# phreeqc_rates.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1 H 1.008 H(0) H2 0 H H(1) H+ -1 H E e- 1 0 0 O H2O 0 O 16 O(0) O2 0 O O(-2) H2O 0 0 Ca Ca+2 0 Ca 40.08 Mg Mg+2 0 Mg 24.312 Na Na+ 0 Na 22.9898 K K+ 0 K 39.102 Fe Fe+2 0 Fe 55.847 Fe(+2) Fe+2 0 Fe Fe(+3) Fe+3 -2 Fe Mn Mn+2 0 Mn 54.938 Mn(+2) Mn+2 0 Mn Mn(+3) Mn+3 0 Mn Al Al+3 0 Al 26.9815 Ba Ba+2 0 Ba 137.34 Sr Sr+2 0 Sr 87.62 Si H4SiO4 0 SiO2 28.0843 Cl Cl- 0 Cl 35.453 C CO3-2 2 HCO3 12.0111 C(+4) CO3-2 2 HCO3 C(-4) CH4 0 CH4 Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 S(-2) HS- 1 S N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 #Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 Li Li+ 0 Li 6.939 Br Br- 0 Br 79.904 Zn Zn+2 0 Zn 65.37 Cd Cd+2 0 Cd 112.4 Pb Pb+2 0 Pb 207.19 Cu Cu+2 0 Cu 63.546 Cu(+2) Cu+2 0 Cu Cu(+1) Cu+1 0 Cu # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -gamma 4 0.075 -gamma 4.08 0.082 # halite solubility -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ -gamma 3.5 0.015 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 -gamma 5.5 0.2 -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 -gamma 5 0.165 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 -gamma 6 0 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Mn+2 = Mn+2 -gamma 6 0 -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -dw 0.688e-9 Al+3 = Al+3 -gamma 9 0 -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 -dw 0.559e-9 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 -dw 1.1e-9 Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 -Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl -viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2 -dw 1.07e-9 -77.4 10.14 0.5 0.5549 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 PO4-3 = PO4-3 -gamma 4 0 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -dw 0.612e-9 F- = F- -gamma 3.5 0 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 -dw 0.715e-9 Cd+2 = Cd+2 -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 -dw 0.717e-9 Pb+2 = Pb+2 -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt -dw 0.945e-9 Cu+2 = Cu+2 -gamma 6 0 -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 # aqueous species H2O = OH- + H+ -gamma 3.5 0 -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.06; -delta_h 138.43 kcal -analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50�C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5 0 -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.14 kcal -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 HS- + H+ = H2S -log_k 6.994; -delta_h -5.3 kcal -analytical -11.17 0.02386 3279 -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 H2Sg = HSg- + H+ -log_k -6.994; -delta_h 5.3 kcal -analytical_expression 11.17 -0.02386 -3279 -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.57 -delta_h -43.76 kcal -gamma 3 0 -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.13 kcal -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -gamma 3.64 -4.75e-2 -log_k 1.276; -delta_h -3.24 kcal -Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289 -viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61 -dw 1.56e-9 498 25 0.5 0.684 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- -log_k -0.4 -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O -log_k 7.63 -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 -log_k 12.346 -delta_h -3.53 kcal -gamma 5 0 -dw 0.69e-9 -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.52 kcal -gamma 5.4 0 -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 -dw 0.846e-9 PO4-3 + 3 H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- -log_k 3.76 -delta_h 4.55 kcal -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ -log_k -12.78 Ca+2 + CO3-2 = CaCO3 -log_k 3.224; -delta_h 3.545 kcal -analytic -1228.732 -0.29944 35512.75 485.818 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -gamma 0 4.45e-2 -log_k 2.14; -delta_h 24.4 -analytical_expression 1.478 8.29e-3 -538.2 -vm 2.7 2 2 -3.7 -dw 4.71e-9 Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- -log_k 6.459 -delta_h 3.1 kcal -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ -log_k 1.408 -delta_h 3.4 kcal -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ -log_k -11.44 -delta_h 15.952 kcal -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 -log_k 2.98 -delta_h 2.713 kcal -analytic 0.991 0.00667 -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4 0 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 -gamma 0 0.20 -log_k 2.42; -delta_h 19.0 -analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 11.92 -27.758 29.752 -10.302 -0.1 -viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 -log_k 0.52; -delta_h -13.6 -analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2 -viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3 -dw 1.11e-9 -500 3.5 0.5 0.731 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ -log_k 1.513 -delta_h 3.4 kcal -gamma 5.4 0 Mg+2 + F- = MgF+ -log_k 1.82 -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt # Na+ + OH- = NaOH # -log_k -14.7 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 -Vm 7.95 0 0 0 0.609 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- -gamma 3.5 0.1072 -log_k 0.94; -delta_h 8.23 -analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC -Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476 -viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387 -dw 4e-10 -200 3.5 0.5 0.5 2 Na+ + SO4-2 = Na2SO4 -gamma 0 8.85e-2 -log_k -2.37; -delta_h 82 -analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl -Vm 9.405 -15.5 25 8.4 0.25 -viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175 -dw 0.8e-9 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 -log_k -0.35; -delta_h 12 kJ -gamma 0 9.4e-3 -Vm 9.48 0 0 0 -0.542 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 1.18; -delta_h 3 -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC -Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497 -viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195 -dw 1.22e-9 100 25 0.5 2.5 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.2 kcal -gamma 5 0 Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ -log_k -31 -delta_h 30.3 kcal -gamma 5 0 Fe+2 + Cl- = FeCl+ -log_k 0.14 Fe+2 + CO3-2 = FeCO3 -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 -log_k 2.25; -delta_h 3.23 kcal -Vm 5.8 6.5 3.7 -3 -0.09 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 -log_k 8.95 Fe+2 + 3 HS- = Fe(HS)3- -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ -log_k 2.7 -gamma 5.4 0 Fe+2 + F- = FeF+ -log_k 1 Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.68 kcal -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ -log_k -2.19 -delta_h 10.4 kcal -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ -log_k -5.67 -delta_h 17.1 kcal -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ -log_k -12.56 -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ -log_k -21.6 -delta_h 31.9 kcal -gamma 5.4 0 Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ -log_k -2.95 -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ -log_k -6.3 -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 -log_k 1.48 -delta_h 5.6 kcal -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ -log_k 2.13 -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ -log_k 4.04 -delta_h 3.91 kcal -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- -log_k 5.38 -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ -log_k 5.43 -delta_h 5.76 kcal -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 -log_k 5.43 -gamma 5.4 0 Fe+3 + F- = FeF+2 -log_k 6.2 -delta_h 2.7 kcal -gamma 5 0 Fe+3 + 2 F- = FeF2+ -log_k 10.8 -delta_h 4.8 kcal -gamma 5 0 Fe+3 + 3 F- = FeF3 -log_k 14 -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ -log_k -10.59 -delta_h 14.4 kcal -gamma 5 0 Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ -log_k -34.8 -gamma 5 0 Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5 0 -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5 0 -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 -gamma 0 -0.098 -log_k 1.408; -delta_h 21.55 -Vm 1.88 6.5 10 -3 0.1 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5 0 Mn+2 = Mn+3 + e- -log_k -25.51 -delta_h 25.8 kcal -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ -log_k -5 -delta_h 11.49 kcal -analytic -38.253 0 -656.27 14.327 -gamma 5.4 0 -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.9 kcal -gamma 5.4 0 -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ -log_k -16.9 -delta_h 39.89 kcal -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ -log_k -22.7 -delta_h 42.3 kcal -analytic 51.578 0 -11168.9 -14.865 -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ -log_k 3.5 -delta_h 2.29 kcal -gamma 4.5 0 Al+3 + 2 SO4-2 = Al(SO4)2- -log_k 5 -delta_h 3.11 kcal -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 -log_k 0.46 Al+3 + F- = AlF+2 -log_k 7 -delta_h 1.06 kcal -gamma 5.4 0 Al+3 + 2 F- = AlF2+ -log_k 12.7 -delta_h 1.98 kcal -gamma 5.4 0 Al+3 + 3 F- = AlF3 -log_k 16.8 -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- -log_k 19.4 -delta_h 2.2 kcal -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ -log_k -9.83 -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O -log_k 30.18 -delta_h -16.26 kcal -gamma 5 0 -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5 0 Ba+2 + CO3-2 = BaCO3 -log_k 2.71 -delta_h 3.55 kcal -analytic 0.113 0.008721 -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ -log_k 0.982 -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 -log_k 3.457; -delta_h 26.15 -vm -6.25 24.66 -4.38 10.97 0.5 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ -log_k 11.509 -delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 -log_k 2.81 -delta_h 5.22 kcal -analytic -1.019 0.012826 -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- -log_k 0.64 -gamma 5 0 Cu+2 + e- = Cu+ -log_k 2.72 -delta_h 1.65 kcal -gamma 2.5 0 Cu+ + 2 Cl- = CuCl2- -log_k 5.5 -delta_h -0.42 kcal -gamma 4 0 Cu+ + 3 Cl- = CuCl3-2 -log_k 5.7 -delta_h 0.26 kcal -gamma 5 0 Cu+2 + CO3-2 = CuCO3 -log_k 6.73 Cu+2 + 2 CO3-2 = Cu(CO3)2-2 -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ -log_k 2.7 Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4 0 -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2 Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal -Vm 26.8 0 -136 Cu+2 + 3 Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal -gamma 4 0 Cu+2 + 4 Cl- = CuCl4-2 -log_k -4.59 -delta_h 17.78 kcal -gamma 5 0 Cu+2 + F- = CuF+ -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ -log_k -8 -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ -log_k -39.6 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.22 kcal -Vm 5.21 0 -14.6 Cu+2 + 3 HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ -log_k -41.2 Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4 0 -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3 Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4 0 -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4 Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5 0 -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2 HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3 HS- = Zn(HS)3- -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 -log_k 5.3 Zn+2 + 2 CO3-2 = Zn(CO3)2-2 -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 -gamma 0 0.1 -log_k 2.26; -delta_h 16.15 -Vm 0.409 6.5 2 -3 0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 -gamma 0.59 0.1 -log_k 1.15; -delta_h 17.52 -Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 -log_k -0.98 Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ -log_k -47.35 2 Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2 CO3-2 = Cd(CO3)2-2 -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 -gamma 0 0.1 -log_k 1.016; -delta_h 6.84 -Vm 2.11 6.5 10 -3 0.1 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 -gamma 5.201 -0.1 -log_k 2.688; -delta_h 0.19 -Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2 Br- = CdBr2 -log_k 2.9 Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2 F- = CdF2 -log_k 1.5 Cd+2 + HS- = CdHS+ -log_k 10.17 Cd+2 + 2 HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3 HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4 HS- = Cd(HS)4-2 -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ -log_k -6.36 Pb+2 + Cl- = PbCl+ -log_k 1.6 -delta_h 4.38 kcal -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 -log_k 1.8 -delta_h 1.08 kcal -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- -log_k 1.7 -delta_h 2.17 kcal -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 -log_k 1.38 -delta_h 3.53 kcal -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ -log_k 2.9 Pb+2 + SO4-2 = PbSO4 -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 -log_k 3.47 Pb+2 + 2 HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3 HS- = Pb(HS)3- -log_k 16.57 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ -log_k 1.17 Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal Pb+2 + 2 Br- = PbBr2 -log_k 1.44 Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2 F- = PbF2 -log_k 2.56 Pb+2 + 3 F- = PbF3- -log_k 3.42 Pb+2 + 4 F- = PbF4-2 -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250�C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 -log_k -8.336 -delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25�C: Hemingway and Robie, 1994; 50�175�C: B�n�zeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 -log_k -10.89 -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 -log_k -11.13 -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 -log_k -9.271 -delta_h -0.4 kcal -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 -log_k -8.562 -delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.55; -delta_h -6.70 -analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.25; -delta_h -22.4 -analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.89; -delta_h 11.82 -analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O -log_k -0.706; -delta_h 124 -analytical_expression -53.037 0.1242 4562 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 -log_k 0.65; -delta_h -23.1 -analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3 Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.57; -delta_h 2.35 kJ -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O log_k -1.16; -delta_h 9.22 kJ -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- -log_k -10.6 -delta_h 4.69 kcal -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71 -delta_h 3.34 kcal -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55 -delta_h 4.72 kcal -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98 -delta_h 5.99 kcal -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 8.11 -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 10.8 -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 -log_k 7.435 -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 -log_k -19.714 -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 -log_k -20.573 -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 -log_k 32.2 -delta_h -46.8 kcal -analytic 13.248 0 10217.1 -6.1894 -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 15.76 -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O -log_k -1 -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- -log_k -18.479 -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- -log_k -4.648 -Vm 20.45 Sulfur S + 2 H+ + 2 e- = H2S -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O -log_k -36 Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O -log_k 41.38 -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O -log_k 61.03 -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O -log_k 15.2 Halite NaCl = Cl- + Na+ log_k 1.57 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- log_k 0.9 -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ -T_c 647.3; -P_c 217.6; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 -log_k -2.8983 -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 -log_k -3.105 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300�C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100�C -T_c 190.6; -P_c 45.4; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.818e-3 3199 17.909 -27460 T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100�C -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300�C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 -log_k -2.209 -delta_h 4.91 kcal -analytic 1.447 -0.004153 0 0 -214949 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O -log_k -1.4 -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 -log_k -9.21 -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 -log_k -10 -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- -log_k -11.618 -delta_h 8.25 kcal Willemite 289 Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 -log_k -12.1 -delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 -log_k 9.06 -delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 -log_k -0.1 -delta_h -14.74 kcal Cerussite 365 PbCO3 = Pb+2 + CO3-2 -log_k -13.13 -delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 -log_k -7.79 -delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal GAS_BINARY_PARAMETERS H2O(g) CO2(g) 0.19 H2O(g) H2S(g) 0.19 H2O(g) H2Sg(g) 0.19 H2O(g) CH4(g) 0.49 H2O(g) Mtg(g) 0.49 H2O(g) Methane(g) 0.49 H2O(g) N2(g) 0.49 H2O(g) Ntg(g) 0.49 H2O(g) Ethane(g) 0.49 H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- -log_k 0 Na+ + X- = NaX -log_k 0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6 0 -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX # -log_k 1.0 # -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X -log_k 0.6 -gamma 2.5 0 -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2 X- = CaX2 -log_k 0.8 -gamma 5 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2 X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2 X- = SrX2 -log_k 0.91 -gamma 5.26 0.121 -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2 X- = BaX2 -log_k 0.91 -gamma 4 0.153 -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2 X- = MnX2 -log_k 0.52 -gamma 6 0 Fe+2 + 2 X- = FeX2 -log_k 0.44 -gamma 6 0 Cu+2 + 2 X- = CuX2 -log_k 0.6 -gamma 6 0 Zn+2 + 2 X- = ZnX2 -log_k 0.8 -gamma 5 0 Cd+2 + 2 X- = CdX2 -log_k 0.8 -gamma 0 0 Pb+2 + 2 X- = PbX2 -log_k 1.05 -gamma 0 0 Al+3 + 3 X- = AlX3 -log_k 0.41 -gamma 9 0 AlOH+2 + 2 X- = AlOHX2 -log_k 0.89 -gamma 0 0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O -log_k 31.29 Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -log_k 12.56 Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 CaSO4 Ca+2 1 SO4-2 1 CaCO3 Ca+2 1 CO3-2 1 Ca(OH)2 Ca+2 1 OH- 2 MgCl2 Mg+2 1 Cl- 2 MgSO4 Mg+2 1 SO4-2 1 MgCO3 Mg+2 1 CO3-2 1 Mg(OH)2 Mg+2 1 OH- 2 NaCl Na+ 1 Cl- 1 Na2SO4 Na+ 2 SO4-2 1 NaHCO3 Na+ 1 HCO3- 1 Na2CO3 Na+ 2 CO3-2 1 NaOH Na+ 1 OH- 1 KCl K+ 1 Cl- 1 K2SO4 K+ 2 SO4-2 1 HCO3 K+ 1 HCO3- 1 K2CO3 K+ 2 CO3-2 1 KOH K+ 1 OH- 1 HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 RATES ########### #Quartz ########### # ####### # Example of quartz kinetic rates block: # KINETICS # Quartz # -m0 158.8 # 90 % Qu # -parms 0.146 1.5 # -step 3.1536e8 in 10 # -tol 1e-12 Quartz -start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end ########### #K-feldspar ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space # Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere # Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.18 # 10% Kspar, 0.1 mm cubes # -m 2.18 # Moles per L pore space # -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate # -time 1.5 year in 40 K-feldspar -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end ########### #Albite ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.46 # 2% Albite, 0.1 mm cubes # -m 0.46 # Moles per L pore space # -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate # -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space # Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere # Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Albite m^2/mol Albite 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM Albite parameters 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end ######## #Calcite ######## # Example of KINETICS data block for calcite rate, # in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start 1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite 2 REM PARM(2) = exponent for M/M0 10 si_cc = SI("Calcite") 20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 30 k1 = 10^(0.198 - 444 / TK ) 40 k2 = 10^(2.84 - 2177 /TK ) 50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) 