# PHREEQC.DAT for calculating pressure dependence of reactions, with # molal volumina of aqueous species and of minerals, and # critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1.0 H 1.008 H(0) H2 0 H H(1) H+ -1.0 0 E e- 0 0.0 0 O H2O 0 O 16.0 O(0) O2 0 O O(-2) H2O 0 0 Ca Ca+2 0 Ca 40.08 Mg Mg+2 0 Mg 24.312 Na Na+ 0 Na 22.9898 K K+ 0 K 39.102 Fe Fe+2 0 Fe 55.847 Fe(+2) Fe+2 0 Fe Fe(+3) Fe+3 -2.0 Fe Mn Mn+2 0 Mn 54.938 Mn(+2) Mn+2 0 Mn Mn(+3) Mn+3 0 Mn Al Al+3 0 Al 26.9815 Ba Ba+2 0 Ba 137.34 Sr Sr+2 0 Sr 87.62 Si H4SiO4 0 SiO2 28.0843 Cl Cl- 0 Cl 35.453 C CO3-2 2.0 HCO3 12.0111 C(+4) CO3-2 2.0 HCO3 C(-4) CH4 0 CH4 Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 S(-2) HS- 1.0 S N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 #Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2.0 P 30.9738 F F- 0 F 18.9984 Li Li+ 0 Li 6.939 Br Br- 0 Br 79.904 Zn Zn+2 0 Zn 65.37 Cd Cd+2 0 Cd 112.4 Pb Pb+2 0 Pb 207.19 Cu Cu+2 0 Cu 63.546 Cu(+2) Cu+2 0 Cu Cu(+1) Cu+1 0 Cu # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 1.0 H2Sg 34.08 Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. # Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 97 3.4 24.6 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 111 2.4 13.7 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 Na+ = Na+ -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility -dw 1.33e-9 122 1.52 3.70 -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 395 2.5 21 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 Fe+2 = Fe+2 -gamma 6.0 0 -dw 0.719e-9 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 Mn+2 = Mn+2 -gamma 6.0 0 -dw 0.688e-9 -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 Al+3 = Al+3 -gamma 9.0 0 -dw 0.559e-9 -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. Ba+2 = Ba+2 -gamma 5.0 0 -gamma 4.0 0.153 # Barite solubility -dw 0.848e-9 46 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 Sr+2 = Sr+2 -gamma 5.260 0.121 -dw 0.794e-9 161 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -dw 2.03e-9 194 1.6 6.9 -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 CO3-2 = CO3-2 -gamma 5.4 0 -dw 0.955e-9 0 1.12 2.84 -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 SO4-2 = SO4-2 -gamma 5.0 -0.04 -dw 1.07e-9 34 2.08 13.4 -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 NO3- = NO3- -gamma 3.0 0 -dw 1.9e-9 184 1.85 3.85 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1 #AmmH+ = AmmH+ # -gamma 2.5 0 # -dw 1.98e-9 312 0.95 4.53 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0 -dw 0.612e-9 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 F- = F- -gamma 3.5 0 -dw 1.46e-9 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2 Li+ = Li+ -gamma 6.0 0 -dw 1.03e-9 80 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 Br- = Br- -gamma 3.0 0 -dw 2.01e-9 258 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 Zn+2 = Zn+2 -gamma 5.0 0 -dw 0.715e-9 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2 Cd+2 = Cd+2 -dw 0.717e-9 -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2 Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0 -dw 0.733e-9 -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2 # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt Oxg = Oxg # O2 -dw 2.35e-9 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 -Vm 7.81 2.96 -0.46 # supcrt # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -dw 5.27e-9 548 0.52 1e-10 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal -dw 2.35e-9 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 -dw 1.18e-9 0 1.43 1e-10 -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.20 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -dw 1.33e-9 -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5.0 0 -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.140 kcal -gamma 3.5 0 -dw 1.73e-9 -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt HS- + H+ = H2S -log_k 6.994 -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 -Vm 7.81 2.96 -0.46 # supcrt H2Sg = HSg- + H+ -log_k -6.994 -delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 -dw 1.73e-9 -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.570 -delta_h -43.760 kcal -gamma 3.0 0 -dw 1.91e-9 -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.130 kcal -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 -Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -log_k 1.11 -Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- -log_k -0.4 -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O -log_k 7.63 -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 -log_k 12.346 -delta_h -3.530 kcal -gamma 5.0 0 -dw 0.69e-9 -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0 -dw 0.846e-9 -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 PO4-3 + 3H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ -Vm 7.47 12.4 6.29 -3.29 0 # ref. 2 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- -log_k 3.76 -delta_h 4.550 kcal -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ -log_k -12.78 Ca+2 + CO3-2 = CaCO3 -log_k 3.224 -delta_h 3.545 kcal -analytic -1228.732 -0.299440 35512.75 485.818 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 11.435 -delta_h -0.871 kcal -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 -gamma 6.0 0 -dw 5.06e-10 -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt Ca+2 + SO4-2 = CaSO4 -log_k 2.25 -delta_h 1.325 kcal -dw 4.71e-10 -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- -log_k 6.459 -delta_h 3.10 kcal -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ -log_k 1.408 -delta_h 3.4 kcal -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ -log_k -11.44 -delta_h 15.952 kcal -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 -log_k 2.98 -delta_h 2.713 kcal -analytic 0.9910 0.00667 -dw 4.21e-10 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4.0 0 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 -log_k 2.37 -delta_h 4.550 kcal -dw 4.45e-10 -Vm 2.4 -0.97 6.1 -2.74 # est'd Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ -log_k 1.513 -delta_h 3.4 kcal -gamma 5.4 0 Mg+2 + F- = MgF+ -log_k 1.82 -delta_h 3.20 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex Na+ + CO3-2 = NaCO3- -log_k 1.27 -delta_h 8.91 kcal -dw 1.2e-9 0 1e-10 1e-10 -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 Na+ + HCO3- = NaHCO3 -log_k -0.25 -delta_h -1 kcal -dw 6.73e-10 -Vm 0.431 # ref. 1 Na+ + SO4-2 = NaSO4- -log_k 0.7 -delta_h 1.120 kcal -gamma 5.4 0 -dw 1.33e-9 0 0.57 1e-10 -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- -log_k 0.85 -delta_h 2.250 kcal -analytical 3.106 0.0 -673.6 -gamma 5.4 0 -dw 1.5e-9 0 1e-10 1e10 -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal -gamma 5.0 0 Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ -log_k 0.14 Fe+2 + CO3-2 = FeCO3 -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ -log_k 2.0 Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal -Vm -13 0 123 # ref. 2 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ -log_k 2.7 -gamma 5.4 0 Fe+2 + F- = FeF+ -log_k 1.0 Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.680 kcal -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ -log_k -2.19 -delta_h 10.4 kcal -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ -log_k -5.67 -delta_h 17.1 kcal -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ -log_k -12.56 -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ -log_k -21.6 -delta_h 31.9 kcal -gamma 5.4 0 Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ -log_k -2.95 -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ -log_k -6.3 -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 -log_k 1.48 -delta_h 5.6 kcal -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ -log_k 2.13 -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ -log_k 4.04 -delta_h 3.91 kcal -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- -log_k 5.38 -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ -log_k 5.43 -delta_h 5.76 kcal -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 -log_k 5.43 -gamma 5.4 0 Fe+3 + F- = FeF+2 -log_k 6.2 -delta_h 2.7 kcal -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ -log_k 10.8 -delta_h 4.8 kcal -gamma 5.0 0 Fe+3 + 3 F- = FeF3 -log_k 14.0 -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ -log_k -10.59 -delta_h 14.40 kcal -gamma 5.0 0 Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 -gamma 5.0 0 Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5.0 0 -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 -Vm 1e-5 0 144 # ref. 2 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0 -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal -Vm -1.31 -1.83 62.3 -2.7 # ref. 2 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal -Vm 6.16 0 29.4 0 0.9 # ref. 2 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0 Mn+2 = Mn+3 + e- -log_k -25.51 -delta_h 25.80 kcal -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ -log_k -5.0 -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -gamma 5.4 0 -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal -gamma 5.4 0 -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ -log_k -16.9 -delta_h 39.89 kcal -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ -log_k -22.7 -delta_h 42.30 kcal -analytic 51.578 0.0 -11168.9 -14.865 -gamma 4.5 0 Al+3 + SO4-2 = AlSO4+ -log_k 3.5 -delta_h 2.29 kcal -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- -log_k 5.0 -delta_h 3.11 kcal -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 -log_k 0.46 Al+3 + F- = AlF+2 -log_k 7.0 -delta_h 1.060 kcal -gamma 5.4 0 Al+3 + 2 F- = AlF2+ -log_k 12.7 -delta_h 1.980 kcal -gamma 5.4 0 Al+3 + 3 F- = AlF3 -log_k 16.8 -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- -log_k 19.4 -delta_h 2.20 kcal -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ -log_k -9.83 -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 -gamma 4 0 -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0 -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O -log_k 30.18 -delta_h -16.260 kcal -gamma 5.0 0 -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 -log_k 2.71 -delta_h 3.55 kcal -analytic 0.113 0.008721 -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ -log_k 0.982 -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ -log_k 11.509 -delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 -log_k 2.81 -delta_h 5.22 kcal -analytic -1.019 0.012826 -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- -log_k 0.64 -gamma 5.0 0 Cu+2 + e- = Cu+ -log_k 2.72 -delta_h 1.65 kcal -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 -log_k 5.70 -delta_h 0.26 kcal -gamma 5.0 0.0 Cu+2 + CO3-2 = CuCO3 -log_k 6.73 Cu+2 + 2CO3-2 = Cu(CO3)2-2 -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ -log_k 2.7 Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal -Vm 26.8 0 -136 # ref. 2 Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 Cu+2 + F- = CuF+ -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ -log_k -8.0 -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ -log_k -39.6 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal -Vm 5.21 0 -14.6 # ref. 2 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ -log_k -41.2 Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal -Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal -Vm 2.51 0 18.8 # ref. 2 Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 -log_k -0.98 Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ -log_k -47.35 2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal -Vm 5.53 # ref. 2 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal -Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal -Vm 10.4 0 57.9 # ref. 2 Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 -log_k 1.5 Cd+2 + HS- = CdHS+ -log_k 10.17 Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ -log_k -6.36 Pb+2 + Cl- = PbCl+ -log_k 1.6 -delta_h 4.38 kcal -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 -log_k 1.8 -delta_h 1.08 kcal -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- -log_k 1.7 -delta_h 2.17 kcal -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 -log_k 1.38 -delta_h 3.53 kcal -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ -log_k 2.9 Pb+2 + SO4-2 = PbSO4 -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 -log_k 3.47 Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ -log_k 