# PHREEQC.DAT for calculating pressure dependence of reactions, with # molal volumina of aqueous species and of minerals, and # critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # H H+ -1.0 H 1.008 H(0) H2 0.0 H H(1) H+ -1.0 0.0 E e- 0.0 0.0 0.0 O H2O 0.0 O 16.0 O(0) O2 0.0 O O(-2) H2O 0.0 0.0 Ca Ca+2 0.0 Ca 40.08 Mg Mg+2 0.0 Mg 24.312 Na Na+ 0.0 Na 22.9898 K K+ 0.0 K 39.102 Fe Fe+2 0.0 Fe 55.847 Fe(+2) Fe+2 0.0 Fe Fe(+3) Fe+3 -2.0 Fe Mn Mn+2 0.0 Mn 54.938 Mn(+2) Mn+2 0.0 Mn Mn(+3) Mn+3 0.0 Mn Al Al+3 0.0 Al 26.9815 Ba Ba+2 0.0 Ba 137.34 Sr Sr+2 0.0 Sr 87.62 Si H4SiO4 0.0 SiO2 28.0843 Cl Cl- 0.0 Cl 35.453 C CO3-2 2.0 HCO3 12.0111 C(+4) CO3-2 2.0 HCO3 C(-4) CH4 0.0 CH4 Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 S SO4-2 0.0 SO4 32.064 S(6) SO4-2 0.0 SO4 S(-2) HS- 1.0 S N NO3- 0.0 N 14.0067 N(+5) NO3- 0.0 N N(+3) NO2- 0.0 N N(0) N2 0.0 N Amm AmmH+ 0.0 AmmH 17.0 B H3BO3 0.0 B 10.81 P PO4-3 2.0 P 30.9738 F F- 0.0 F 18.9984 Li Li+ 0.0 Li 6.939 Br Br- 0.0 Br 79.904 Zn Zn+2 0.0 Zn 65.37 Cd Cd+2 0.0 Cd 112.4 Pb Pb+2 0.0 Pb 207.19 Cu Cu+2 0.0 Cu 63.546 Cu(+2) Cu+2 0.0 Cu Cu(+1) Cu+1 0.0 Cu # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # Oxygen gas Mtg Mtg 0.0 Mtg 16.032 # CH4 gas Sg H2Sg 1.0 H2Sg 34.08 Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -gamma 9.0 0.0 -dw 9.31e-9 e- = e- H2O = H2O Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # supcrt modified Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # supcrt modified Na+ = Na+ -gamma 4.0 0.075 -dw 1.33e-9 -Vm 1.403 -2.285 4.419 -2.726 -5.125e-5 4.0 0.162 47.67 -3.09e-3 0.725 # supcrt modified # for calculating densities (rho) when I > 3... # -Vm 1.403 -2.285 4.419 -2.726 -5.125e-5 2.0 0.162 47.67 -3.09e-3 0.4 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # supcrt modified Fe+2 = Fe+2 -gamma 6.0 0.0 -dw 0.719e-9 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 5.5 -4.21e-2 37.96 0 1 # supcrt modified Mn+2 = Mn+2 -gamma 6.0 0.0 -dw 0.688e-9 -Vm -.1016 -8.0295 8.9060 -2.4471 1.4006 6 # supcrt Al+3 = Al+3 -gamma 9.0 0.0 -dw 0.559e-9 -Vm -3.3404 -17.1108 14.9917 -2.0716 2.8711 9 # supcrt Ba+2 = Ba+2 -gamma 5.0 0.0 -dw 0.848e-9 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # supcrt modified Sr+2 = Sr+2 -dw 0.794e-9 -gamma 5.260 0.121 -Vm -2.062 -10.15 13.71 -2.36 -1.612 5.26 1.278 -40.55 -6.87e-3 1.914 1 # supcrt modified H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 Cl- = Cl- -gamma 3.5 0.015 -dw 2.03e-9 -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # supcrt modified CO3-2 = CO3-2 -gamma 5.4 0.0 -dw 0.955e-9 -Vm 5.224 0 0 -5.85 5.126 0 0.404 110 -5.74e-3 1 # supcrt modified SO4-2 = SO4-2 -gamma 5.0 -0.04 -dw 1.07e-9 -Vm 7.546 -1.985 -0.562 -2.697 3.366 0 0 0 0 1 # supcrt modified NO3- = NO3- -gamma 3.0 0.0 -dw 1.9e-9 -Vm 6.392 6.78 0 -3.06 0.449 0 0.80 0 -1.05e-2 1 # supcrt modified AmmH+ = AmmH+ -gamma 2.5 0.0 -dw 1.98e-9 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # supcrt modified H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0.0 -dw 0.612e-9 -Vm -.5259 -9.0654 9.3131 -2.4042 5.6114 # supcrt F- = F- -gamma 3.5 0.0 -dw 1.46e-9 -Vm .6870 1.3588 7.6033 -2.8352 1.787 # supcrt Li+ = Li+ -gamma 6.0 0.0 -dw 1.03e-9 -Vm -.0237 -.0690 11.5800 -2.7761 .4862 6 # supcrt Br- = Br- -gamma 3.0 0.0 -dw 2.01e-9 -Vm 5.2690 6.5940 4.7450 -3.1430 1.3858 # supcrt Zn+2 = Zn+2 -gamma 5.0 0.0 -dw 0.715e-9 -Vm -1.0677 -10.3884 9.8331 -2.3495 1.4574 5 # supcrt Cd+2 = Cd+2 -dw 0.717e-9 -Vm .0537 -10.7080 16.5176 -2.3363 1.2528 5 # supcrt Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0.0 -dw 0.733e-9 -Vm -1.1021 -10.4726 9.8662 -2.3461 1.4769 6 # supcrt # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt Oxg = Oxg # O2 -dw 2.35e-9 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 -Vm 7.7 # CH4 solubility, 25-100C, 1-700atm Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 -Vm 7.81 2.96 -0.46 # supcrt # aqueous species H2O = OH- + H+ -analytic 68.547 0 -6199.8 -24.955 -gamma 3.5 0.0 -dw 5.27e-9 -Vm 1.776 0.0738 1.417 -2.782 2.347 0 0.906 0 0 1 # supcrt modified 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal -dw 2.35e-9 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt 2 H+ + 2 e- = H2 -log_k -3.15 -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0.0 -dw 1.18e-9 -Vm 8.615 0 -12.21 0 1.667 0 0 264 0 1 # supcrt modified CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 -Vm 21.78 -49.4 -91.7 31.96 # supcrt modified CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 -Vm 7.7 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 0.0 -dw 1.33e-9 -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # supcrt modified HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal -gamma 5.0 0.0 -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O -log_k 33.65 -delta_h -60.140 kcal -gamma 3.5 0.0 -dw 1.73e-9 -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt HS- + H+ = H2S -log_k 6.994 -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 -Vm 7.81 2.96 -0.46 # supcrt H2Sg = HSg- + H+ -log_k -6.994 -delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 -dw 2.1e-9 -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.570 -delta_h -43.760 kcal -gamma 3.0 0.0 -dw 1.91e-9 -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.130 kcal -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 AmmH+ = Amm + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 -Vm 5.09 2.8 8.62 -2.88 -0.05 # supcrt #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0.0 # -Vm 4.371 2.345 7.125 -2.88 0.707 3 -0.937 52.99 4.27e-3 1 # supcrt modified AmmH+ + SO4-2 = AmmHSO4- -log_k 1.11 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- -log_k -0.4 -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O -log_k 7.63 -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 -log_k 12.346 -delta_h -3.530 kcal -gamma 5.0 0.0 -dw 0.69e-9 -Vm 3.6315 1.0857 5.3233 -2.8239 3.3363 # supcrt PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0.0 -dw 0.846e-9 -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 # supcrt H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal -analytic -2.033 0.012645 429.01 -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- -log_k 3.76 -delta_h 4.550 kcal -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ -log_k -12.78 Ca+2 + CO3-2 = CaCO3 -log_k 3.224 -delta_h 3.545 kcal -analytic -1228.732 -0.299440 35512.75 485.818 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 11.435 -delta_h -0.871 kcal -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 -gamma 6.0 0.0 -dw 5.06e-10 -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt Ca+2 + SO4-2 = CaSO4 -log_k 2.25 -delta_h 1.325 kcal -dw 4.71e-10 -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- -log_k 6.459 -delta_h 3.10 kcal -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ -log_k 1.408 -delta_h 3.4 kcal -gamma 5.4 0.0 Ca+2 + F- = CaF+ -log_k 0.94 -delta_h 4.120 kcal -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt -gamma 5.5 0.0 Mg+2 + H2O = MgOH+ + H+ -log_k -11.44 -delta_h 15.952 kcal -gamma 6.5 0.0 Mg+2 + CO3-2 = MgCO3 -log_k 2.98 -delta_h 2.713 kcal -analytic 0.9910 0.00667 -dw 4.21e-10 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -gamma 4.0 0.0 Mg+2 + SO4-2 = MgSO4 -log_k 2.37 -delta_h 4.550 kcal -dw 4.45e-10 -Vm 2.4 -0.97 6.1 -2.74 # est'd Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal -gamma 5.4 0.0 Mg+2 + HPO4-2 = MgHPO4 -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ -log_k 1.513 -delta_h 3.4 kcal -gamma 5.4 0.0 Mg+2 + F- = MgF+ -log_k 1.82 -delta_h 3.20 kcal -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt -gamma 4.5 0.0 Na+ + OH- = NaOH -log_k -10 # remove this complex Na+ + CO3-2 = NaCO3- -log_k 0.65 -delta_h 0.7 kcal -dw 5.85e-10 -Vm 3.411 0 15.99 -8.20 2.258 0 4.06 0 -2.21e-2 1 -gamma 5.4 0.0 Na+ + HCO3- = NaHCO3 -log_k 0.4 -delta_h -0.4 