# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 24/05/2024 01:41, 3147 lines, 110328 bytes, md5=7fc916311a573d0ad7ce880f996a9bbf # Created 24 May 2024 01:58:45 # C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc_rates.dat # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1 H 1.008 H(0) H2 0 H H(1) H+ -1 H E e- 1 0 0 O H2O 0 O 16 O(0) O2 0 O O(-2) H2O 0 0 Ca Ca+2 0 Ca 40.08 Mg Mg+2 0 Mg 24.312 Na Na+ 0 Na 22.9898 K K+ 0 K 39.102 Fe Fe+2 0 Fe 55.847 Fe(+2) Fe+2 0 Fe Fe(+3) Fe+3 -2 Fe Mn Mn+2 0 Mn 54.938 Mn(+2) Mn+2 0 Mn Mn(+3) Mn+3 0 Mn Al Al+3 0 Al 26.9815 Ba Ba+2 0 Ba 137.34 Sr Sr+2 0 Sr 87.62 Si H4SiO4 0 SiO2 28.0843 Cl Cl- 0 Cl 35.453 C CO3-2 2 HCO3 12.0111 C(+4) CO3-2 2 HCO3 C(-4) CH4 0 CH4 Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 S SO4-2 0 SO4 32.064 S(6) SO4-2 0 SO4 S(-2) HS- 1 S N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 #Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 Li Li+ 0 Li 6.939 Br Br- 0 Br 79.904 Zn Zn+2 0 Zn 65.37 Cd Cd+2 0 Cd 112.4 Pb Pb+2 0 Pb 207.19 Cu Cu+2 0 Cu 63.546 Cu(+2) Cu+2 0 Cu Cu(+1) Cu+1 0 Cu # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 -dw 9.31e-9 838 16.315 0 2.376 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -gamma 4 0.075 -gamma 4.08 0.082 # halite solubility -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ -gamma 3.5 0.015 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 -gamma 5.5 0.2 -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 -gamma 5 0.165 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 -gamma 6 0 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Mn+2 = Mn+2 -gamma 6 0 -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -dw 0.688e-9 Al+3 = Al+3 -gamma 9 0 -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 -dw 0.559e-9 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 -dw 1.1e-9 Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 -gamma 5.4 0 -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5 -0.04 -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 # AmmH+ = AmmH+ # -gamma 2.50 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 PO4-3 = PO4-3 -gamma 4 0 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -dw 0.612e-9 F- = F- -gamma 3.5 0 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 -dw 0.715e-9 Cd+2 = Cd+2 -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 -dw 0.717e-9 Pb+2 = Pb+2 -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt -dw 0.945e-9 Cu+2 = Cu+2 -gamma 6 0 -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -Vm 6.52 0.78 0.12 # supcrt -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5 0 -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.14 kcal -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 HS- + H+ = H2S -log_k 6.994; -delta_h -5.3 kcal -analytical -11.17 0.02386 3279 -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 2.1e-9 2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 H2Sg = HSg- + H+ -log_k -6.994; -delta_h 5.3 kcal -analytical_expression 11.17 -0.02386 -3279 -gamma 3.5 0 -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt -dw 1.73e-9 2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.57 -delta_h -43.76 kcal -gamma 3 0 -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.13 kcal -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -gamma 6.54 -0.08 -log_k 1.106; -delta_h 4.3 kcal -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- -log_k -0.4 -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O -log_k 7.63 -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 -log_k 12.346 -delta_h -3.53 kcal -gamma 5 0 -dw 0.69e-9 -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.52 kcal -gamma 5.4 0 -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 -dw 0.846e-9 PO4-3 + 3 H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- -log_k 3.76 -delta_h 4.55 kcal -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ -log_k -12.78 Ca+2 + CO3-2 = CaCO3 -log_k 3.224; -delta_h 3.545 kcal -analytic -1228.732 -0.29944 35512.75 485.818 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 -Vm 30.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 -delta_h 1.325 kcal -dw 4.71e-10 -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- -log_k 6.459 -delta_h 3.1 kcal -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ -log_k 1.408 -delta_h 3.4 kcal -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ -log_k -11.44 -delta_h 15.952 kcal -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 -log_k 2.98 -delta_h 2.713 kcal -analytic 0.991 0.00667 -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4 0 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 -gamma 0 0.2 -log_k 2.42; -delta_h 19 kJ -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 8.65 -10.21 29.58 -18.6 1.061 -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 -log_k 0.52; -delta_h -13.6 kJ -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ -log_k 1.513 -delta_h 3.4 kcal -gamma 5.4 0 Mg+2 + F- = MgF+ -log_k 1.82 -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 -Vm 7.95 0 0 0 0.609 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- -gamma 5.5 0 -log_k 0.6; -delta_h -14.4 kJ -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 -log_k -0.35; -delta_h 12 kJ -gamma 0 9.4e-3 -Vm 9.48 0 0 0 -0.542 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 0.6; -delta_h -10.4 kJ -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.2 kcal -gamma 5 0 Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ -log_k -31 -delta_h 30.3 kcal -gamma 5 0 Fe+2 + Cl- = FeCl+ -log_k 0.14 Fe+2 + CO3-2 = FeCO3 -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.23 kcal -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 -log_k 8.95 Fe+2 + 3 HS- = Fe(HS)3- -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ -log_k 2.7 -gamma 5.4 0 Fe+2 + F- = FeF+ -log_k 1 Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.68 kcal -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ -log_k -2.19 -delta_h 10.4 kcal -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ -log_k -5.67 -delta_h 17.1 kcal -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ -log_k -12.56 -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ -log_k -21.6 -delta_h 31.9 kcal -gamma 5.4 0 Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ -log_k -2.95 -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ -log_k -6.3 -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 -log_k 1.48 -delta_h 5.6 kcal -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ -log_k 2.13 -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ -log_k 4.04 -delta_h 3.91 kcal -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- -log_k 5.38 -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ -log_k 5.43 -delta_h 5.76 