1.17 Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal Pb+2 + 2Br- = PbBr2 -log_k 1.44 Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal -analytic -171.9065 -0.077993 2839.319 71.595 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 -log_k -8.336 -delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 -log_k -9.271 -delta_h -0.400 kcal -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 -log_k -8.562 -delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58 -delta_h -0.109 kcal -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- -log_k -10.6 -delta_h 4.69 kcal -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71 -delta_h 3.340 kcal -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55 -delta_h 4.720 kcal -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98 -delta_h 5.990 kcal -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 -log_k -20.573 -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O -log_k -1.0 -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O -log_k -36.0 Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O -log_k 15.2 Halite NaCl = Cl- + Na+ log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- log_k 0.900 -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 CO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ -T_c 647.3 -P_c 217.60 -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # Gases from LLNL... O2(g) O2 = O2 -log_k -2.8983 -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- -log_k -7.9759 -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 -T_c 373.2; -P_c 88.20; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.81800e-3 3199 17.909 -27460 T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 -log_k -2.209 -delta_h 4.910 kcal -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 -log_k -10.0 -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- -log_k -11.618 -delta_h 8.250 kcal Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 -log_k -12.1 -delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 -log_k 9.06 -delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 -log_k -0.1 -delta_h -14.74 kcal Cerussite 365 PbCO3 = Pb+2 + CO3-2 -log_k -13.13 -delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 -log_k -7.79 -delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0 -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX # -log_k 1.0 # -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X -log_k 0.6 -gamma 2.5 0 -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 -log_k 0.91 -gamma 5.26 0.121 -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 -log_k 0.91 -gamma 4.0 0.153 -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0 Cu+2 + 2X- = CuX2 -log_k 0.6 -gamma 6.0 0 Zn+2 + 2X- = ZnX2 -log_k 0.8 -gamma 5.0 0 Cd+2 + 2X- = CdX2 -log_k 0.8 -gamma 0.0 0 Pb+2 + 2X- = PbX2 -log_k 1.05 -gamma 0.0 0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ -log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 RATES ########### #Quartz ########### # ####### # Example of quartz kinetic rates block: # KINETICS # Quartz # -m0 158.8 # 90 % Qu # -parms 0.146 1.5 # -step 3.1536e8 in 10 # -tol 1e-12 Quartz -start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end ########### #K-feldspar ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space # Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere # Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.18 # 10% Kspar, 0.1 mm cubes # -m 2.18 # Moles per L pore space # -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate # -time 1.5 year in 40 K-feldspar -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end ########### #Albite ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.46 # 2% Albite, 0.1 mm cubes # -m 0.46 # Moles per L pore space # -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate # -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space # Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere # Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Albite m^2/mol Albite 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM Albite parameters 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end ######## #Calcite ######## # Example of KINETICS data block for calcite rate, # in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start 1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite 2 REM PARM(2) = exponent for M/M0 10 si_cc = SI("Calcite") 20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 30 k1 = 10^(0.198 - 444.0 / TK ) 40 k2 = 10^(2.84 - 2177.0 /TK ) 50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) 60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) 80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol 200 SAVE moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 0.3 0.67 .5 -0.11 # -time 1 day in 10 Pyrite -start 1 REM Williamson and Rimstidt, 1994 2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) 3 REM PARM(2) = exp for (M/M0) 4 REM PARM(3) = exp for O2 5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 30 if (SI("Pyrite") >= 0) THEN GOTO 200 40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") 50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) 60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end ########## #Organic_C ########## # # Example of KINETICS data block for SOC (sediment organic carbon): # KINETICS 1 # Organic_C # -formula C # -tol 1e-8 # -m 5e-3 # SOC in mol # -time 30 year in 15 Organic_C -start 1 REM Additive Monod kinetics for SOC (sediment organic carbon) 2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") 30 mNO3 = TOT("N(5)") 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec 70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end ########### #Pyrolusite ########### # # Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 # -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 20 sr_pl = SR("Pyrolusite") 30 if (sr_pl > 1) THEN GOTO 100 40 REM sr_pl <= 1, undersaturated 50 Fe_t = TOT("Fe(2)") 60 if Fe_t < 1e-8 then goto 200 70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) 80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end END # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).