// ISolution.cxx: implementation of the cxxSolutionxx class. // ////////////////////////////////////////////////////////////////////// #ifdef _DEBUG #pragma warning(disable : 4786) // disable truncation warning (Only used by debugger) #endif #include // assert #include // std::sort #include #include "Utils.h" // define first #if !defined(PHREEQC_CLASS) #define EXTERNAL extern #include "global.h" #else #include "Phreeqc.h" #endif #include "ISolution.h" #include "phqalloc.h" #include "phrqproto.h" #include "output.h" #ifdef ORCHESTRA extern void ORCH_write_chemistry_species(std::ostream & chemistry_dat); #endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// //static std::map ss_map; //std::map& cxxISolution::s_map = ss_map; cxxISolution::cxxISolution(PHRQ_io *io) : cxxSolution(io), units("mMol/kgw") { density = 1.0; default_pe = -1; pes = NULL; } cxxISolution::~cxxISolution() { //// ToDo //pe_data_free(this->pes); } #ifdef SKIP_OR_MOVE_TO_STRUCTURES void cxxISolution::ConvertUnits(PHREEQC_PTR_ARG) // // Converts from input units to moles per kilogram water // { double sum_solutes = 0; // foreach conc std::map < std::string, cxxISolutionComp >::iterator iter = this->comps.begin(); for (; iter != this->comps.end(); ++iter) { struct master *master_ptr = P_INSTANCE_POINTER master_bsearch(iter->first.c_str()); if (master_ptr != NULL && (master_ptr->minor_isotope == TRUE)) continue; //if (iter->second.get_description() == "H(1)" || iter->second.get_description() == "E") continue; if (strcmp(iter->second.get_description().c_str(), "H(1)") == 0 || strcmp(iter->second.get_description().c_str(), "E")) continue; if (iter->second.get_input_conc() <= 0.0) continue; /* * Convert liters to kg solution */ double moles = iter->second.get_input_conc(); if (this->units.find("/l") != std::string::npos) { moles /= this->density; } /* * Convert to moles */ //set gfw for element iter->second.set_gfw(P_INSTANCE); // convert to moles if (iter->second.get_units().find("g/") != std::string::npos) { if (iter->second.get_gfw() != 0) { moles /= iter->second.get_gfw(); } else { std::ostringstream oss; oss << "Could not find gfw, " << iter->second. get_description(); error_msg(oss.str().c_str(), CONTINUE); //P_INSTANCE_POINTER input_error++; } } /* * Convert milli or micro */ char c = iter->second.get_units().c_str()[0]; if (c == 'm') { moles *= 1e-3; } else if (c == 'u') { moles *= 1e-6; } iter->second.set_moles(moles); /* * Sum grams of solute, convert from moles necessary */ sum_solutes += moles * (iter->second.get_gfw()); } /* * Convert /kgs to /kgw */ double l_mass_water; if ((this->units.find("kgs") != std::string::npos) || (this->units.find("/l") != std::string::npos)) { l_mass_water = 1.0 - 1e-3 * sum_solutes; for (; iter != this->comps.end(); ++iter) { iter->second.set_moles(iter->second.get_moles() / l_mass_water); } } /* * Scale by mass of water in solution */ l_mass_water = this->mass_water; for (; iter != this->comps.end(); ++iter) { iter->second.set_moles(iter->second.get_moles() * l_mass_water); } } #endif #ifdef SKIP cxxISolution & cxxISolution::read(CParser & parser) { static std::vector < std::string > vopts; if (vopts.empty()) { vopts.reserve(11); vopts.push_back("temp"); // 0 vopts.push_back("temperature"); // 1 vopts.push_back("dens"); // 2 vopts.push_back("density"); // 3 vopts.push_back("units"); // 4 vopts.push_back("redox"); // 5 vopts.push_back("ph"); // 6 vopts.push_back("pe"); // 7 vopts.push_back("unit"); // 8 vopts.push_back("isotope"); // 9 vopts.push_back("water"); // 10 } // const int count_opt_list = vopts.size(); cxxISolution numkey; // Read solution number and description numkey.read_number_description(parser); // Malloc space for solution data //// g_solution_map[numkey.n_user()] = numkey; s_map[numkey.n_user()] = numkey; std::istream::pos_type ptr; std::istream::pos_type next_char; std::string token; CParser::TOKEN_TYPE j; cxxISolution & sol = s_map[numkey.n_user()]; int default_pe = 0; for (;;) { int opt = parser.get_option(vopts, next_char); if (opt == CParser::OPTION_DEFAULT) { ptr = next_char; if (parser.copy_token(token, ptr) == CParser::TT_DIGIT) { opt = 9; } } switch (opt) { case CParser::OPTION_EOF: break; case CParser::OPTION_KEYWORD: break; case CParser::OPTION_ERROR: opt = CParser::OPTION_EOF; CParser::error_msg("Unknown input in SOLUTION keyword.", CParser::OT_CONTINUE); CParser::error_msg(parser.line().c_str(), CParser::OT_CONTINUE); break; case 0: // temp case 1: // temperature if (!