kcal -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 -log_k 5.43 -gamma 5.4 0 Fe+3 + F- = FeF+2 -log_k 6.2 -delta_h 2.7 kcal -gamma 5 0 Fe+3 + 2 F- = FeF2+ -log_k 10.8 -delta_h 4.8 kcal -gamma 5 0 Fe+3 + 3 F- = FeF3 -log_k 14 -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ -log_k -10.59 -delta_h 14.4 kcal -gamma 5 0 Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ -log_k -34.8 -gamma 5 0 Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5 0 -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5 0 -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.37 kcal -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5 0 Mn+2 = Mn+3 + e- -log_k -25.51 -delta_h 25.8 kcal -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ -log_k -5 -delta_h 11.49 kcal -analytic -38.253 0 -656.27 14.327 -gamma 5.4 0 -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.9 kcal -gamma 5.4 0 -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ -log_k -16.9 -delta_h 39.89 kcal -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ -log_k -22.7 -delta_h 42.3 kcal -analytic 51.578 0 -11168.9 -14.865 -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ -log_k 3.5 -delta_h 2.29 kcal -gamma 4.5 0 Al+3 + 2 SO4-2 = Al(SO4)2- -log_k 5 -delta_h 3.11 kcal -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 -log_k 0.46 Al+3 + F- = AlF+2 -log_k 7 -delta_h 1.06 kcal -gamma 5.4 0 Al+3 + 2 F- = AlF2+ -log_k 12.7 -delta_h 1.98 kcal -gamma 5.4 0 Al+3 + 3 F- = AlF3 -log_k 16.8 -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- -log_k 19.4 -delta_h 2.2 kcal -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ -log_k -9.83 -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O -log_k 30.18 -delta_h -16.26 kcal -gamma 5 0 -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5 0 Ba+2 + CO3-2 = BaCO3 -log_k 2.71 -delta_h 3.55 kcal -analytic 0.113 0.008721 -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ -log_k 0.982 -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ -log_k 11.509 -delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 -log_k 2.81 -delta_h 5.22 kcal -analytic -1.019 0.012826 -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- -log_k 0.64 -gamma 5 0 Cu+2 + e- = Cu+ -log_k 2.72 -delta_h 1.65 kcal -gamma 2.5 0 Cu+ + 2 Cl- = CuCl2- -log_k 5.5 -delta_h -0.42 kcal -gamma 4 0 Cu+ + 3 Cl- = CuCl3-2 -log_k 5.7 -delta_h 0.26 kcal -gamma 5 0 Cu+2 + CO3-2 = CuCO3 -log_k 6.73 Cu+2 + 2 CO3-2 = Cu(CO3)2-2 -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ -log_k 2.7 Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4 0 -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2 Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal -Vm 26.8 0 -136 Cu+2 + 3 Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal -gamma 4 0 Cu+2 + 4 Cl- = CuCl4-2 -log_k -4.59 -delta_h 17.78 kcal -gamma 5 0 Cu+2 + F- = CuF+ -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ -log_k -8 -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ -log_k -39.6 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.22 kcal -Vm 5.21 0 -14.6 Cu+2 + 3 HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ -log_k -41.2 Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4 0 -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3 Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4 0 -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4 Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5 0 -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2 HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3 HS- = Zn(HS)3- -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 -log_k 5.3 Zn+2 + 2 CO3-2 = Zn(CO3)2-2 -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal -Vm 2.51 0 18.8 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 -log_k 3.28 -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 -log_k -0.98 Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ -log_k -47.35 2 Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2 CO3-2 = Cd(CO3)2-2 -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal -Vm 10.4 0 57.9 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 -log_k 3.5 -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2 Br- = CdBr2 -log_k 2.9 Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2 F- = CdF2 -log_k 1.5 Cd+2 + HS- = CdHS+ -log_k 10.17 Cd+2 + 2 HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3 HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4 HS- = Cd(HS)4-2 -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ -log_k -6.36 Pb+2 + Cl- = PbCl+ -log_k 1.6 -delta_h 4.38 kcal -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 -log_k 1.8 -delta_h 1.08 kcal -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- -log_k 1.7 -delta_h 2.17 kcal -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 -log_k 1.38 -delta_h 3.53 kcal -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ -log_k 2.9 Pb+2 + SO4-2 = PbSO4 -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 -log_k 3.47 Pb+2 + 2 HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3 HS- = Pb(HS)3- -log_k 16.57 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ -log_k 1.17 Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal Pb+2 + 2 Br- = PbBr2 -log_k 1.44 Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2 F- = PbF2 -log_k 2.56 Pb+2 + 3 F- = PbF3- -log_k 3.42 Pb+2 + 4 F- = PbF4-2 -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 -log_k -8.336 -delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 -log_k -10.89 -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 -log_k -11.13 -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 -log_k -9.271 -delta_h -0.4 kcal -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 -log_k -8.562 -delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58 -delta_h -0.109 kcal -analytic 68.2401 0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 -log_k -4.36 -delta_h -1.71 kcal -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.57; -delta_h 2.35 kJ -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O log_k -1.16; -delta_h 9.22 kJ -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- -log_k -10.6 -delta_h 4.69 kcal -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71 -delta_h 3.34 kcal -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55 -delta_h 4.72 kcal -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98 -delta_h 5.99 kcal -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 8.11 -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 10.8 -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 -log_k 7.435 -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 -log_k -19.714 -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 -log_k -20.573 -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 -log_k 32.2 -delta_h -46.8 kcal -analytic 13.248 0 10217.1 -6.1894 -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 15.76 -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O -log_k -1 -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- -log_k -18.479 -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- -log_k -4.648 -Vm 20.45 Sulfur S + 2 H+ + 2 e- = H2S -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O -log_k -36 Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O -log_k 41.38 -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O -log_k 61.03 -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O -log_k 15.2 Halite NaCl = Cl- + Na+ log_k 1.57 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- log_k 0.9 -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ -T_c 647.3; -P_c 217.6; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 -log_k -2.8983 -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 -log_k -3.105 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6; -P_c 45.4; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-3 0 0 2.0027e5 -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.818e-3 3199 17.909 -27460 T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 -log_k -2.209 -delta_h 4.91 kcal -analytic 1.447 -0.004153 0 0 -214949 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O -log_k -1.4 -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 -log_k -9.21 -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 -log_k -10 -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- -log_k -11.618 -delta_h 8.25 kcal Willemite 289 Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 -log_k -12.1 -delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 -log_k 9.06 -delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 -log_k -0.1 -delta_h -14.74 kcal Cerussite 365 PbCO3 = Pb+2 + CO3-2 -log_k -13.13 -delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 -log_k -7.79 -delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- -log_k 0 Na+ + X- = NaX -log_k 0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6 0 -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX # -log_k 1.0 # -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X -log_k 0.6 -gamma 2.5 0 -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2 X- = CaX2 -log_k 0.8 -gamma 5 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2 X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2 X- = SrX2 -log_k 0.91 -gamma 5.26 0.121 -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2 X- = BaX2 -log_k 0.91 -gamma 4 0.153 -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2 X- = MnX2 -log_k 0.52 -gamma 6 0 Fe+2 + 2 X- = FeX2 -log_k 0.44 -gamma 6 0 Cu+2 + 2 X- = CuX2 -log_k 0.6 -gamma 6 0 Zn+2 + 2 X- = ZnX2 -log_k 0.8 -gamma 5 0 Cd+2 + 2 X- = CdX2 -log_k 0.8 -gamma 0 0 Pb+2 + 2 X- = PbX2 -log_k 1.05 -gamma 0 0 Al+3 + 3 X- = AlX3 -log_k 0.41 -gamma 9 0 AlOH+2 + 2 X- = AlOHX2 -log_k 0.89 -gamma 0 0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O -log_k 31.29 Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -log_k 12.56 Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 CaSO4 Ca+2 1 SO4-2 1 CaCO3 Ca+2 1 CO3-2 1 Ca(OH)2 Ca+2 1 OH- 2 MgCl2 Mg+2 1 Cl- 2 MgSO4 Mg+2 1 SO4-2 1 MgCO3 Mg+2 1 CO3-2 1 Mg(OH)2 Mg+2 1 OH- 2 NaCl Na+ 1 Cl- 1 Na2SO4 Na+ 2 SO4-2 1 NaHCO3 Na+ 1 HCO3- 1 Na2CO3 Na+ 2 CO3-2 1 NaOH Na+ 1 OH- 1 KCl K+ 1 Cl- 1 K2SO4 K+ 2 SO4-2 1 HCO3 K+ 1 HCO3- 1 K2CO3 K+ 2 CO3-2 1 KOH K+ 1 OH- 1 HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 RATES ########### #Quartz ########### # ####### # Example of quartz kinetic rates block: # KINETICS # Quartz # -m0 158.8 # 90 % Qu # -parms 0.146 1.5 # -step 3.1536e8 in 10 # -tol 1e-12 Quartz -start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end ########### #K-feldspar ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space # Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere # Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.18 # 10% Kspar, 0.1 mm cubes # -m 2.18 # Moles per L pore space # -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate # -time 1.5 year in 40 K-feldspar -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end ########### #Albite ########### # # Sverdrup and Warfvinge, 1995, Estimating field weathering rates # using laboratory kinetics: Reviews in mineralogy and geochemistry, # vol. 31, p. 485-541. # # As described in: # Appelo and Postma, 2005, Geochemistry, groundwater # and pollution, 2nd Edition: A.A. Balkema Publishers, # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.46 # 2% Albite, 0.1 mm cubes # -m 0.46 # Moles per L pore space # -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate # -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: # Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space # Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space # Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: # Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere # Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere # Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere # Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Albite m^2/mol Albite 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM Albite parameters 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ 140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- 200 pk_OH = pk_OH + e_OH * dif_temp 210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 260 area = PARM(1) * M0 *(M/M0)^0.67 270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end ######## #Calcite ######## # Example of KINETICS data block for calcite rate, # in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day Calcite -start 1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite 2 REM PARM(2) = exponent for M/M0 10 si_cc = SI("Calcite") 20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 30 k1 = 10^(0.198 - 444 / TK ) 40 k2 = 10^(2.84 - 2177 /TK ) 50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) 60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) 80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol 200 SAVE moles -end ####### #Pyrite ####### # # Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms 0.3 0.67 .5 -0.11 # -time 1 day in 10 Pyrite -start 1 REM Williamson and Rimstidt, 1994 2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) 3 REM PARM(2) = exp for (M/M0) 4 REM PARM(3) = exp for O2 5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 30 if (SI("Pyrite") >= 0) THEN GOTO 200 40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") 50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) 60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end ########## #Organic_C ########## # # Example of KINETICS