+2 + 2 SO4-2 + H2O log_k -6.43; -delta_h -32.65 # ref. 3 -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat -log_k 21.399 -delta_h -46.352 kcal -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Trona Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2 CO3-2 + 2 H2O log_k -11.384 Vm 106 Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O log_k 12.464 Vm 223 Boric_acid,s B(OH)3 = B(OH)3 log_k -0.03 KB5O8:4H2O KB5O8:4H2O + 3 H2O + H+ = 5 B(OH)3 + K+ log_k 4.671 K2B4O7:4H2O K2B4O7:4H2O + H2O + 2 H+ = 4 B(OH)3 + 2 K+ log_k 13.906 NaBO2:4H2O NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3 H2O log_k 9.568 NaB5O8:5H2O NaB5O8:5H2O + 2 H2O + H+ = 5 B(OH)3 + Na+ log_k 5.895 Teepleite Na2B(OH)4Cl + H+ = B(OH)3 + 2 Na+ + Cl- + H2O log_k 10.84 CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.8 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O log_k 1.506; delta_h -44.03 kJ -T_c 647.3 # critical T, K -P_c 217.6 # critical P, atm -Omega 0.344 # acentric factor -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-3 0 0 2.0027e+5 T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.818E-3 3199 17.909 -27460 T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100�C T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300�C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 T_c 373.2; -P_c 88.2; -Omega 0.1 PITZER -B0 B(OH)4- K+ 0.035 B(OH)4- Na+ -0.0427 B3O3(OH)4- K+ -0.13 B3O3(OH)4- Na+ -0.056 B4O5(OH)4-2 K+ -0.022 B4O5(OH)4-2 Na+ -0.11 Ba+2 Br- 0.31455 0 0 -0.33825E-3 Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 Ba+2 OH- 0.17175 Br- H+ 0.196 0 0 -2.049E-4 Br- K+ 0.0569 0 0 7.39E-4 Br- Li+ 0.1748 0 0 -1.819E-4 Br- Mg+2 0.4327 0 0 -5.625E-5 Br- Na+ 0.0973 0 0 7.692E-4 Br- Sr+2 0.331125 0 0 -0.32775E-3 Ca+2 Br- 0.3816 0 0 -5.2275E-4 Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 Ca+2 HCO3- 0.4 Ca+2 HSO4- 0.2145 Ca+2 OH- -0.1747 Ca+2 SO4-2 0 # ref. 3 CaB(OH)4+ Cl- 0.12 Cl- Fe+2 0.335925 Cl- H+ 0.1775 0 0 -3.081E-4 Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 Cl- Li+ 0.1494 0 0 -1.685E-4 Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 Cl- MgB(OH)4+ 0.16 Cl- MgOH+ -0.1 Cl- Mn+2 0.327225 Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 Cl- Sr+2 0.2858 0 0 0.717E-3 CO3-2 K+ 0.1488 0 0 1.788E-3 CO3-2 Na+ 0.0399 0 0 1.79E-3 Fe+2 HSO4- 0.4273 Fe+2 SO4-2 0.2568 H+ HSO4- 0.2065 H+ SO4-2 0.0298 HCO3- K+ 0.0296 0 0 0.996E-3 HCO3- Mg+2 0.329 HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite HCO3- Sr+2 0.12 HSO4- K+ -0.0003 HSO4- Mg+2 0.4746 HSO4- Na+ 0.0454 K+ OH- 0.1298 K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 Li+ OH- 0.015 Li+ SO4-2 0.136275 0 0 0.5055E-3 Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 Mn+2 SO4-2 0.2065 Na+ OH- 0.0864 0 0 7E-4 Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 SO4-2 Sr+2 0.2 0 0 -2.9E-3 -B1 B(OH)4- K+ 0.14 B(OH)4- Na+ 0.089 B3O3(OH)4- Na+ -0.91 B4O5(OH)4-2 Na+ -0.4 Ba+2 Br- 1.56975 0 0 6.78E-3 Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 Ba+2 OH- 1.2 Br- H+ 0.3564 0 0 4.467E-4 Br- K+ 0.2212 0 0 17.4E-4 Br- Li+ 0.2547 0 0 6.636E-4 Br- Mg+2 1.753 0 0 3.8625E-3 Br- Na+ 0.2791 0 0 10.79E-4 Br- Sr+2 1.7115 0 0 6.5325E-3 Ca+2 Br- 1.613 0 0 6.0375E-3 Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite Ca+2 HSO4- 2.53 Ca+2 OH- -0.2303 Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 Cl- Fe+2 1.53225 Cl- H+ 0.2945 0 0 1.419E-4 Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 Cl- Li+ 0.3074 0 0 5.366E-4 