60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) 80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol 200 SAVE moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 0.3 0.67 .5 -0.11 # -time 1 day in 10 Pyrite -start 1 REM Williamson and Rimstidt, 1994 2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) 3 REM PARM(2) = exp for (M/M0) 4 REM PARM(3) = exp for O2 5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 30 if (SI("Pyrite") >= 0) THEN GOTO 200 40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") 50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) 60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end ########## #Organic_C ########## # # Example of KINETICS data block for SOC (sediment organic carbon): # KINETICS 1 # Organic_C # -formula C # -tol 1e-8 # -m 5e-3 # SOC in mol # -time 30 year in 15 Organic_C -start 1 REM Additive Monod kinetics for SOC (sediment organic carbon) 2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") 30 mNO3 = TOT("N(5)") 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec 70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end ########### #Pyrolusite ########### # # Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 # -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 20 sr_pl = SR("Pyrolusite") 30 if (sr_pl > 1) THEN GOTO 100 40 REM sr_pl <= 1, undersaturated 50 Fe_t = TOT("Fe(2)") 60 if Fe_t < 1e-8 then goto 200 70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) 80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end # # Additional definition of PHASES, RATE parameters, and RATES examples # # RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. # # RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. # # RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632. # # Example RATES definitions and input files with KINETICS show the application in # Albite_PK # Palandri and Kharaka # Albite_Svd # Sverdrup # Albite_Hermanska # Calcite_PK # Palandri and Kharaka # Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. # Quartz_PK # Palandri and Kharaka # Quartz_Svd # Sverdrup # Quartz_Hermanska # # Quartz_Rimstidt_Barnes # Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals # Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, # tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html Actinolite # Hornblende, Ferroactinolite Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4 log_k 7.128 delta_h -181.662 #kJ/mol #19bla/lac -analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7 Almandine # (alpha) Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4 log_k 42.18 delta_h -458.683 #kJ/mol #95rob/hem -analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7 Analcime Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4 log_k 6.654 delta_h -98 #kJ/mol #04neu/hov -analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6 Andalusite Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O log_k 16.206 delta_h -244.61 #kJ/mol #Internal calculation -analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6 Andesine # defined for elemental release Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4- Andradite Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4 log_k 33.787 delta_h -327.864 #kJ/mol #Internal calculation -analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6 Anglesite PbSO4 = Pb+2 + SO4-2 log_k -7.848 delta_h 11.55 #kJ/mol #89cox/wag -analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6 Annite KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4 log_k 32.771 delta_h -306.153 #kJ/mol #92cir/nav -analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6 Anorthite Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4 log_k 24.235 delta_h -303.522 #kJ/mol #95rob/hem -analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4 log_k 73.783 delta_h -583.247 #kJ/mol #95rob/hem -analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O log_k 500.08 delta_h -3743.421 #kJ/mol #98hol/pow -analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8 # As2S3 # Orpiment # no As in phreeqc.dat # As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+ # log_k -65.110 # delta_h 334.975 #kJ/mol #Internal calculation # -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 Augite # Pyroxene(CaAl) CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O log_k 36.234 delta_h -370.792 #kJ/mol #Internal calculation -analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6 Biotite # defined for elemental release KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4 Bronzite # defined for elemental release Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4 Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 17.112 delta_h -114.518 #kJ/mol #08bla -analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5 Bytownite # defined for elemental release Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4- Chabazite Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O log_k 11.541 delta_h -200.464 #kJ/mol #08bla -analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6 Chamosite(Daphnite) Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O log_k 47.603 delta_h -497.518 #kJ/mol #01vid/par -analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O log_k 33.182 delta_h -244.552 #kJ/mol #04eva -analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6 Clinochlore Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O log_k 61.706 delta_h -593.773 #kJ/mol #05vid/par -analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7 Clinoptilolite(Ca) Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4 log_k -2.085 delta_h -58.407 #kJ/mol #09bla -analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6 Clinoptilolite(K) K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4 log_k -1.142 delta_h -49.035 #kJ/mol #09bla -analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6 Clinoptilolite(Na) Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4 log_k -0.113 delta_h -50.769 #kJ/mol #09bla -analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6 Cordierite Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4 log_k 49.433 delta_h -648.745 #kJ/mol #95rob/hem -analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7 Cristobalite # (alpha) SiO2 + 2 H2O = H4SiO4 log_k -3.158 delta_h 18.829 #kJ/mol #04fab/sax -analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6 # Cristobalite(beta) # SiO2 + 2H2O = 1H4SiO4 # log_k -3.096 # #delta_h 0 #kJ/mol # -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 Dawsonite NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O log_k 4.327 delta_h -76.33 #kJ/mol #76fer/stu -analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6 Diaspore AlO(OH) + 3 H+ = Al+3 + 2 H2O log_k 6.866 delta_h -108.76 #kJ/mol #95rob/hem -analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6 