kcal -dw 6.73e-10 -Vm 4.64 Na+ + SO4-2 = NaSO4- -log_k 0.7 -delta_h 1.120 kcal -dw 6.18e-10 -Vm 10.58 7.129 -32.06 0 5.97 0 5.34 0 -3.16e-2 1 # not in supcrt -gamma 5.4 0.0 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0.0 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- -log_k 0.85 -delta_h 2.250 kcal -analytical 3.106 0.0 -673.6 -dw 7.46e-10 -gamma 5.4 0.0 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0.0 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal -gamma 5.0 0.0 Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0.0 Fe+2 + Cl- = FeCl+ -log_k 0.14 Fe+2 + CO3-2 = FeCO3 -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ -log_k 2.0 Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ -log_k 2.7 -gamma 5.4 0.0 Fe+2 + F- = FeF+ -log_k 1.0 Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.680 kcal -gamma 9.0 0.0 Fe+3 + H2O = FeOH+2 + H+ -log_k -2.19 -delta_h 10.4 kcal -gamma 5.0 0.0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ -log_k -5.67 -delta_h 17.1 kcal -gamma 5.4 0.0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ -log_k -12.56 -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ -log_k -21.6 -delta_h 31.9 kcal -gamma 5.4 0.0 Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ -log_k -2.95 -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ -log_k -6.3 -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 -log_k 1.48 -delta_h 5.6 kcal -gamma 5.0 0.0 Fe+3 + 2 Cl- = FeCl2+ -log_k 2.13 -gamma 5.0 0.0 Fe+3 + 3 Cl- = FeCl3 -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ -log_k 4.04 -delta_h 3.91 kcal -gamma 5.0 0.0 Fe+3 + HSO4- = FeHSO4+2 -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- -log_k 5.38 -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ -log_k 5.43 -delta_h 5.76 kcal -gamma 5.0 0.0 Fe+3 + H2PO4- = FeH2PO4+2 -log_k 5.43 -gamma 5.4 0.0 Fe+3 + F- = FeF+2 -log_k 6.2 -delta_h 2.7 kcal -gamma 5.0 0.0 Fe+3 + 2 F- = FeF2+ -log_k 10.8 -delta_h 4.8 kcal -gamma 5.0 0.0 Fe+3 + 3 F- = FeF3 -log_k 14.0 -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ -log_k -10.59 -delta_h 14.40 kcal -gamma 5.0 0.0 Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 -gamma 5.0 0.0 Mn+2 + Cl- = MnCl+ -log_k 0.61 -Vm 2.7448 -1.0793 6.1743 -2.7344 .3686 # supcrt -gamma 5.0 0.0 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0.0 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5.0 0.0 Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal -Vm 2.4377 -1.8292 6.4690 -2.7034 -.0300 # supcrt Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0.0 Mn+2 = Mn+3 + e- -log_k -25.51 -delta_h 25.80 kcal -gamma 9.0 0.0 Al+3 + H2O = AlOH+2 + H+ -log_k -5.0 -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -Vm -1.4649 -11.3582 10.2143 -2.3095 1.6668 5.4 # supcrt -gamma 5.4 0.0 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal -analytic 88.50 0.0 -9391.6 -27.121 -gamma 5.4 0.0 Al+3 + 3 H2O = Al(OH)3 + 3 H+ -log_k -16.9 -delta_h 39.89 kcal -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ -log_k -22.7 -delta_h 42.30 kcal -analytic 51.578 0.0 -11168.9 -14.865 -gamma 4.5 0.0 Al+3 + SO4-2 = AlSO4+ -log_k 3.5 -delta_h 2.29 kcal -gamma 4.5 0.0 Al+3 + 2SO4-2 = Al(SO4)2- -log_k 5.0 -delta_h 3.11 kcal -gamma 4.5 0.0 Al+3 + HSO4- = AlHSO4+2 -log_k 0.46 Al+3 + F- = AlF+2 -log_k 7.0 -delta_h 1.060 kcal -gamma 5.4 0.0 Al+3 + 2 F- = AlF2+ -log_k 12.7 -delta_h 1.980 kcal -gamma 5.4 0.0 Al+3 + 3 F- = AlF3 -log_k 16.8 -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- -log_k 19.4 -delta_h 2.20 kcal -gamma 4.5 0.0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ -log_k -9.83 -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 -gamma 4 0.0 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0 -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 -gamma 5.4 0.0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O -log_k 30.18 -delta_h -16.260 kcal -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt -gamma 5.0 0.0 Ba+2 + H2O = BaOH+ + H+ -log_k -13.47 -gamma 5.0 0.0 Ba+2 + CO3-2 = BaCO3 -log_k 2.71 -delta_h 3.55 kcal -analytic 0.113 0.008721 -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ -log_k 0.982 -delta_h 5.56 kcal -analytical -3.0938 0.013669 0.0 0.0 0.0 Ba+2 + SO4-2 = BaSO4 -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5.0 0.0 Sr+2 + CO3-2 + H+ = SrHCO3+ -log_k 11.509 -delta_h 2.489 kcal -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 -gamma 5.4 0.0 Sr+2 + CO3-2 = SrCO3 -log_k 2.81 -delta_h 5.22 kcal -analytic -1.019 0.012826 -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 -log_k 2.29 -delta_h 2.08 kcal -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- -log_k 0.64 -gamma 5.0 0.0 Cu+2 + e- = Cu+ -log_k 2.72 -delta_h 1.65 kcal -gamma 2.5 0.0 Cu+ + 2Cl- = CuCl2- -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0.0 Cu+ + 3Cl- = CuCl3-2 -log_k 5.70 -delta_h 0.26 kcal -gamma 5.0 0.0 Cu+2 + CO3-2 = CuCO3 -log_k 6.73 Cu+2 + 2CO3-2 = Cu(CO3)2-2 -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ -log_k 2.7 Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0.0 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0.0 Cu+2 + 4Cl- = CuCl4-2 -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0.0 Cu+2 + F- = CuF+ -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ -log_k -8.0 -gamma 4.0 0.0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ -log_k -39.6 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 0.0 0.0 Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ -log_k -41.2 Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -Vm 1.5844 -3.9128 7.2879 -2.6172 .2025 4 -gamma 4.0 0.0 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal -Vm 5.0570 4.5665 3.9552 -2.9678 -.0010 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -Vm 9.5417 15.5168 -.3487 -3.4205 1.2513 -gamma 4.0 0.0 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -Vm 14.6628 28.0213 -5.2636 -3.9374 2.6662 -gamma 5.0 0.0 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 -log_k -0.98 Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ -log_k -47.35 2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 -log_k 1.5 Cd+2 + HS- = CdHS+ -log_k 10.17 Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ -log_k -6.36 Pb+2 + Cl- = PbCl+ -log_k 1.6 -delta_h 4.38 kcal -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 Pb+2 + 2 Cl- = PbCl2 -log_k 1.8 -delta_h 1.08 kcal -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 Pb+2 + 3 Cl- = PbCl3- -log_k 1.7 -delta_h 2.17 kcal -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 Pb+2 + 4 Cl- = PbCl4-2 -log_k 1.38 -delta_h 3.53 kcal -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 Pb+2 + CO3-2 = PbCO3 -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ -log_k 2.9 Pb+2 + SO4-2 = PbSO4 -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 -log_k 3.47 Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ -log_k 1.17 Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal Pb+2 + 2Br- = PbBr2 -log_k 1.44 Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal -analytic -171.9065 -0.077993 2839.319 71.595 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 -log_k -8.336 -delta_h -2.589 kcal -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 -log_k -9.271 -delta_h -0.400 kcal -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 -log_k -8.562 -delta_h 0.703 kcal -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58 -delta_h -0.109 kcal -analytic 68.2401 0.0 -3221.51 -25.0627 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 -log_k -4.36 -delta_h -1.710 kcal -analytical 84.68 0 -3066.1 -31.782 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 -log_k -9.97 -delta_h 6.35 kcal -analytic 136.035 0.0 -7680.41 -48.595 -Vm 51.9 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- -log_k -10.6 -delta_h 4.69 kcal -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71 -delta_h 3.340 kcal -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55 -delta_h 4.720 kcal -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98 -delta_h 5.990 kcal -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 8.11 -delta_h -22.800 kcal Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 -log_k 7.435 -delta_h -35.300 kcal Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 -log_k -18.002 -delta_h 25.896 kcal Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 -log_k -19.714 -delta_h 11.580 kcal K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 -log_k -20.573 -delta_h 30.820 kcal K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ -log_k -45.027 -delta_h 58.373 kcal Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 -log_k 21.399 -delta_h -46.352 kcal Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ -log_k -40.267 -delta_h 54.684 kcal Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 -log_k 15.760 -delta_h -10.700 kcal Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O -log_k -4.008 -delta_h -30.845 kcal Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O -log_k -1.0 -delta_h -14.48 kcal Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- -log_k -18.479 -delta_h 11.300 kcal FeS(ppt) FeS + H+ = Fe+2 + HS- -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- -log_k -4.648 Sulfur S + 2H+ + 2e- = H2S -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O -log_k -36.0 Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O -log_k 15.2 Halite NaCl = Na+ + Cl- -log_k 1.582 -delta_h 0.918 kcal -Vm 27.1 CO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 119.87356 2.185434e-2 -7337.8 -44.7652 669371 -T_c 304.2 # critical T, K -P_c 72.80 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ -T_c 647.3 -P_c 217.60 -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # Gases from LLNL... O2(g) O2 = O2 -log_k -2.8983 -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005 -T_c 154.6 -P_c 49.80 -Omega 0.021 H2(g) H2 = H2 -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 -T_c 33.2 -P_c 12.80 -Omega 0.225 N2(g) N2 = N2 -log_k -3.1864 -analytic -58.453 1.81800E-03 3199 17.909 -27460 -T_c 126.2 -P_c 33.50 -Omega 0.039 H2S(g) H2S = H+ + HS- -log_k -7.9759 -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 -T_c 373.2 -P_c 88.20 -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8502 -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 -T_c 190.6 -P_c 45.40 -Omega 0.008 Amm(g) Amm = Amm -log_k 1.7966 -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 -T_c 405.6 -P_c 111.3 -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005 -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 Hdg(g) Hdg = Hdg -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 -T_c 33.2 ; -P_c 12.80 ; -Omega 0.225 Ntg(g) Ntg = Ntg -analytic -58.453 1.81800E-03 3199 17.909 -27460 T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 Mtg(g) Mtg = Mtg -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 -log_k -2.209 -delta_h 4.910 kcal -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 -log_k -10.0 -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- -log_k -11.618 -delta_h 8.250 kcal Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 -log_k -12.1 -delta_h -0.019 kcal CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 -log_k 9.06 -delta_h -16.63 kcal CdSO4 329 CdSO4 = Cd+2 + SO4-2 -log_k -0.1 -delta_h -14.74 kcal Cerrusite 365 PbCO3 = Pb+2 + CO3-2 -log_k -13.13 -delta_h 4.86 kcal Anglesite 384 PbSO4 = Pb+2 + SO4-2 -log_k -7.79 -delta_h 2.15 kcal Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.0 0.075 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0.0 -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX # -log_k 1.0 # -gamma 9.0 0.0 AmmH+ + X- = AmmHX -log_k 0.6 -gamma 2.5 0.0 -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 -log_k 0.91 -gamma 5.26 0.121 -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 -log_k 0.91 -gamma 5.0 0.0 -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0.0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0.0 Cu+2 + 2X- = CuX2 -log_k 0.6 -gamma 6.0 0.0 Zn+2 + 2X- = ZnX2 -log_k 0.8 -gamma 5.0 0.0 Cd+2 + 2X- = CdX2 -log_k 0.8 -gamma 0.0 0.0 Pb+2 + 2X- = PbX2 -log_k 1.05 -gamma 0.0 0.0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0.0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0.0 SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH -log_k 0.0 Hfo_sOH + H+ = Hfo_sOH2+ -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH -log_k 0.0 Hfo_wOH + H+ = Hfo_wOH2+ -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### # # Cations from table 10.1 or 10.5 # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # # Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ -log_k -11.55 ############################################### # ANIONS # ############################################### # # Anions from table 10.6 # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O -log_k 20.62 RATES ####### # Example of quartz kinetic rates block: #KINETICS #Quartz #-m0 158.8 # 90 % Qu #-parms 23.13 1.5 #-step 3.1536e8 in 10 #-tol 1e-12 # Rate definition: Quartz -start #1 rem Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 #2 rem k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol #2 rem sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) #4 rem parm(1) = A (m2) recalc's to mol/s #5 rem parm(2) salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = parm(1) * parm(2) * (m/m0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 save moles * time -end ########### #K-feldspar ########### # Example of KINETICS data block for K-feldspar rate: # KINETICS 1 # K-feldspar # -m0 2.16 # 10% K-fsp, 0.1 mm cubes # -m 1.94 # -parms 1.36e4 0.1 K-feldspar -start #1 rem specific rate from Sverdrup, 1990, in kmol/m2/s #2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) #3 rem parm(2) = corrects for field rate relative to lab rate #4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3134 * dif_temp 30 pk_w = 15.3 + 1838 * dif_temp 40 pk_OH = 14.2 + 3134 * dif_temp 50 pk_CO2 = 14.6 + 1677 * dif_temp #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("DOC")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time 81 rem decrease rate on precipitation 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 100 save moles -end ########### #Albite ########### # Example of KINETICS data block for Albite rate: # KINETICS 1 # Albite # -m0 0.43 # 2% Albite, 0.1 mm cubes # -parms 2.72e3 0.1 Albite -start #1 rem specific rate from Sverdrup, 1990, in kmol/m2/s #2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) #3 rem parm(2) = corrects for field rate relative to lab rate #4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) 10 dif_temp = 1/TK - 1/298 20 pk_H = 12.5 + 3359 * dif_temp 30 pk_w = 14.8 + 2648 * dif_temp 40 pk_OH = 13.7 + 3359 * dif_temp #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... 50 pk_CO2 = 14.0 + 1677 * dif_temp #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("DOC")^0.4 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time 81 rem decrease rate on precipitation 90 if SR("Albite") > 1 then moles = moles * 0.1 100 save moles -end ######## #Calcite ######## # Example of KINETICS data block for calcite rate: # KINETICS 1 # Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 50 0.6 Calcite -start 1 rem parm(1) = A/V, 1/dm parm(2) = exponent for m/m0 10 si_cc = si("Calcite") 20 if (m <= 0 and si_cc < 0) then goto 200 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) 70 t = 1 80 if m0 > 0 then t = m/m0 90 if t = 0 then t = 1 100 moles = parm(1) * 0.1 * (t)^parm(2) 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) 120 moles = moles * (1 - 10^(2/3*si_cc)) 130 moles = moles * time 140 if (moles > m) then moles = m 150 if (moles >= 0) then goto 200 160 temp = tot("Ca") 