Cl- Mg+2 1.65 0 0 -1.09e-2 2.6e-5 # ref. 3 Cl- MgOH+ 1.658 Cl- Mn+2 1.55025 Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 Cl- Sr+2 1.667 0 0 2.8425E-3 CO3-2 K+ 1.43 0 0 2.051E-3 CO3-2 Na+ 1.389 0 0 2.05E-3 Fe+2 HSO4- 3.48 Fe+2 SO4-2 3.063 H+ HSO4- 0.5556 HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 HCO3- Mg+2 0.6072 HCO3- Na+ 0 # ref. 3 + new -analytic for calcite HSO4- K+ 0.1735 HSO4- Mg+2 1.729 HSO4- Na+ 0.398 K+ OH- 0.32 K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 Li+ OH- 0.14 Li+ SO4-2 1.2705 0 0 1.41E-3 Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 Mn+2 SO4-2 2.9511 Na+ OH- 0.253 0 0 1.34E-4 Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 SO4-2 Sr+2 3.1973 0 0 27e-3 -B2 Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 Ca+2 OH- -5.72 Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 Fe+2 SO4-2 -42 HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 Mn+2 SO4-2 -40.0 SO4-2 Sr+2 -54.24 0 0 -0.42 -C0 B(OH)4- Na+ 0.0114 Ba+2 Br- -0.0159576 Ba+2 Cl- -0.143 -114.5 # ref. 3 Br- Ca+2 -0.00257 Br- H+ 0.00827 0 0 -5.685E-5 Br- K+ -0.0018 0 0 -7.004E-5 Br- Li+ 0.0053 0 0 -2.813E-5 Br- Mg+2 0.00312 Br- Na+ 0.00116 0 0 -9.3E-5 Br- Sr+2 0.00122506 Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 Ca+2 SO4-2 0.114 # ref. 3 Cl- Fe+2 -0.00860725 Cl- H+ 0.0008 0 0 6.213E-5 Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 Cl- Li+ 0.00359 0 0 -4.52E-5 Cl- Mg+2 0.00651 0 0 -2.5e-4 2.418e-7 # ref. 3 Cl- Mn+2 -0.0204972 Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 Cl- Sr+2 -0.0013 CO3-2 K+ -0.0015 CO3-2 Na+ 0.0044 Fe+2 SO4-2 0.0209 H+ SO4-2 0.0438 HCO3- K+ -0.008 K+ OH- 0.0041 K+ SO4-2 8.18e-3 -625 -3.3 4.06e-3 # ref. 3 Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 Mn+2 SO4-2 0.01636 Na+ OH- 0.0044 0 0 -18.94E-5 Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 -THETA B(OH)4- Cl- -0.065 B(OH)4- SO4-2 -0.012 B3O3(OH)4- Cl- 0.12 B3O3(OH)4- HCO3- -0.1 B3O3(OH)4- SO4-2 0.1 B4O5(OH)4-2 Cl- 0.074 B4O5(OH)4-2 HCO3- -0.087 B4O5(OH)4-2 SO4-2 0.12 Ba+2 Na+ 0.07 # ref. 3 Br- OH- -0.065 Ca+2 H+ 0.092 Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 Ca+2 Mg+2 0.007 Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 Cl- CO3-2 -0.02 Cl- HCO3- 0.03 Cl- HSO4- -0.006 Cl- OH- -0.05 Cl- SO4-2 0.03 # ref. 3 CO3-2 OH- 0.1 CO3-2 SO4-2 0.02 H+ K+ 0.005 H+ Mg+2 0.1 H+ Na+ 0.036 HCO3- CO3-2 -0.04 HCO3- SO4-2 0.01 K+ Na+ -0.012 Mg+2 Na+ 0.07 Na+ Sr+2 0.051 OH- SO4-2 -0.013 -LAMBDA B(OH)3 Cl- 0.091 B(OH)3 K+ -0.14 B(OH)3 Na+ -0.097 B(OH)3 SO4-2 0.018 B3O3(OH)4- B(OH)3 -0.2 Ca+2 CO2 0.183 Ca+2 H4SiO4 0.238 # ref. 3 Cl- CO2 -0.005 Cl- H2Sg -0.005 Cl- (H2Sg)2 -0.005 CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150�C CO2 HSO4- -0.003 CO2 K+ 0.051 CO2 Mg+2 0.183 CO2 Na+ 0.085 CO2 SO4-2 0.075 # Rumpf and Maurer, 1993. H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 H2Sg SO4-2 0 0 0.679 (H2Sg)2 Na+ 0.0123 0 0.256 H4SiO4 K+ 0.0298 # ref. 3 H4SiO4 Li+ 0.143 # ref. 3 H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 -ZETA B(OH)3 Cl- H+ -0.0102 B(OH)3 Na+ SO4-2 0.046 Cl- H4SiO4 K+ -0.0153 # ref. 3 Cl- H4SiO4 Li+ -0.0196 # ref. 3 CO2 Na+ SO4-2 -0.015 H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 H2Sg Na+ SO4-2 0.157 (H2Sg)2 Cl- Na+ 0.0119 (H2Sg)2 Na+ SO4-2 -0.167 -PSI B(OH)4- Cl- Na+ -0.0073 B3O3(OH)4- Cl- Na+ -0.024 B4O5(OH)4-2 Cl- Na+ 0.026 Br- K+ Na+ -0.0022 Br- K+ OH- -0.014 Br- Na+ H+ -0.012 Br- Na+ OH- -0.018 Ca+2 Cl- H+ -0.015 Ca+2 Cl- K+ -0.025 Ca+2 Cl- Mg+2 -0.012 Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 Ca+2 Cl- OH- -0.025 Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 Ca+2 K+ SO4-2 -0.0365 # ref. 3 Ca+2 Mg+2 SO4-2 0.024 Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 Cl- Br- K+ 0 Cl- CO3-2 K+ 0.004 Cl- CO3-2 Na+ 0.0085 Cl- H+ K+ -0.011 Cl- H+ Mg+2 -0.011 Cl- H+ Na+ -0.004 Cl- HCO3- Mg+2 -0.096 Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite Cl- HSO4- H+ 0.013 Cl- HSO4- Na+ -0.006 Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 Cl- K+ OH- -0.006 Cl- K+ SO4-2 -1e-3 # ref. 3 Cl- Mg+2 MgOH+ 0.028 Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 Cl- Na+ OH- -0.006 Cl- Na+ SO4-2 0 # ref. 3 Cl- Na+ Sr+2 -0.0021 CO3-2 HCO3- K+ 0.012 CO3-2 HCO3- Na+ 0.002 CO3-2 K+ Na+ 0.003 CO3-2 K+ OH- -0.01 CO3-2 K+ SO4-2 -0.009 CO3-2 Na+ OH- -0.017 CO3-2 Na+ SO4-2 -0.005 H+ HSO4- K+ -0.0265 H+ HSO4- Mg+2 -0.0178 H+ HSO4- Na+ -0.0129 H+ K+ Br- -0.021 H+ K+ SO4-2 0.197 HCO3- K+ Na+ -0.003 HCO3- Mg+2 SO4-2 -0.161 HCO3- Na+ SO4-2 -0.005 HSO4- K+ SO4-2 -0.0677 HSO4- Mg+2 SO4-2 -0.0425 HSO4- Na+ SO4-2 -0.0094 K+ Mg+2 SO4-2 -0.048 K+ Na+ SO4-2 -0.01 K+ OH- SO4-2 -0.05 Mg+2 Na+ SO4-2 -0.015 Na+ OH- SO4-2 -0.009 GAS_BINARY_PARAMETERS H2O(g) CO2(g) 0.19 H2O(g) H2S(g) 0.19 H2O(g) H2Sg(g) 0.19 H2O(g) CH4(g) 0.49 H2O(g) Mtg(g) 0.49 H2O(g) Methane(g) 0.49 H2O(g) N2(g) 0.49 H2O(g) Ntg(g) 0.49 H2O(g) Ethane(g) 0.49 H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- log_k 0 Na+ + X- = NaX log_k 0 K+ + X- = KX log_k 0.7 delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX log_k -0.08 delta_h 1.4 # Merriam & Thomas, 1956 Ca+2 + 2 X- = CaX2 log_k 0.8 delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2 X- = MgX2 log_k 0.6 delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2 X- = SrX2 log_k 0.91 delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2 X- = BaX2 log_k 0.91 delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2 X- = MnX2 log_k 0.52 Fe+2 + 2 X- = FeX2 log_k 0.44 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ log_k -7.2 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 # Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # # Anions from table 10.7 # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 log_k 0.79 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O log_k 12.56 Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 CaSO4 Ca+2 1 SO4-2 1 CaCO3 Ca+2 1 CO3-2 1 Ca(OH)2 Ca+2 1 OH- 2 MgCl2 Mg+2 1 Cl- 2 MgSO4 Mg+2 1 SO4-2 1 MgCO3 Mg+2 1 CO3-2 1 Mg(OH)2 Mg+2 1 OH- 2 NaCl Na+ 1 Cl- 1 Na2SO4 Na+ 2 SO4-2 1 NaHCO3 Na+ 1 HCO3- 1 Na2CO3 Na+ 2 CO3-2 1 NaOH Na+ 1 OH- 1 KCl K+ 1 Cl- 1 K2SO4 K+ 2 SO4-2 1 HCO3 K+ 1 HCO3- 1 K2CO3 K+ 2 CO3-2 1 KOH K+ 1 OH- 1 HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 END # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-H�ckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-H�ckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 � m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 5. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49�67. # ref. 2: Procedures from ref. 1 using data compiled by Lalibert�, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2015, Appl. Geochem. 55, 62�71. # http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files # for the high P,T Pitzer model and improvements for Calcite. # ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 5: Appelo and Parkhurst in prep., for parameters see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).