data block for SOC (sediment organic carbon): # KINETICS 1 # Organic_C # -formula C # -tol 1e-8 # -m 5e-3 # SOC in mol # -time 30 year in 15 Organic_C -start 1 REM Additive Monod kinetics for SOC (sediment organic carbon) 2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") 30 mNO3 = TOT("N(5)") 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec 70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end ########### #Pyrolusite ########### # # Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 # -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 20 sr_pl = SR("Pyrolusite") 30 if (sr_pl > 1) THEN GOTO 100 40 REM sr_pl <= 1, undersaturated 50 Fe_t = TOT("Fe(2)") 60 if Fe_t < 1e-8 then goto 200 70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) 80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end # # Additional definition of PHASES, RATE parameters, and RATES examples # # RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. # # RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. # # RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632. # # Example RATES definitions and input files with KINETICS show the application in # Albite_PK # Palandri and Kharaka # Albite_Svd # Sverdrup # Albite_Hermanska # Calcite_PK # Palandri and Kharaka # Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. # Quartz_PK # Palandri and Kharaka # Quartz_Svd # Sverdrup # Quartz_Hermanska # # Quartz_Rimstidt_Barnes # Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals # Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, # tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html Actinolite # Hornblende, Ferroactinolite Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4 log_k 7.128 delta_h -181.662 #kJ/mol #19bla/lac -analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7 Almandine # (alpha) Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4 log_k 42.18 delta_h -458.683 #kJ/mol #95rob/hem -analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7 Analcime Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4 log_k 6.654 delta_h -98 #kJ/mol #04neu/hov -analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6 Andalusite Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O log_k 16.206 delta_h -244.61 #kJ/mol #Internal calculation -analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6 Andesine # defined for elemental release Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4- Andradite Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4 log_k 33.787 delta_h -327.864 #kJ/mol #Internal calculation -analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6 Anglesite PbSO4 = Pb+2 + SO4-2 log_k -7.848 delta_h 11.55 #kJ/mol #89cox/wag -analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6 Annite KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4 log_k 32.771 delta_h -306.153 #kJ/mol #92cir/nav -analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6 Anorthite Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4 log_k 24.235 delta_h -303.522 #kJ/mol #95rob/hem -analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4 log_k 73.783 delta_h -583.247 #kJ/mol #95rob/hem -analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O log_k 500.08 delta_h -3743.421 #kJ/mol #98hol/pow -analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8 # As2S3 # Orpiment # no As in phreeqc.dat # As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+ # log_k -65.110 # delta_h 334.975 #kJ/mol #Internal calculation # -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 Augite # Pyroxene(CaAl) CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O log_k 36.234 delta_h -370.792 #kJ/mol #Internal calculation -analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6 Biotite # defined for elemental release KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4 Bronzite # defined for elemental release Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4 Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 17.112 delta_h -114.518 #kJ/mol #08bla -analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5 Bytownite # defined for elemental release Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4- Chabazite Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O log_k 11.541 delta_h -200.464 #kJ/mol #08bla -analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6 Chamosite(Daphnite) Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O log_k 47.603 delta_h -497.518 #kJ/mol #01vid/par -analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O log_k 33.182 delta_h -244.552 #kJ/mol #04eva -analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6 Clinochlore Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O log_k 61.706 delta_h -593.773 #kJ/mol #05vid/par -analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7 Clinoptilolite(Ca) Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4 log_k -2.085 delta_h -58.407 #kJ/mol #09bla -analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6 Clinoptilolite(K) K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4 log_k -1.142 delta_h -49.035 #kJ/mol #09bla -analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6 Clinoptilolite(Na) Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4 log_k -0.113 delta_h -50.769 #kJ/mol #09bla -analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6 Cordierite Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4 log_k 49.433 delta_h -648.745 #kJ/mol #95rob/hem -analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7 Cristobalite # (alpha) SiO2 + 2 H2O = H4SiO4 log_k -3.158 delta_h 18.829 #kJ/mol #04fab/sax -analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6 # Cristobalite(beta) # SiO2 + 2H2O = 1H4SiO4 # log_k -3.096 # #delta_h 0 #kJ/mol # -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 Dawsonite NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O log_k 4.327 delta_h -76.33 #kJ/mol #76fer/stu -analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6 Diaspore AlO(OH) + 3 H+ = Al+3 + 2 H2O log_k 6.866 delta_h -108.76 #kJ/mol #95rob/hem -analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6 Diopside CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 log_k 21.743 delta_h -153.574 #kJ/mol #Internal calculation -analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6 Dolomite(disordered) CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2 log_k 4.299 delta_h -73.162 #kJ/mol #78hel/del,92ajoh -analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6 Edenite # (alpha) Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4 log_k 81.946 delta_h -679.296 #kJ/mol #97got -analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7 Enstatite # (alpha) MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 log_k 