# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 B B(OH)3 0 B 10.81 Ba Ba+2 0 Ba 137.33 Br Br- 0 Br 79.904 C CO3-2 2 HCO3 12.0111 C(4) CO3-2 2 HCO3 12.0111 Ca Ca+2 0 Ca 40.08 Cl Cl- 0 Cl 35.453 E e- 0 0.0 0.0 Fe Fe+2 0 Fe 55.847 H H+ -1 H 1.008 H(1) H+ -1 0.0 K K+ 0 K 39.0983 Li Li+ 0 Li 6.941 Mg Mg+2 0 Mg 24.305 Mn Mn+2 0 Mn 54.938 Na Na+ 0 Na 22.9898 O H2O 0 O 16.00 O(-2) H2O 0 0.0 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 Si H4SiO4 0 SiO2 28.0843 Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # Oxygen gas Mtg Mtg 0.0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 -dw 9.31e-9 823 5.314 0 3.0 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif # For SC, Dw(TK) *= (viscos_0_tc / viscos)^3.0 # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. # a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 Li+ = Li+ -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -dw 0.848e-9 174 10.53 0 3.0 Mn+2 = Mn+2 -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 -dw 0.688e-9 Fe+2 = Fe+2 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Cl- = Cl- -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 -viscosity -4.10e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.210 -dw 1.07e-9 -63 0.397 0.982 1.01 B(OH)3 = B(OH)3 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 Br- = Br- -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 -dw 2.01e-9 139 2.949 0 1.321 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -dw 1.10e-9 # redox-uncoupled gases Hdg = Hdg # H2 -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 -Vm 7 # Pray et al., 1952, IEC 44. 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- log_k 10.3393; delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 -viscosity 0 0.633 7.2e-3 0 0 0 1.087 -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 -dw 0.731e-9 1e3 7.082 3.0 0.860 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ log_k -9.239 delta_h 0 kcal 3B(OH)3 = B3O3(OH)4- + 2H2O + H+ log_k -7.528 delta_h 0 kcal 4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ log_k -16.134 delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ log_k -7.589 delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ log_k -7.840 delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 # -dw 4.46e-10 # complexes: calc'd with the Pikal formula # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 log_k 2.928 delta_h 2.535 kcal -analytic -32.225 0.0 1093.486 12.72433 -dw 4.21e-10 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0; -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 PHASES Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat log_k 45.23 -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.362 -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 -Vm 46.1 # 136.14 / 2.95 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat log_k 66.80 -delta_H -483 kJ/mol Vm 269 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat log_k 477.19 -delta_H -3364 kJ/mol Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 log_k -8.336 delta_h -2.589 kcal -analytic -171.8607 -.077993 2903.293 71.595 -Vm 34.04 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat log_k 19.66 -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.97; delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 -Vm 52.9 Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O log_k 4.455 -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O log_k -2.347 -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite Mg(OH)2 = Mg++ + 2 OH- log_k -10.88 -delta_H 4.85 kcal/mol Vm 24.6 Burkeite Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 log_k -8.406 delta_h -2.297 kcal -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O log_k 4.35; -delta_h 1.17 -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 log_k -6.630 -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55; -delta_h 4.720 kcal -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 -Vm 110 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat log_k 20.96 -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.09 delta_h -9.436 kcal -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat log_k 11.33 -delta_H -83 kJ/mol