Diopside CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 log_k 21.743 delta_h -153.574 #kJ/mol #Internal calculation -analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6 Dolomite(disordered) CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2 log_k 4.299 delta_h -73.162 #kJ/mol #78hel/del,92ajoh -analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6 Edenite # (alpha) Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4 log_k 81.946 delta_h -679.296 #kJ/mol #97got -analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7 Enstatite # (alpha) MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 log_k 11.844 delta_h -93.265 #kJ/mol #78hel/del -analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6 Epidote Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O log_k 32.23 delta_h -411.613 #kJ/mol #04got -analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7 Fayalite Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4 log_k 19.03 delta_h -157.157 #kJ/mol #Internal calculation -analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6 Ferroactinolite # = Ferrotremolite (Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4 log_k 53.699 delta_h -412.225 #kJ/mol #Internal calculation -analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7 Fluorapatite # (Natur) Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4- log_k -0.91 delta_h -115.601 #kJ/mol #Internal calculation -analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7 Forsterite Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 log_k 28.609 delta_h -217.115 #kJ/mol #Internal calculation -analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6 Glauconite (K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2 log_k 1.873 delta_h -120.903 #kJ/mol #15bla/vie -analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6 Glaucophane Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4 log_k 37.026 delta_h -378.727 #kJ/mol #95rob/hem -analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7 Grossular Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4 log_k 49.372 delta_h -442.383 #kJ/mol #95rob/hem -analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7 # Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite Heulandite(Ca) Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4 log_k 2.457 delta_h -139.108 #kJ/mol #09bla -analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7 # Ilmenite # Ti not in phreeqc.dat # FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4 # log_k 1.816 # delta_h -87.445 #kJ/mol #Internal calculation # -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 Heulandite(Na) Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4 log_k 2.797 delta_h -126.775 #kJ/mol #09bla -analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7 Jadeite NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4 log_k 7.561 delta_h -95.502 #kJ/mol #95rob/hem -analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6 Kyanite Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O log_k 15.936 delta_h -240.322 #kJ/mol #Internal calculation -analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6 Labradorite # defined for elemental release Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4- Larnite(alpha) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 39.044 delta_h -238.161 #kJ/mol #95rob/hem -analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6 Larnite(beta) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 39.322 #delta_h 0 #kJ/mol -analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6 Larnite(gamma) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 41.444 #delta_h 0 #kJ/mol -analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6 Laumontite Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 log_k 11.695 delta_h -204.244 #kJ/mol #96kis/nav -analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6 Leonhardtite MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O log_k -0.886 delta_h -24.03 #kJ/mol #74nau/ryz -analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6 Leucite # minteq.dat KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ log_k 6.423 delta_h -22.085 kcal Lizardite Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O log_k 33.093 delta_h -242.552 #kJ/mol #04eva -analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6 Magnetite Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O log_k 10.362 delta_h -215.594 #kJ/mol #90hem -analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6 Microcline K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4 log_k 0.015 delta_h -49.203 #kJ/mol #95rob/hem -analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6 Montmorillonite(HcCa) Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4 log_k 6.903 delta_h -154.564 #kJ/mol #15bla/vie -analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6 Montmorillonite(HcK) K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4 log_k 4.449 delta_h -119.628 #kJ/mol #15bla/vie -analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6 Montmorillonite(HcMg) Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4 log_k 5.996 delta_h -156.964 #kJ/mol #15bla/vie -analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6 Montmorillonite(HcNa) Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4 log_k 5.472 delta_h -135.658 #kJ/mol #15bla/vie -analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6 Montmorillonite(MgCa) Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4 log_k 4.222 delta_h -146.668 #kJ/mol #15bla/vie -analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6 Montmorillonite(MgK) K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4 log_k 2.83 delta_h -126.865 #kJ/mol #15bla/vie -analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6 Montmorillonite(MgMg) Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4 log_k 3.708 delta_h -148.028 #kJ/mol #15bla/vie -analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6 Montmorillonite(MgNa) Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4 log_k 3.411 delta_h -135.953 #kJ/mol #15bla/vie -analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6 MordeniteB # (Ca) Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4 log_k -2.898 delta_h -56.278 #kJ/mol #09bla -analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6 MordeniteJ Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4 log_k -4.16 delta_h -29.442 #kJ/mol #92joh/tas -analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6 Muscovite # (ordered) KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4 log_k 11.353 delta_h -253.923 #kJ/mol #06bla/pia -analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6 Natrolite Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4 log_k 19.326 delta_h -215.463 #kJ/mol #83joh/flo -analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6 