11.844 delta_h -93.265 #kJ/mol #78hel/del -analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6 Epidote Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O log_k 32.23 delta_h -411.613 #kJ/mol #04got -analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7 Fayalite Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4 log_k 19.03 delta_h -157.157 #kJ/mol #Internal calculation -analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6 Ferroactinolite # = Ferrotremolite (Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4 log_k 53.699 delta_h -412.225 #kJ/mol #Internal calculation -analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7 Fluorapatite # (Natur) Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4- log_k -0.91 delta_h -115.601 #kJ/mol #Internal calculation -analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7 Forsterite Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 log_k 28.609 delta_h -217.115 #kJ/mol #Internal calculation -analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6 Glauconite (K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2 log_k 1.873 delta_h -120.903 #kJ/mol #15bla/vie -analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6 Glaucophane Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4 log_k 37.026 delta_h -378.727 #kJ/mol #95rob/hem -analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7 Grossular Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4 log_k 49.372 delta_h -442.383 #kJ/mol #95rob/hem -analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7 # Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite Heulandite(Ca) Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4 log_k 2.457 delta_h -139.108 #kJ/mol #09bla -analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7 # Ilmenite # Ti not in phreeqc.dat # FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4 # log_k 1.816 # delta_h -87.445 #kJ/mol #Internal calculation # -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 Heulandite(Na) Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4 log_k 2.797 delta_h -126.775 #kJ/mol #09bla -analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7 Jadeite NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4 log_k 7.561 delta_h -95.502 #kJ/mol #95rob/hem -analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6 Kyanite Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O log_k 15.936 delta_h -240.322 #kJ/mol #Internal calculation -analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6 Labradorite # defined for elemental release Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4- Larnite(alpha) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 39.044 delta_h -238.161 #kJ/mol #95rob/hem -analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6 Larnite(beta) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 39.322 #delta_h 0 #kJ/mol -analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6 Larnite(gamma) Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 log_k 41.444 #delta_h 0 #kJ/mol -analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6 Laumontite Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 log_k 11.695 delta_h -204.244 #kJ/mol #96kis/nav -analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6 Leonhardtite MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O log_k -0.886 delta_h -24.03 #kJ/mol #74nau/ryz -analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6 Leucite # minteq.dat KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ log_k 6.423 delta_h -22.085 kcal Lizardite Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O log_k 33.093 delta_h -242.552 #kJ/mol #04eva -analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6 Magnetite Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O log_k 10.362 delta_h -215.594 #kJ/mol #90hem -analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6 Microcline K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4 log_k 0.015 delta_h -49.203 #kJ/mol #95rob/hem -analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6 Montmorillonite(HcCa) Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4 log_k 6.903 delta_h -154.564 #kJ/mol #15bla/vie -analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6 Montmorillonite(HcK) K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4 log_k 4.449 delta_h -119.628 #kJ/mol #15bla/vie -analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6 Montmorillonite(HcMg) Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4 log_k 5.996 delta_h -156.964 #kJ/mol #15bla/vie -analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6 Montmorillonite(HcNa) Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4 log_k 5.472 delta_h -135.658 #kJ/mol #15bla/vie -analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6 Montmorillonite(MgCa) Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4 log_k 4.222 delta_h -146.668 #kJ/mol #15bla/vie -analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6 Montmorillonite(MgK) K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4 log_k 2.83 delta_h -126.865 #kJ/mol #15bla/vie -analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6 Montmorillonite(MgMg) Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4 log_k 3.708 delta_h -148.028 #kJ/mol #15bla/vie -analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6 Montmorillonite(MgNa) Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4 log_k 3.411 delta_h -135.953 #kJ/mol #15bla/vie -analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6 MordeniteB # (Ca) Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4 log_k -2.898 delta_h -56.278 #kJ/mol #09bla -analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6 MordeniteJ Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4 log_k -4.16 delta_h -29.442 #kJ/mol #92joh/tas -analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6 Muscovite # (ordered) KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4 log_k 11.353 delta_h -253.923 #kJ/mol #06bla/pia -analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6 Natrolite Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4 log_k 19.326 delta_h -215.463 #kJ/mol #83joh/flo -analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6 Nepheline Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4 log_k 14.077 delta_h -144.506 #kJ/mol #Internal calculation -analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6 Oligoclase # defined for elemental release Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4- Palygorskite # defined for elemental release Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4 Paragonite NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4 log_k 16.804 delta_h -294.623 #kJ/mol #96rou/hov -analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6 Pargasite # Hornblende Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4 log_k 104.557 delta_h -940.614 #kJ/mol #Internal calculation -analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7 Phlogopite KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4 log_k 41.098 delta_h -353.123 #kJ/mol #92cir/nav -analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6 Prehnite Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4 log_k 32.596 delta_h -339.617 #kJ/mol #98cha/kru -analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6 Pyrophyllite Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4 log_k -0.418 delta_h -128.924 #kJ/mol #95rob/hem -analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6 Pyrrhotite(Hx) # Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.679 delta_h -10.009 #kJ/mol #05wal/pel -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 Pyrrhotite(Mc) # Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.679 delta_h -10.009 #kJ/mol #05wal/pel -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 Rhyolite # a mixture of minerals, defined for elemental release... Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4 Riebeckite Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3 log_k 9.199 delta_h -197.377 #kJ/mol #98hol/pow -analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7 Saponite(Ca) Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4 log_k 29.355 delta_h -262.766 #kJ/mol #15bla/vie -analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6 Saponite(FeCa) Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4 log_k 26.569 delta_h -250.636 #kJ/mol #15bla/vie -analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6 Saponite(FeK) K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4 log_k 25.398 delta_h -232.093 #kJ/mol #15bla/vie -analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6 Saponite(FeMg) Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4 log_k 26.022 delta_h -251.806 #kJ/mol #15bla/vie -analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6 Saponite(FeNa) Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4 log_k 25.896 delta_h -240.711 #kJ/mol #15bla/vie -analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6 Saponite(K) K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4 log_k 27.43 delta_h -239.483 #kJ/mol #15bla/vie -analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6 Saponite(Mg) Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4 log_k 28.81 delta_h -263.946 #kJ/mol #15bla/vie -analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6 Saponite(Na) Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4 log_k 27.971 delta_h -248.219 #kJ/mol #15bla/vie -analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6 Saponite(SapCa) (Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2 log_k 31.473 delta_h -277.172 #kJ/mol #13gai/bla -analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6 Scolecite CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O log_k 16.647 delta_h -233.213 #kJ/mol #83joh/flo -analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6 Smectite # (MX80) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 log_k 5.278 delta_h -175.308 #kJ/mol #12gai/bla -analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6 Smectite(MX80:3.989H2O) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O log_k 1.774 delta_h -148.524 #kJ/mol #12gai/bla -analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6 Smectite(MX80:5.189H2O) Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O log_k 1.435 delta_h -140.43 #kJ/mol #12gai/bla -analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6 Spodumene # from core10.dat LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 log_k 6.9972 delta_h -89.1817 -analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5 -Vm 58.37 Staurolite Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O log_k 216.34 delta_h -1956.484 #kJ/mol #87woo/gar -analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7 Stilbite NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4 log_k 23.044 delta_h -403.823 #kJ/mol #01fri/neu -analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7 Thomsonite # defined for elemental release Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O Tourmaline # defined for elemental release NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4 Tremolite (Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 log_k 67.281 delta_h -502.247 #kJ/mol #95rob/hem -analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7 # Uraninite # UO2 + 4 H+ = U+4 + 2 H2O # log_k -3.490 # delta_h -18.630 kcal Wollastonite CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4 log_k 14.047 delta_h -85.986 #kJ/mol #78hel/del,92ajoh -analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6 Zoisite Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O log_k 43.848 delta_h -485.113 #kJ/mol #01sme/fra -analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7 RATE_PARAMETERS_PK # Acid Neutral Base # log K E n(H+) log K E log K E n(OH-) # ================================================================ Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 # SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 Cristobalite -30 0 0 -12.31 65 -30 0 0 # Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 # K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 # Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 # Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 Grossular -5.1 85 1 -10.7 103.8 -30 0 0 Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 # Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 # augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 enstatite -9.02 80 0.6 -12.72 80 -30 0 0 jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 # anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 # biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 glauconite -4.8 85 0.7 -9.1 85 -30 0 0 muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 muscovite -30 0 0 -13 22 -30 0 0 paragonite -30 0 0 -13 22 -30 0 0 phlogopite -30 0 0 -12.4 29 -30 0 0 pyrophyllite -30 0 0 -12.4 29 -30 0 0 # kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. # lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 talc -30 0 0 -12 42 -30 0 0 prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 # goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 uraninite -30 0 0 -7.98 32 -30 0 0 # brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 # anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 anhydrite -30 0 0 -3.19 14.3 -30 0 0 gypsum -30 0 0 -2.79 0 -30 0 0 barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 celestite -5.66 23.8 0.109 -30 0 -30 0 0 # hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 fluorapatite -3.73 250 0.613 -8 250 -30 0 0 # halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 fluorite -7.14 73 1 -13.79 73 -30 0 0 # # Acid Neutral P_CO2 # log K E n(H+) log K E log K E n(P_CO2) Table # ================================================================================ calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) dawsonite -30 0 0 -7 62.8 -30 0 0 33 dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 # # Acid and Fe+3 Neutral and O2 Base # log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table # ========================================================================================= pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 RATE_PARAMETERS_SVD # Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 # H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula # ================================================================================================================================================================================================================================================================================================= Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 RATE_PARAMETERS_HERMANSKA # Acid mechanism Neutral mechanism Basic mechanism # logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula # ================================================================================================================================ # Amphiboles Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2 Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2 # Feldspars Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3 Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3 Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3 Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3 # Glass Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6 # Mica # Also valid for Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2 # Olivines Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2 Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2 Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2 # Pyroxenes Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0 Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0 Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0 Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0 # SiO2 polymorphs Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4 # 2023, Table 1 Also valid for Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2 Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0 Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0 Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0 Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76 Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1 Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075 Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7 Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0 Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0 Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15 # # Example input files with RATES for KINETICS calculations # # # # compare Albite kinetics using rates from the compilations # # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html # # ========================================================= # # RATES # Albite_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_PK # -formula NaAlSi3O8; -parms 0 1 1 0.67 # -m0 1; -time 1 # default # END # SOLUTION 1 # PHASES # Fix_pH; H+ = H+ # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant # SELECTED_OUTPUT 1 # -file kinetic_rates_pH.inc # -reset false # USER_PUNCH 1 # write out the pH's to equilibrate... # 10 FOR i = 0 to 14 STEP 0.5 # 20 punch EOL$ + 'USE solution 1' # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' # 40 punch EOL$ + ' LiBr' # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant # 60 punch EOL$ + 'USE kinetics 1' # 70 punch EOL$ + 'END' # 80 NEXT i # END # PRINT; -reset false # SELECTED_OUTPUT 1; -active false # USER_GRAPH 1; -headings pH Palandri # -axis_titles pH "log10(initial rate / (mol / m2 / s))" # -axis_scale x_axis 0 14 # 10 graph_x -la("H+") # 20 graph_sy log10(tot("Al")) # INCLUDE$ kinetic_rates_pH.inc # END # RATES # Albite_Svd # Sverdrup, 2019 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_SVD("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_Svd # -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup*20 # INCLUDE$ kinetic_rates_pH.inc # END # KINETICS 1 # Albite # from Sverdrup and Warfvinge, 1995 # -formula NaAlSi3O8; -parms 1 20 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup`95*20 # INCLUDE$ kinetic_rates_pH.inc # END # RATES # Albite_Hermanska # 2022 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_HERMANSKA("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # KINETICS 1 # Albite_Hermanska # -formula NaAlSi3O8; -parms 0 1 1 0.67 # USER_GRAPH 1; -headings pH Hermanska # INCLUDE$ kinetic_rates_pH.inc # END # USE solution 1 # REACTION_TEMPERATURE 1; 25 25 in 21 # USER_GRAPH 1; -headings Albite_data # 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 # 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963–993. # 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i # 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i # 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle # END # # compare rates for calcite dissolution # # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978 # # at different initial CO2 concentrations. # # ===================================== # USER_GRAPH 1; -active false # RATES # Calcite_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("calcite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -2.5 # KINETICS 1 # calcite_PK # -formula CaCO3; -parms 0 1e-2 1 0.67 # -time 0.1 10*1 hour # INCREMENTAL_REACTIONS true # USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 # -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" # 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 # END # USE solution 1 # KINETICS 1 # Calcite # -parms 1e2 0.67 # cm^2/mol calcite, exp factor # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst # END # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -1.5 # KINETICS 1 # calcite_PK # -formula CaCO3 # -parms 0 1e-2 1 0.67 # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 # END # USE solution 1 # KINETICS 1 # Calcite # -parms 1e2 0.67 # -time 0.1 10*1 hour # USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst # END # # compare rates for quartz dissolution # # and the effect of NaCl # # ===================================== # USER_GRAPH 2; -active false # RATES # Quartz_PK # Palandri and Kharaka, 2004 