Vm 31.3 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.881 -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat log_k 27.86 -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O log_k -9.421 Glaserite NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 log_k -3.803; -delta_h 25 -Vm 123 Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 log_k -5.31 -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O log_k -29.5 -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58; -delta_h -0.109 kcal -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 -Vm 73.9 Halite NaCl = Cl- + Na+ log_k 1.570 -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 -Vm 27.1 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.635 -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 Vm 132 Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat log_k 10.30 -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O log_k -0.193 Kalicinite KHCO3 = K+ + H+ + CO3-2 log_k -9.94 # Harvie et al., 1984 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O log_k -0.123 -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O log_k -5.672 Leonhardite MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O log_k -0.887 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O log_k -3.979 Magnesite MgCO3 = CO3-2 + Mg+2 log_k -7.834 delta_h -6.169 Vm 28.3 MgCl2_2H2O MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O -analytical_expression -10.273 0 7.403e3 # ref. 3 MgCl2_4H2O MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O -analytical_expression 12.98 -2.013e-2 # ref. 3 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ log_k -10.806 Nahcolite NaHCO3 = CO3-2 + H+ + Na+ log_k -10.742 Vm 38.0 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O log_k -0.825 Nesquehonite MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O log_k -5.167 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O log_k -1.285 Pirssonite Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O log_k -9.234 Polyhalite K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O log_k -13.744 Vm 218 Portlandite Ca(OH)2 = Ca+2 + 2 OH- log_k -5.190 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98; -delta_h 5.990 kcal -Vm 22.67 Schoenite K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O log_k -4.328 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 18.66 -Vm 162 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 15.760 -delta_h -10.700 kcal -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71; -delta_h 3.340 kcal -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 -Vm 25.7 Sylvite KCl = K+ + Cl- log_k 0.90; -delta_h 8 -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 Vm 37.5 Syngenite K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O log_k -6.43; -delta_h -32.65 # ref. 3 -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat -log_k 21.399 -delta_h -46.352 kcal -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Trona Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O log_k -11.384 Vm 106 Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O log_k 12.464 Vm 223 Boric_acid,s B(OH)3 = B(OH)3 log_k -0.030 KB5O8:4H2O KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ log_k 4.671 K2B4O7:4H2O K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ log_k 13.906 NaBO2:4H2O NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O log_k 9.568 NaB5O8:5H2O NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ log_k 5.895 Teepleite Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O log_k 10.840 CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.80 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O log_k 1.506; delta_h -44.03 kJ -T_c 647.3 # critical T, K -P_c 217.60 # critical P, atm -Omega 0.344 # acentric factor -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005 T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.81800E-03 3199 17.909 -27460 T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 Mtg(g) Mtg = Mtg -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 PITZER -B0 B(OH)4- K+ 0.035 B(OH)4- Na+ -0.0427 B3O3(OH)4- K+ -0.13 B3O3(OH)4- Na+ -0.056 B4O5(OH)4-2 K+ -0.022 B4O5(OH)4-2 Na+ -0.11 Ba+2 