Nepheline Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4 log_k 14.077 delta_h -144.506 #kJ/mol #Internal calculation -analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6 Oligoclase # defined for elemental release Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4- Palygorskite # defined for elemental release Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4 Paragonite NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4 log_k 16.804 delta_h -294.623 #kJ/mol #96rou/hov -analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6 Pargasite # Hornblende Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4 log_k 104.557 delta_h -940.614 #kJ/mol #Internal calculation -analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7 Phlogopite KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4 log_k 41.098 delta_h -353.123 #kJ/mol #92cir/nav -analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6 Prehnite Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4 log_k 32.596 delta_h -339.617 #kJ/mol #98cha/kru -analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6 Pyrophyllite Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4 log_k -0.418 delta_h -128.924 #kJ/mol #95rob/hem -analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6 Pyrrhotite(Hx) # Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.679 delta_h -10.009 #kJ/mol #05wal/pel -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 Pyrrhotite(Mc) # Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.679 delta_h -10.009 #kJ/mol #05wal/pel -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 Rhyolite # a mixture of minerals, defined for elemental release... Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4 Riebeckite Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3 log_k 9.199 delta_h -197.377 #kJ/mol #98hol/pow -analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7 Saponite(Ca) Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4 log_k 29.355 delta_h -262.766 #kJ/mol #15bla/vie -analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6 Saponite(FeCa) Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4 log_k 26.569 delta_h -250.636 #kJ/mol #15bla/vie -analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6 Saponite(FeK) K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4 log_k 25.398 delta_h -232.093 #kJ/mol #15bla/vie -analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6 Saponite(FeMg) Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4 log_k 26.022 delta_h -251.806 #kJ/mol #15bla/vie -analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6 Saponite(FeNa) Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4 log_k 25.896 delta_h -240.711 #kJ/mol #15bla/vie -analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6 Saponite(K) K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4 log_k 27.43 delta_h -239.483 #kJ/mol #15bla/vie -analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6 Saponite(Mg) Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4 log_k 28.81 delta_h -263.946 #kJ/mol #15bla/vie -analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6 Saponite(Na) Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4 log_k 27.971 delta_h -248.219 #kJ/mol #15bla/vie -analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6 Saponite(SapCa) (Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2 log_k 31.473 delta_h -277.172 #kJ/mol #13gai/bla -analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6 Scolecite CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O log_k 16.647 delta_h -233.213 #kJ/mol #83joh/flo -analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6 Smectite # (MX80) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 log_k 5.278 delta_h -175.308 #kJ/mol #12gai/bla -analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6 Smectite(MX80:3.989H2O) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O log_k 1.774 delta_h -148.524 #kJ/mol #12gai/bla -analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6 Smectite(MX80:5.189H2O) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O log_k 1.435 delta_h -140.43 #kJ/mol #12gai/bla -analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6 Spodumene # from core10.dat LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 log_k 6.9972 delta_h -89.1817 -analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5 -Vm 58.37 Staurolite Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O log_k 216.34 delta_h -1956.484 #kJ/mol #87woo/gar -analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7 Stilbite NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4 log_k 23.044 delta_h -403.823 #kJ/mol #01fri/neu -analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7 Thomsonite # defined for elemental release Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O Tourmaline # defined for elemental release NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4 Tremolite (Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 log_k 67.281 delta_h -502.247 #kJ/mol #95rob/hem -analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7 # Uraninite # UO2 + 4 H+ = U+4 + 2 H2O # log_k -3.490 # delta_h -18.630 kcal Wollastonite CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4 log_k 14.047 delta_h -85.986 #kJ/mol #78hel/del,92ajoh -analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6 Zoisite Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O log_k 43.848 delta_h -485.113 #kJ/mol #01sme/fra -analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7 RATE_PARAMETERS_PK # Acid Neutral Base # log K E n(H+) log K E log K E n(OH-) # ================================================================ Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 # SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 Cristobalite -30 0 0 -12.31 65 -30 0 0 # Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 # K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 # Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 # Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 Grossular -5.1 85 1 -10.7 103.8 -30 0 0 Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 # Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 # augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 enstatite -9.02 80 0.6 -12.72 80 -30 0 0 jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 # anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 # biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 glauconite -4.8 85 0.7 -9.1 85 -30 0 0 muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 muscovite -30 0 0 -13 22 -30 0 0 paragonite -30 0 0 -13 22 -30 0 0 phlogopite -30 0 0 -12.4 29 -30 0 0 pyrophyllite -30 0 0 -12.4 29 -30 0 0 # kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. # lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 talc -30 0 0 -12 42 -30 0 0 prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 # goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 uraninite -30 0 0 -7.98 32 -30 0 0 # brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 # anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 anhydrite -30 0 0 -3.19 14.3 -30 0 0 gypsum -30 0 0 -2.79 0 -30 0 0 barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 celestite -5.66 23.8 0.109 -30 0 -30 0 0 # hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 fluorapatite -3.73 250 0.613 -8 250 -30 0 0 # halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 fluorite -7.14 73 1 -13.79 73 -30 0 0 # # Acid Neutral P_CO2 # log K E n(H+) log K E log K E n(P_CO2) Table # ================================================================================ calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) dawsonite -30 0 0 -7 62.8 -30 0 0 33 dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 # # Acid and Fe+3 Neutral and O2 Base # log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table # ========================================================================================= pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 RATE_PARAMETERS_SVD # Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 # H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula # ================================================================================================================================================================================================================================================================================================= Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 RATE_PARAMETERS_HERMANSKA # Acid mechanism Neutral mechanism Basic mechanism # logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula # ================================================================================================================================ # Amphiboles Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2 Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2 # Feldspars Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3 Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3 Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3 Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3 # Glass Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6 # Mica # Also valid for Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2 # Olivines Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2 Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2 Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2 # Pyroxenes Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0 Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0 Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0 Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0 # SiO2 polymorphs Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4 # 2023, Table 1 Also valid for Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2 Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0 Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0 Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0 Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76 Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1 Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075 Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7 Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0 Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0 Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15 # # Example input files with RATES for KINETICS calculations # # # # compare Albite kinetics using rates from the compilations # # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html # # ========================================================= # # RATES # Albite_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_PK # -formula NaAlSi3O8; -parms 0 1 1 0.67 # -m0 1; -time 1 # default # END # SOLUTION 1 # PHASES # Fix_pH; H+ = H+ # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant # SELECTED_OUTPUT 1 # -file kinetic_rates_pH.inc # -reset false # USER_PUNCH 1 # write out the pH's to equilibrate... # 10 FOR i = 0 to 14 STEP 0.5 # 20 punch EOL$ + 'USE solution 1' # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' # 40 punch EOL$ + ' LiBr' # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant # 60 punch EOL$ + 'USE kinetics 1' # 70 punch EOL$ + 'END' # 80 NEXT i # END # PRINT; -reset false # SELECTED_OUTPUT 1; -active false # USER_GRAPH 1; -headings pH Palandri # -axis_titles pH "log10(initial rate / (mol / m2 / s))" # -axis_scale x_axis 0 14 # 10 graph_x -la("H+") # 20 graph_sy log10(tot("Al")) # INCLUDE$ kinetic_rates_pH.inc # END # RATES # Albite_Svd # Sverdrup, 2019 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_SVD("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_Svd # -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup*20 # INCLUDE$ kinetic_rates_pH.inc # END # KINETICS 1 # Albite # from Sverdrup and Warfvinge, 1995 # -formula NaAlSi3O8; -parms 1 20 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup`95*20 # INCLUDE$ kinetic_rates_pH.inc # END # RATES # Albite_Hermanska # 2022 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_HERMANSKA("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_Hermanska # -formula NaAlSi3O8; -parms 0 1 1 0.67 # USER_GRAPH 1; -headings pH Hermanska # INCLUDE$ kinetic_rates_pH.inc # END # USE solution 1 # REACTION_TEMPERATURE 1; 25 25 in 21 # USER_GRAPH 1; -headings Albite_data # 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 # 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963�993. # 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i # 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i # 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle # END # # compare rates for calcite dissolution # # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978 # # at different initial CO2 concentrations. # # ===================================== # USER_GRAPH 1; -active false # RATES # Calcite_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("calcite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -2.5 # KINETICS 1 # calcite_PK # -formula CaCO3; -parms 0 1e-2 1 0.67 # -time 0.1 10*1 hour # INCREMENTAL_REACTIONS true # USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 # -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" # 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 # END # USE solution 1 # KINETICS 1 # Calcite # -parms 1e2 0.67 # cm^2/mol calcite, exp factor # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst # END # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -1.5 # KINETICS 1 # calcite_PK # -formula CaCO3 # -parms 0 1e-2 1 0.67 # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 # END # USE solution 1 # KINETICS 1 # Calcite # -parms 1e2 0.67 # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst # END # # compare rates for quartz dissolution # # and the effect of NaCl # # ===================================== # USER_GRAPH 2; -active false # RATES # Quartz_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # SOLUTION 1 # pH 7 charge # KINETICS 1 # Quartz_PK # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # INCREMENTAL_REACTIONS true # USER_GRAPH 3; -headings h Palandri # -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" # 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 # END # RATES # Quartz_Hermanska # # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_HERMANSKA("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Hermanska # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Hermanska # END # RATES # Quartz_Svd # Sverdrup, 2019 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_SVD("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Svd # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Sverdup # END # RATES # Quartz_Rimstidt # #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259 # 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195 # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Rimstidt # END # SOLUTION 1 # pH 7 charge; Na 1; Cl 1 # KINETICS 1 # Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Rimstidt_1.mM.NaCl # END # # Example input file for calculating kinetic dissolution of Montmorillonite, # # a solid solution with exchangeable cations reacting fast; # # their ratios are related to the changing solution composition, # # and their amounts are connected to the kinetic reacting TOT layer. # # # # The affinity is related to a solid solution member, given by the fraction of the # # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, # # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1 # # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined. # # It also shows how the default X exchanger can be invkoed. # # # ============================================================== # USER_GRAPH 3; -active false # RATES # Montmorillonite # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # # Gapon and Gaines-Tomas exchange formulas # 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # # Gapon, with Ca as exchange species... # # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg")) # # # use SR("Montmorillonite(Mgca)") # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca # # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES # # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5 # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # EXCHANGE_MASTER_SPECIES # X_montm_mg X_montm_mg-0.34 # EXCHANGE_SPECIES # # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES # X_montm_mg-0.34 = X_montm_mg-0.34 # 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # # 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # # # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX # # # uncomment the following lines to see the effect... # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 # # # also adapt the log_k`s of the solids... # # PHASES # # Montmorillonite(MgMg) # # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 # # log_k 2.86 # # Montmorillonite(MgCa) # # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 # # log_k 2.83 # # # The divalent cations can be defined with the Gaines-Thomas convention... # # EXCHANGE_SPECIES # # # undefine the previous set... # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 # # # write the Gaines-Thomas formulas... # # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # # # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # # # # The default exchanger X can be used, uncomment the following lines # # # redefine f_Na in the rate... # # RATES # # Montmorillonite # # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # # 40 SAVE area * rate * affinity * TIME # # -end # # # adapt log_k`s of the solids with default exchanger X: # # PHASES # # Montmorillonite(MgK) # # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 # # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 # # Montmorillonite(MgMg) # # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 # # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 # # Montmorillonite(MgCa) # # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 # # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 # # # in EXCHANGE 1, comment X_montm_mg, uncomment X... # END # SOLUTION 1 # pH 7 charge # Na 1e-5 # K 1e-5 # Mg 1e-5 # Ca 1e-5 # END # # Give the solution composition for calculating the ininitial exchanger # SOLUTION 99 # pH 7 charge # EQUILIBRIUM_PHASES 1 # # solid solution of the end-members, SI = log10(fraction = 0.25) # Montmorillonite(MgNa) -0.602 1e-2 # Montmorillonite(MgCa) -0.602 1e-2 # Montmorillonite(MgK) -0.602 1e-2 # Montmorillonite(MgMg) -0.602 1e-2 # Kaolinite 0 0 # SAVE solution 99 # END # # # with Gapon only, initial exchanger can be defined explicitly # EXCHANGE 1 # Na0.34X_montm_mg 1e-2 # Ca0.17X_montm_mg 1e-2 # K0.34X_montm_mg 1e-2 # Mg0.17X_montm_mg 1e-2 # END # USE solution 1 # EQUILIBRIUM_PHASES 1 # Kaolinite 0 0 # # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 # EXCHANGE 1 # X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 # # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 # KINETICS 1 # Montmorillonite # -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 # -m 4e-2 # -parms 0 2.5e5 1 0.67 # -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 # -cvode true # INCREMENTAL_REACTIONS true # USER_GRAPH 4 # -headings time Na K Mg Ca mm_diss # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" # -axis_scale x_axis auto auto auto auto log # -axis_scale y_axis auto auto auto auto log # 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) # 10 GRAPH_X t # 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 # 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 # 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca # 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 # END # USE solution 99; REACTION # USER_GRAPH 4; -connect_simulations false; -headings Solution_99 # 1 t = get(1) # 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red # 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green # 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue # 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), #precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. # ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-H�ckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-H�ckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions (or fitted). # For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 � m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49�67. # ref. 2: Procedures from ref. 1 using data compiled by Lalibert�, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).