170 mc = tot("C(4)") 180 if mc < temp then temp = mc 190 if -moles > temp then moles = -temp 200 save moles -end ####### #Pyrite ####### # Example of KINETICS data block for pyrite rate: # KINETICS 1 # Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 # -parms -5.0 0.1 .5 -0.11 Pyrite -start 1 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) 2 rem parm(3) = exp for O2 parm(4) = exp for H+ 10 if (m <= 0) then goto 200 20 if (si("Pyrite") >= 0) then goto 200 30 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) 40 moles = 10^rate * time 50 if (moles > m) then moles = m 60 if (moles >= (mol("O2")/3.5)) then moles = mol("O2")/3.5 200 save moles -end ########## #Organic_C ########## # Example of KINETICS data block for Organic_C rate: # KINETICS 1 # Organic_C # -tol 1e-8 # # m in mol/kgw # -m0 5e-3 # -m 5e-3 Organic_C -start 10 if (m <= 0) then goto 200 20 mO2 = mol("O2") 30 mNO3 = tot("N(5)") 40 mSO4 = tot("S(6)") 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) 70 moles = rate * m * (m/m0) * time 80 if (moles > m) then moles = m 200 save moles -end ########### #Pyrolusite ########### # # Postma, and Appelo., GCA 64, 1237 # # Example of KINETICS data block for Pyrolusite # KINETICS 1-12 # Pyrolusite # -tol 1.e-7 # -m0 0.1 # -m 0.1 Pyrolusite -start 5 if (m <= 0.0) then goto 200 7 sr_pl = sr("Pyrolusite") 9 if abs(1 - sr_pl) < 0.1 then goto 200 10 if (sr_pl > 1.0) then goto 100 #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 30 Fe_t = tot("Fe(2)") 32 if Fe_t < 1.e-8 then goto 200 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) 50 if moles > Fe_t / 2 then moles = Fe_t / 2 70 if moles > m then moles = m 90 goto 200 100 Mn_t = tot("Mn") 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time 120 if moles <= -Mn_t then moles = -Mn_t 200 save moles -end END # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. # Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with # -Vm a1 a2 a3 a4 Wref b_Av i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) # + z^2 / 2 * Av * f(I^0.5) + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the Born volume, calculated from Wref and the pressure dependence of the # dielectric constant of water (f(P, T), see below). # z is charge of the solute species. # Av is the Debye-Hueckel limiting slope. # b_Av constrains the Debye-Hueckel slope: f(I^0.5) = I^0.5) / (1 + b_Av * DH_B * I^0.5), # b_Av = -gamma x for cations, = 0 for anions. # Av (P, T) is calculated using the dielectric constant of water from Bradley and Pitzer, 1979, JPC 83, 1599, # and the compressibility of pure water. # The density of pure water at water saturation pressure is calculated with eqn 2.6 from # Wagner and Pruss, 2002, J. Phys. Chem. Ref. Data 31, 387. At higher P,T with polynomials # interpolated from IAPWS table 3 (2007). # # Data for species' parameters, commented with ‘# supcrt modified’, were fitted from data # compiled by Laliberte, 2009, J. Chem. Eng. Data 54, 1725, + additions, see Appelo, Parkhurst and Post (in prep.) # H+ has the reference volume of 0 at all P, T and I. # For Cl-, parameters were obtained from densities of HCl solutions up to 176 oC, 1 - 280 atm. # The numbers for cations were extracted from the densities of cation-Cl-solutions. # Other anions and OH- then follow from the measured densities of cation-anion solutions. # Water dissociation was fitted from Bandura and Lvov, 2006, J. Phys. Chem. Ref. Data, 35, 15, 0-200 oC, 1-2000 atm. # -------------------- # If -Vm is not defined, the a-f values from -Millero a b c d e f (if available) will be used for calculating # Vm(t, I) = a + b * t + c * t^2 + z^2 / 2 * Av * I^0.5 + (d + e * t + f * t^2) * I # t is temperature in oC. # # redox-uncoupled gases have been added for H2 (Hdg), O2 (Oxg), CH4 (Mtg), N2 (Ntg), # H2S (H2Sg, species HSg-, etc.). # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with # measured solubilities as a function of (P, T).