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_PK("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # SOLUTION 1 # pH 7 charge # KINETICS 1 # Quartz_PK # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # INCREMENTAL_REACTIONS true # USER_GRAPH 3; -headings h Palandri # -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" # 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 # END # RATES # Quartz_Hermanska # # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_HERMANSKA("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Hermanska # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Hermanska # END # RATES # Quartz_Svd # Sverdrup, 2019 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_SVD("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Svd # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Sverdup # END # RATES # Quartz_Rimstidt # #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259 # 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195 # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 # Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Rimstidt # END # SOLUTION 1 # pH 7 charge; Na 1; Cl 1 # KINETICS 1 # Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 # -headings H Rimstidt_1.mM.NaCl # END # # Example input file for calculating kinetic dissolution of Montmorillonite, # # a solid solution with exchangeable cations reacting fast; # # their ratios are related to the changing solution composition, # # and their amounts are connected to the kinetic reacting TOT layer. # # # # The affinity is related to a solid solution member, given by the fraction of the # # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, # # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1 # # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined. # # It also shows how the default X exchanger can be invkoed. # # # ============================================================== # USER_GRAPH 3; -active false # RATES # Montmorillonite # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # # Gapon and Gaines-Tomas exchange formulas # 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # # Gapon, with Ca as exchange species... # # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg")) # # # use SR("Montmorillonite(Mgca)") # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca # # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES # # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5 # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # EXCHANGE_MASTER_SPECIES # X_montm_mg X_montm_mg-0.34 # EXCHANGE_SPECIES # # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES # X_montm_mg-0.34 = X_montm_mg-0.34 # 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # # 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # # # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX # # # uncomment the following lines to see the effect... # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 # # # also adapt the log_k`s of the solids... # # PHASES # # Montmorillonite(MgMg) # # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 # # log_k 2.86 # # Montmorillonite(MgCa) # # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 # # log_k 2.83 # # # The divalent cations can be defined with the Gaines-Thomas convention... # # EXCHANGE_SPECIES # # # undefine the previous set... # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 # # # write the Gaines-Thomas formulas... # # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # # # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # # # # The default exchanger X can be used, uncomment the follwing lines # # # redefine f_Na in the rate... # # RATES # # Montmorillonite # # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange # # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # # 40 SAVE area * rate * affinity * TIME # # -end # # # adapt log_k`s of the solids with default exchanger X: # # PHASES # # Montmorillonite(MgK) # # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 # # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 # # Montmorillonite(MgMg) # # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 # # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 # # Montmorillonite(MgCa) # # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 # # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 # # # in EXCHANGE 1, comment X_montm_mg, uncomment X... # END # SOLUTION 1 # pH 7 charge # Na 1e-5 # K 1e-5 # Mg 1e-5 # Ca 1e-5 # END # # Give the solution composition for calculating the ininitial exchanger # SOLUTION 99 # pH 7 charge # EQUILIBRIUM_PHASES 1 # # solid solution of the end-members, SI = log10(fraction = 0.25) # Montmorillonite(MgNa) -0.602 1e-2 # Montmorillonite(MgCa) -0.602 1e-2 # Montmorillonite(MgK) -0.602 1e-2 # Montmorillonite(MgMg) -0.602 1e-2 # Kaolinite 0 0 # SAVE solution 99 # END # # # with Gapon only, initial exchanger can be defined explicitly # EXCHANGE 1 # Na0.34X_montm_mg 1e-2 # Ca0.17X_montm_mg 1e-2 # K0.34X_montm_mg 1e-2 # Mg0.17X_montm_mg 1e-2 # END # USE solution 1 # EQUILIBRIUM_PHASES 1 # Kaolinite 0 0 # # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 # EXCHANGE 1 # X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 # # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 # KINETICS 1 # Montmorillonite # -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 # -m 4e-2 # -parms 0 2.5e5 1 0.67 # -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 # -cvode true # INCREMENTAL_REACTIONS true # USER_GRAPH 4 # -headings time Na K Mg Ca mm_diss # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" # -axis_scale x_axis auto auto auto auto log # -axis_scale y_axis auto auto auto auto log # 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) # 10 GRAPH_X t # 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 # 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 # 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca # 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 # END # USE solution 99; REACTION # USER_GRAPH 4; -connect_simulations false; -headings Solution_99 # 1 t = get(1) # 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red # 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green # 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue # 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), #precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. # ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) # + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hückel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions # D_i = d1 + exp(-d2 tc) # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 · m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. # ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).