Br- 0.31455 0 0 -0.33825E-3 Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 Ba+2 OH- 0.17175 Br- H+ 0.1960 0 0 -2.049E-4 Br- K+ 0.0569 0 0 7.39E-4 Br- Li+ 0.1748 0 0 -1.819E-4 Br- Mg+2 0.4327 0 0 -5.625E-5 Br- Na+ 0.0973 0 0 7.692E-4 Br- Sr+2 0.331125 0 0 -0.32775E-3 Ca+2 Br- 0.3816 0 0 -5.2275E-4 Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 Ca+2 HCO3- 0.4 Ca+2 HSO4- 0.2145 Ca+2 OH- -0.1747 Ca+2 SO4-2 0 # ref. 3 CaB(OH)4+ Cl- 0.12 Cl- Fe+2 0.335925 Cl- H+ 0.1775 0 0 -3.081E-4 Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 Cl- Li+ 0.1494 0 0 -1.685E-4 Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 Cl- MgB(OH)4+ 0.16 Cl- MgOH+ -0.1 Cl- Mn+2 0.327225 Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 Cl- Sr+2 0.2858 0 0 0.717E-3 CO3-2 K+ 0.1488 0 0 1.788E-3 CO3-2 Na+ 0.0399 0 0 1.79E-3 Fe+2 HSO4- 0.4273 Fe+2 SO4-2 0.2568 H+ HSO4- 0.2065 H+ SO4-2 0.0298 HCO3- K+ 0.0296 0 0 0.996E-3 HCO3- Mg+2 0.329 HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite HCO3- Sr+2 0.12 HSO4- K+ -0.0003 HSO4- Mg+2 0.4746 HSO4- Na+ 0.0454 K+ OH- 0.1298 K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 Li+ OH- 0.015 Li+ SO4-2 0.136275 0 0 0.5055E-3 Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 Mn+2 SO4-2 0.2065 Na+ OH- 0.0864 0 0 7.00E-4 Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 SO4-2 Sr+2 0.200 0 0 -2.9E-3 -B1 B(OH)4- K+ 0.14 B(OH)4- Na+ 0.089 B3O3(OH)4- Na+ -0.910 B4O5(OH)4-2 Na+ -0.40 Ba+2 Br- 1.56975 0 0 6.78E-3 Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 Ba+2 OH- 1.2 Br- H+ 0.3564 0 0 4.467E-4 Br- K+ 0.2212 0 0 17.40E-4 Br- Li+ 0.2547 0 0 6.636E-4 Br- Mg+2 1.753 0 0 3.8625E-3 Br- Na+ 0.2791 0 0 10.79E-4 Br- Sr+2 1.7115 0 0 6.5325E-3 Ca+2 Br- 1.613 0 0 6.0375E-3 Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite Ca+2 HSO4- 2.53 Ca+2 OH- -0.2303 Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 Cl- Fe+2 1.53225 Cl- H+ 0.2945 0 0 1.419E-4 Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 Cl- Li+ 0.3074 0 0 5.366E-4 Cl- Mg+2 1.65 0 0 -1.09e-2 2.60e-5 # ref. 3 Cl- MgOH+ 1.658 Cl- Mn+2 1.55025 Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 Cl- Sr+2 1.667 0 0 2.8425E-3 CO3-2 K+ 1.43 0 0 2.051E-3 CO3-2 Na+ 1.389 0 0 2.05E-3 Fe+2 HSO4- 3.48 Fe+2 SO4-2 3.063 H+ HSO4- 0.5556 HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 HCO3- Mg+2 0.6072 HCO3- Na+ 0 # ref. 3 + new -analytic for calcite HSO4- K+ 0.1735 HSO4- Mg+2 1.729 HSO4- Na+ 0.398 K+ OH- 0.32 K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 Li+ OH- 0.14 Li+ SO4-2 1.2705 0 0 1.41E-3 Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 Mn+2 SO4-2 2.9511 Na+ OH- 0.253 0 0 1.34E-4 Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 SO4-2 Sr+2 3.1973 0 0 27e-3 -B2 Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 Ca+2 OH- -5.72 Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 Fe+2 SO4-2 -42.0 HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 Mn+2 SO4-2 -40.0 SO4-2 Sr+2 -54.24 0 0 -0.42 -C0 B(OH)4- Na+ 0.0114 Ba+2 Br- -0.0159576 Ba+2 Cl- -0.143 -114.5 # ref. 3 Br- Ca+2 -0.00257 Br- H+ 0.00827 0 0 -5.685E-5 Br- K+ -0.00180 0 0 -7.004E-5 Br- Li+ 0.0053 0 0 -2.813E-5 Br- Mg+2 0.00312 Br- Na+ 0.00116 0 0 -9.30E-5 Br- Sr+2 0.00122506 Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 Ca+2 SO4-2 0.114 # ref. 3 Cl- Fe+2 -0.00860725 Cl- H+ 0.0008 0 0 6.213E-5 Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 Cl- Li+ 0.00359 0 0 -4.520E-5 Cl- Mg+2 0.00651 0 0 -2.50e-4 2.418e-7 # ref. 3 Cl- Mn+2 -0.0204972 Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 Cl- Sr+2 -0.00130 CO3-2 K+ -0.0015 CO3-2 Na+ 0.0044 Fe+2 SO4-2 0.0209 H+ SO4-2 0.0438 HCO3- K+ -0.008 K+ OH- 0.0041 K+ SO4-2 8.18e-3 -625 -3.30 4.06e-3 # ref. 3 Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 Mn+2 SO4-2 0.01636 Na+ OH- 0.0044 0 0 -18.94E-5 Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 -THETA B(OH)4- Cl- -0.065 B(OH)4- SO4-2 -0.012 B3O3(OH)4- Cl- 0.12 B3O3(OH)4- HCO3- -0.10 B3O3(OH)4- SO4-2 0.10 B4O5(OH)4-2 Cl- 0.074 B4O5(OH)4-2 HCO3- -0.087 B4O5(OH)4-2 SO4-2 0.12 Ba+2 Na+ 0.07 # ref. 3 Br- OH- -0.065 Ca+2 H+ 0.092 Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 Ca+2 Mg+2 0.007 Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 Cl- CO3-2 -0.02 Cl- HCO3- 0.03 Cl- HSO4- -0.006 Cl- OH- -0.05 Cl- SO4-2 0.03 # ref. 3 CO3-2 OH- 0.1 CO3-2 SO4-2 0.02 H+ K+ 0.005 H+ Mg+2 0.1 H+ Na+ 0.036 HCO3- CO3-2 -0.04 HCO3- SO4-2 0.01 K+ Na+ -0.012 Mg+2 Na+ 0.07 Na+ Sr+2 0.051 OH- SO4-2 -0.013 -LAMDA B(OH)3 Cl- 0.091 B(OH)3 K+ -0.14 B(OH)3 Na+ -0.097 B(OH)3 SO4-2 0.018 B3O3(OH)4- B(OH)3 -0.20 Ca+2 CO2 0.183 Ca+2 H4SiO4 0.238 # ref. 3 Cl- CO2 -0.005 Cl- H2Sg -0.005 Cl- (H2Sg)2 -0.005 CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C CO2 HSO4- -0.003 CO2 K+ 0.051 CO2 Mg+2 0.183 CO2 Na+ 0.085 CO2 SO4-2 0.075 # Rumpf and Maurer, 1993. H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 H2Sg SO4-2 0 0 0.679 (H2Sg)2 Na+ 0.0123 0 0.256 H4SiO4 K+ 0.0298 # ref. 3 H4SiO4 Li+ 0.143 # ref. 3 H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 -ZETA B(OH)3 Cl- H+ -0.0102 B(OH)3 Na+ SO4-2 0.046 Cl- H4SiO4 K+ -0.0153 # ref. 3 Cl- H4SiO4 Li+ -0.0196 # ref. 3 CO2 Na+ SO4-2 -0.015 H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 H2Sg Na+ SO4-2 0.157 (H2Sg)2 Cl- Na+ 0.0119 (H2Sg)2 Na+ SO4-2 -0.167 -PSI B(OH)4- Cl- Na+ -0.0073 B3O3(OH)4- Cl- Na+ -0.024 B4O5(OH)4-2 Cl- Na+ 0.026 Br- K+ Na+ -0.0022 Br- K+ OH- -0.014 Br- Na+ H+ -0.012 Br- Na+ OH- -0.018 Ca+2 Cl- H+ -0.015 Ca+2 Cl- K+ -0.025 Ca+2 Cl- Mg+2 -0.012 Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 Ca+2 Cl- OH- -0.025 Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 Ca+2 K+ SO4-2 -0.0365 # ref. 3 Ca+2 Mg+2 SO4-2 0.024 Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 Cl- Br- K+ 0 Cl- CO3-2 K+ 0.004 Cl- CO3-2 Na+ 0.0085 Cl- H+ K+ -0.011 Cl- H+ Mg+2 -0.011 Cl- H+ Na+ -0.004 Cl- HCO3- Mg+2 -0.096 Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite Cl- HSO4- H+ 0.013 Cl- HSO4- Na+ -0.006 Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 Cl- K+ OH- -0.006 Cl- K+ SO4-2 -1e-3 # ref. 3 Cl- Mg+2 MgOH+ 0.028 Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 Cl- Na+ OH- -0.006 Cl- Na+ SO4-2 0 # ref. 3 Cl- Na+ Sr+2 -0.0021 CO3-2 HCO3- K+ 0.012 CO3-2 HCO3- Na+ 0.002 CO3-2 K+ Na+ 0.003 CO3-2 K+ OH- -0.01 CO3-2 K+ SO4-2 -0.009 CO3-2 Na+ OH- -0.017 CO3-2 Na+ SO4-2 -0.005 H+ HSO4- K+ -0.0265 H+ HSO4- Mg+2 -0.0178 H+ HSO4- Na+ -0.0129 H+ K+ Br- -0.021 H+ K+ SO4-2 0.197 HCO3- K+ Na+ -0.003 HCO3- Mg+2 SO4-2 -0.161 HCO3- Na+ SO4-2 -0.005 HSO4- K+ SO4-2 -0.0677 HSO4- Mg+2 SO4-2 -0.0425 HSO4- Na+ SO4-2 -0.0094 K+ Mg+2 SO4-2 -0.048 K+ Na+ SO4-2 -0.010 K+ OH- SO4-2 -0.050 Mg+2 Na+ SO4-2 -0.015 Na+ OH- SO4-2 -0.009 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- log_k 0.0 Na+ + X- = NaX log_k 0.0 K+ + X- = KX log_k 0.7 delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX log_k -0.08 delta_h 1.4 # Merriam & Thomas, 1956 Ca+2 + 2X- = CaX2 log_k 0.8 delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 log_k 0.6 delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 log_k 0.91 delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 log_k 0.91 delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 log_k 0.52 Fe+2 + 2X- = FeX2 log_k 0.44 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH log_k 0.0 Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH log_k 0.0 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ log_k -17.60 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ log_k -7.2 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 # Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # # Anions from table 10.7 # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 log_k 0.79 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 END MEAN GAM CaCl2 CaSO4 CaCO3 Ca(OH)2 MgCl2 MgSO4 MgCO3 Mg(OH)2 NaCl Na2SO4 NaHCO3 Na2CO3 NaOH KCl K2SO4 KHCO3 K2CO3 KOH HCl H2SO4 HBr END # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions # D_i = d1 + exp(-d2 tc) # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 5. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71. # http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files # for the high P,T Pitzer model and improvements for Calcite. # ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 5: Appelo and Parkhurst in prep., for parameters see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).