(parser.get_iss() >> sol.tc)) { sol.tc = 25; } break; case 2: // dens case 3: // density parser.get_iss() >> sol.density; break; case 4: // units case 8: // unit if (parser.copy_token(token, next_char) == CParser::TT_EMPTY) break; if (parser.check_units(token, false, false, sol.units, true) == CParser::OK) { sol.units = token; } else { parser.incr_input_error(); } break; case 5: // redox if (parser.copy_token(token, next_char) == CParser::TT_EMPTY) break; if (parser.parse_couple(token) == CParser::OK) { default_pe = cxxPe_Data::store(sol.pe, token); } else { parser.incr_input_error(); } break; case 6: // ph { cxxISolutionComp conc; if (conc.read(parser, sol) == cxxISolutionComp::ERROR) { parser.incr_input_error(); break; } sol.ph = conc.get_input_conc(); if (conc.get_equation_name().empty()) { break; } conc.set_description("H(1)"); sol.add(conc); } break; case 7: // pe { cxxISolutionComp conc; if (conc.read(parser, sol) == cxxISolutionComp::ERROR) { parser.incr_input_error(); break; } sol.solution_pe = conc.get_input_conc(); if (conc.get_equation_name().empty()) { break; } conc.set_description("E"); sol.add(conc); } break; case 9: // isotope { cxxIsotope isotope; if (isotope.read(parser) == cxxIsotope::OK) { sol.add(isotope); } } break; case 10: // water j = parser.copy_token(token, next_char); if (j == CParser::TT_EMPTY) { sol.mass_water = 1.0; } else if (j != CParser::TT_DIGIT) { parser.incr_input_error(); parser. error_msg ("Expected numeric value for mass of water in solution.", CParser::OT_CONTINUE); } else { std::istringstream(token) >> sol.mass_water; } break; case CParser::OPTION_DEFAULT: { // Read concentration cxxISolutionComp conc; if (conc.read(parser, sol) == cxxISolutionComp::ERROR) { parser.incr_input_error(); } else { sol.add(conc); } } break; } if (opt == CParser::OPTION_EOF || opt == CParser::OPTION_KEYWORD) break; } // // fix up default units and default pe // std::string token1; std::vector < cxxISolutionComp >::iterator iter = sol.totals.begin(); for (; iter != sol.totals.end(); ++iter) { token = (*iter).get_description(); Utilities::str_tolower(token); if ((*iter).get_units().empty()) { (*iter).set_units(sol.units); } else { bool alk = false; if (token.find("alk") == 0) alk = true; token1 = (*iter).get_units(); if (parser. check_units(token1, alk, true, sol.get_units(), true) == CParser::ERROR) { parser.incr_input_error(); } else { (*iter).set_units(token1); } } if ((*iter).get_n_pe() < 0) { (*iter).set_n_pe(default_pe); } } sol.default_pe = default_pe; return sol; } #endif #ifdef SKIP void cxxISolution::dump_xml(std::ostream & os, unsigned int indent) const const { unsigned int i; for (i = 0; i < indent; ++i) os << Utilities::INDENT; os << "\n"; cxxNumKeyword::dump_xml(os, indent); for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_tc() << "" << "\n"; for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_ph() << "" << "\n"; for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_solution_pe() << "" << "\n"; assert(this->pe.size() > 0); assert(this->default_pe >= 0); assert(this->pe.size() > (unsigned int) this->default_pe); //this->pe[this->default_pe].dump_xml(os, indent + 1); for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_units() << "" << "\n"; for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_density() << "" << "\n"; // foreach conc if (!this->totals.empty()) { for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "\n"; std::vector < cxxISolutionComp >::const_iterator iter = this->totals.begin(); for (; iter != this->totals.end(); ++iter) { (*iter).dump_xml(*this, os, indent + 2); } for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "\n"; } // foreach isotope if (!this->isotopes.empty()) { for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "\n"; std::list < cxxIsotope >::const_iterator iter = this->isotopes.begin(); for (; iter != this->isotopes.end(); ++iter) { (*iter).dump_xml(os, indent + 2); } for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "\n"; } for (i = 0; i < indent + 1; ++i) os << Utilities::INDENT; os << "" << this->get_mass_water() << "" << "\n"; for (i = 0; i < indent; ++i) os << Utilities::INDENT; os << "" << "\n"; } #endif #ifdef ORCHESTRA void cxxISolution::ORCH_write_chemistry(std::ostream & chemistry_dat) { this->ORCH_write_chemistry_water(chemistry_dat); this->ORCH_write_chemistry_primary(chemistry_dat); this->ORCH_write_chemistry_total_O_H(chemistry_dat); this->ORCH_write_chemistry_alkalinity(chemistry_dat); ORCH_write_chemistry_species(chemistry_dat); this->ORCH_write_chemistry_minerals(chemistry_dat); } void cxxISolution::ORCH_write_chemistry_water(std::ostream & chemistry_dat) { // // Write water entities // chemistry_dat << std::endl << "//********* The water entities" << std:: endl; // e- chemistry_dat << "@entity(e-, diss, 0)" << std::endl; if (this->comps.find("E") == this->comps.end() || this->comps.find("E")->second.get_equation_name() == NULL) { // fixed pe chemistry_dat << "@Calc: (1, \"e-.act = 10^-pe\")" << std::endl; } else if (this->comps.find("E")->second.get_equation_name() == string_hsave("charge")) { // charge balance chemistry_dat << "@Calc: (1, \"pe = -log10({e-.act})\")" << std::endl; chemistry_dat << "@solve (e-.act, 1e-6, log, 1, chargebalance, 1e-14)" << std:: endl; } else { // adjust to equilbirium with a phase chemistry_dat << "@Calc: (1, \"pe = -log10({e-.act})\")" << std::endl; int n; struct phase *phase_ptr = phase_bsearch(this->comps.find("E)")->second.get_equation_name(), &n, FALSE); assert(phase_ptr != NULL); std::string phase_name(phase_ptr->name); std::replace(phase_name.begin(), phase_name.end(), '(', '['); std::replace(phase_name.begin(), phase_name.end(), ')', ']'); chemistry_dat << "@solve (e-.act, 1e-6, log, 1, " << phase_name. c_str() << ".si_raw, 1e-9)" << std::endl; } // H+ if (this->comps.find("H(1)") == this->comps.end() || this->comps.find("H(1)")->second.get_equation_name() == NULL) { // fixed pH chemistry_dat << "@Calc: (1, \"H+.act = 10^-pH\")" << std::endl; } else if (this->comps.find("H(1)")->second.get_equation_name() == string_hsave("charge")) { // charge balance chemistry_dat << "@Calc: (1, \"pH = -log10({H+.act})\")" << std::endl; chemistry_dat << "@solve (H+.act, 1e-6, log, 1, chargebalance, 1e-14)" << std:: endl; } else { // adjust to equilbirium with a phase chemistry_dat << "@Calc: (1, \"pH = -log10({H+.act})\")" << std::endl; int n; struct phase *phase_ptr = phase_bsearch(this->comps.find("H(1)")->second. get_equation_name(), &n, FALSE); assert(phase_ptr != NULL); chemistry_dat << "@solve (H+.act, 1e-6, log, 1, " << phase_ptr-> name << ".si_raw, 1e-9)" << std::endl; } // H2O chemistry_dat << "@entity(" << s_h2o-> name << ", diss, 55.506)" << std::endl; chemistry_dat << std::endl; } void cxxISolution::ORCH_write_chemistry_primary(std::ostream & chemistry_dat) { chemistry_dat << std::endl << "//********* The primary species" << std:: endl; // // Write other master species definitions, i.e. primary entities // std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); chemistry_dat << "@species(H+, 1)" << std::endl; for (; iter != this->comps.end(); ++iter) { std::string name(iter->second.get_description()); if (name == "H(1)" || name == "E" || name == "Alkalinity") continue; struct element *elt; char *element_name = string_hsave(name.c_str()); elt = element_store(element_name); assert(elt != NULL); struct species *s_ptr; s_ptr = elt->master->s; assert(s_ptr != NULL); chemistry_dat << "@species(" << s_ptr->name << ", " << s_ptr-> z << ")" << std::endl; if (iter->second.get_equation_name() == NULL) { // regular mole balance chemistry_dat << "@primary_entity(" << s_ptr-> name << ", 1e-9, diss, 1.0e-9)" << std::endl; } else { std::string eqn(iter->second.get_equation_name()); if (eqn == "charge") { // charge balance chemistry_dat << "@solve (" << s_ptr-> name << ".act, 1e-6, log, 1, chargebalance, 1e-9)" << std::endl; } else { // adjust to phase equilibrium int n; struct phase *phase_ptr = phase_bsearch(eqn.c_str(), &n, FALSE); assert(phase_ptr != NULL); std::string phase_name(phase_ptr->name); std::replace(phase_name.begin(), phase_name.end(), '(', '['); std::replace(phase_name.begin(), phase_name.end(), ')', ']'); chemistry_dat << "@solve (" << s_ptr-> name << ".act, 1e-6, log, 1, " << phase_name << ".si_raw, 1e-9)" << std::endl; } } } chemistry_dat << std::endl; } void cxxISolution::ORCH_write_chemistry_total_O_H(std::ostream & chemistry_dat) { chemistry_dat << std:: endl << "//********* Define total hydrogen and oxygen" << std::endl; // Define total hydrogen, total oxygen, and difference //chemistry_dat << "@var: total_diff 0" << std::endl; //chemistry_dat << "@calc: (5, \"total_diff = total_hydrogen - 2*total_oxygen" << "\")" << std::endl; // Write H total equation chemistry_dat << "@var: total_hydrogen 0" << std::endl; chemistry_dat << "@calc: (5, \"total_hydrogen = 0"; int i; for (i = 0; i < count_s_x; i++) { // write in terms of orchestra components if (s_x[i]->primary != NULL || (s_x[i]->secondary != NULL && s_x[i]->secondary->in == TRUE)) { if (s_x[i]->h != 0) { chemistry_dat << "+"; if (s_x[i]->h != 1) { chemistry_dat << s_x[i]->h << "*"; } chemistry_dat << "{" << s_x[i]->name << ".diss}"; } } } chemistry_dat << "\")" << std::endl; // Write O total equation chemistry_dat << "@var: total_oxygen 0" << std::endl; chemistry_dat << "@calc: (5, \"total_oxygen = 0"; for (i = 0; i < count_s_x; i++) { if (s_x[i]->o != 0) { // write in terms of orchestra components if (s_x[i]->primary != NULL || (s_x[i]->secondary != NULL && s_x[i]->secondary->in == TRUE)) { chemistry_dat << "+"; if (s_x[i]->o != 1) { chemistry_dat << s_x[i]->o << "*"; } chemistry_dat << "{" << s_x[i]->name << ".diss}"; } } } chemistry_dat << "\")" << std::endl; chemistry_dat << std::endl; } void cxxISolution::ORCH_write_chemistry_alkalinity(std::ostream & chemistry_dat) { chemistry_dat << std:: endl << "//********* Alkalinity definitions" << std::endl; // // Define alkalinity // chemistry_dat << "@Var: Alkalinity 0" << std::endl; chemistry_dat << "@calc: (5, \"Alkalinity = 0"; for (int i = 0; i < count_s_x; i++) { if (s_x[i]->alk == 0) continue; std::string name(s_x[i]->name); std::replace(name.begin(), name.end(), '(', '['); std::replace(name.begin(), name.end(), ')', ']'); if (s_x[i]->alk < 0) { if (s_x[i]->alk != -1) { chemistry_dat << s_x[i]->alk << "*{" << name << ".con}"; } else { chemistry_dat << "-{" << name << ".con}"; } } else if (s_x[i]->alk > 0) { if (s_x[i]->alk != 1) { chemistry_dat << "+" << s_x[i]-> alk << "*{" << name << ".con}"; } else { chemistry_dat << "+{" << name << ".con}"; } } } chemistry_dat << "\")" << std::endl; // // Alkalinity (or pH) equation // std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); if ((iter = this->comps.find("Alkalinity")) != this->comps.end()) { if ((this->comps.find("C(4)") != this->comps.end()) || (this->comps.find("C") != this->comps.end())) { if (this->comps.find("H(1)") != this->comps.end()) { std::ostringstream oss; oss << "pH can not be adjusted to charge balance or phase equilibrium when specifying C or C(4) and Alkalinty."; error_msg(oss.str().c_str(), CONTINUE); //P_INSTANCE_POINTER input_error++; } chemistry_dat << "@solve (pH, 1e-6, lin, 1, Alkalinity, 7)" << std::endl; chemistry_dat << std::endl; } else { struct master *master_ptr = master_bsearch("Alkalinity"); if (master_ptr == NULL) { std::ostringstream oss; oss << "Could not find Alkalinity definition in database."; error_msg(oss.str().c_str(), CONTINUE); input_error++; } chemistry_dat << "@species(" << master_ptr->s-> name << ", " << master_ptr->s->z << ")" << std::endl; chemistry_dat << "@solve (" << master_ptr->s-> name << ".act, 1e-6, log, 1, Alkalinity, 1e-9)" << std::endl; chemistry_dat << std::endl; } } } void cxxISolution::ORCH_write_chemistry_minerals(std::ostream & chemistry_dat) { chemistry_dat << std:: endl << "//********* Adjustments to mineral equilibrium" << std::endl; // // Write minerals // std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); for (iter = this->comps.begin(); iter != this->comps.end(); ++iter) { if (iter->second.get_equation_name() != NULL) { std::string name(iter->second.get_equation_name()); if (name != "charge") { struct phase *phase_ptr; int n; phase_ptr = phase_bsearch(name.c_str(), &n, FALSE); assert(phase_ptr != NULL); std::string phase_name(phase_ptr->name); std::replace(phase_name.begin(), phase_name.end(), '(', '['); std::replace(phase_name.begin(), phase_name.end(), ')', ']'); chemistry_dat << "@si_mineral(" << phase_name << ")" << std:: endl; chemistry_dat << "@reaction(" << phase_name << ", " << pow(10.0, -phase_ptr->lk); struct rxn_token *next_token = phase_ptr->rxn_x->token; next_token++; while (next_token->s != NULL || next_token->name != NULL) { chemistry_dat << ", " << next_token->coef; if (next_token->s != NULL) { chemistry_dat << ", " << next_token->s->name; } else { chemistry_dat << ", " << next_token->name; } next_token++; } chemistry_dat << ")" << std::endl; } } } //chemistry_dat << "@mineral(Quartz)" << std::endl; //chemistry_dat << "@sreaction(Quartz, 10139.1138573668, -2.0, H2O, 1.0, H4SiO4)" << std::endl; } void cxxISolution::ORCH_write_input(std::ostream & input_dat) { // // Write orchestra input file info // std::ostringstream headings, data; data.precision(DBL_DIG - 1); headings << "var: "; data << "data: "; // Solution element and attributes //s_oss << "SOLUTION_RAW " << this->n_user << " " << this->description << std::endl; //s_oss << "-temp " << this->tc << std::endl; headings << "tempc\t"; data << this->tc << "\t"; //s_oss << "-pH " << this->ph << std::endl; headings << "pH\t"; data << this->ph << "\t"; //s_oss << "-pe " << this->pe << std::endl; headings << "pe\t"; data << this->pe << "\t"; //s_oss << "-mu " << this->mu << std::endl; //s_oss << "-ah2o " << this->ah2o << std::endl; headings << "H2O.act\t"; data << 1 << "\t"; //s_oss << "-total_h " << this->total_h << std::endl; //s_oss << "-total_o " << this->total_o << std::endl; //s_oss << "-cb " << this->cb << std::endl; //s_oss << "-mass_water " << this->mass_water << std::endl; //s_oss << "-total_alkalinity " << this->total_alkalinity << std::endl; // soln_total conc structures //this->totals.dump_raw(s_oss, indent + 2); //this->totals.write_orchestra(headings, s_oss); std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); for (; iter != this->comps.end(); ++iter) { std::string master_name; struct master *master_ptr; master_ptr = master_bsearch(iter->first); assert(master_ptr != NULL); std::string ename(iter->first); double coef = master_ptr->coef; if (master_ptr->coef == 0) { coef = 1; } if (ename != "Alkalinity") { ename = master_ptr->s->name; ename.append(".diss"); } if (iter->second.get_equation_name() == NULL) { headings << ename << "\t"; data << (this->totals.find(iter->first))->second / coef << "\t"; } else { std::string name(iter->second.get_equation_name()); if (name == "charge") { headings << ename << "\t"; data << (this->totals.find(iter->first))->second / coef << "\t"; } else { int n; struct phase *phase_ptr = phase_bsearch(name.c_str(), &n, TRUE); assert(phase_ptr != NULL); std::string phase_name(phase_ptr->name); std::replace(phase_name.begin(), phase_name.end(), '(', '['); std::replace(phase_name.begin(), phase_name.end(), ')', ']'); headings << phase_name << ".si_raw" << "\t"; data << iter->second.get_phase_si() << "\t"; } } // activity estimate if (ename == "Alkalinity") { if ((this->comps.find("C") == this->comps.end()) && (this->comps.find("C(4)") == this->comps.end())) { headings << master_ptr->s->name << ".act\t"; data << iter->second.get_moles() * 1e-3 << "\t"; } } else { headings << master_ptr->s->name << ".act\t"; data << iter->second.get_moles() * 1e-3 << "\t"; } } // Isotopes //s_oss << "-Isotopes" << std::endl; /* { for (std::list::const_iterator it = this->isotopes.begin(); it != isotopes.end(); ++it) { it->dump_raw(s_oss, indent + 2); } } */ // Write data to string input_dat << headings.str() << std::endl; input_dat << data.str() << std::endl; return; } void cxxISolution::ORCH_write_output_vars(std::ostream & outstream) { outstream << "Var:"; outstream << "\tnr_iter"; // // Serialize solution // outstream << "\tstart_solution"; //tc outstream << "\ttempc"; //pH outstream << "\tpH"; //pe outstream << "\tpe"; //mu outstream << "\tI"; //ah2o outstream << "\tH2O.act"; //total_h; outstream << "\ttotal_hydrogen"; //total_o; outstream << "\ttotal_oxygen"; //cb outstream << "\tchargebalance"; //mass_water; outstream << "\tH2O.con"; //total_alkalinity; outstream << "\tAlkalinity"; //orchestra master variables outstream << "\tH+.diss"; outstream << "\te-.diss"; outstream << "\tH2O.diss"; //totals for (std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); iter != this->comps.end(); ++iter) { std::string name(iter->second.get_description()); if (name == "H(1)" || name == "E" || name == "Alkalinity") continue; struct element *elt; char *element_name = string_hsave(name.c_str()); elt = element_store(element_name); assert(elt != NULL); struct species *s_ptr; s_ptr = elt->master->s; assert(s_ptr != NULL); outstream << "\t" << s_ptr->name << ".diss"; } outstream << "\tend_totals"; for (std::map < char *, cxxISolutionComp, CHARSTAR_LESS >::iterator iter = this->comps.begin(); iter != this->comps.end(); ++iter) { std::string name(iter->second.get_description()); if (name == "H(1)" || name == "E" || name == "Alkalinity") continue; struct element *elt; char *element_name = string_hsave(name.c_str()); elt = element_store(element_name); assert(elt != NULL); struct species *s_ptr; s_ptr = elt->master->s; assert(s_ptr != NULL); outstream << "\t" << s_ptr->name << ".act"; } outstream << "\tend_master_activities"; // // Write all species activities and concentrations // int i; for (i = 0; i < count_s_x; i++) { std::string name(s_x[i]->name); std::replace(name.begin(), name.end(), '(', '['); std::replace(name.begin(), name.end(), ')', ']'); outstream << "\t" << name.c_str() << ".act" << "\t" << name. c_str() << ".con"; } outstream << "\tend_species"; outstream << std::endl; return; } void cxxISolution::ORCH_write(std::ostream & chemistry_dat, std::ostream & input_dat, std::ostream & output_dat) { // // Write orchestra chemistry file definition // chemistry_dat << std:: endl << "// Write ORCHESTRA chemistry definitions" << std::endl; // mark for Orchestra include chemistry_dat << std::endl << "@class: species_reactions () {" << std:: endl; this->ORCH_write_chemistry(chemistry_dat); // end orchestra include block chemistry_dat << std::endl << "}" << std::endl; // // Write orchestra input file definition // input_dat << std::endl << "@class: input_file_data () {" << std::endl; this->ORCH_write_input(input_dat); input_dat << std::endl << "}" << std::endl; // // Write orchestra output file definition // output_dat << std::endl << "Output_every: 1" << std::endl; this->ORCH_write_output_vars(output_dat); //write data to stderr //std::cerr << chemistry_dat.str() << input_dat.str() << output_dat.str(); } #endif