iphreeqc/database/Amm.dat

1973 lines
52 KiB
Plaintext
Raw Permalink Blame History

# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b
# Created 22 May 2024 19:55:37
# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1 H 1.008
H(0) H2 0 H
H(1) H+ -1 H
E e- 1 0 0
O H2O 0 O 16
O(0) O2 0 O
O(-2) H2O 0 0
Ca Ca+2 0 Ca 40.08
Mg Mg+2 0 Mg 24.312
Na Na+ 0 Na 22.9898
K K+ 0 K 39.102
Fe Fe+2 0 Fe 55.847
Fe(+2) Fe+2 0 Fe
Fe(+3) Fe+3 -2 Fe
Mn Mn+2 0 Mn 54.938
Mn(+2) Mn+2 0 Mn
Mn(+3) Mn+3 0 Mn
Al Al+3 0 Al 26.9815
Ba Ba+2 0 Ba 137.34
Sr Sr+2 0 Sr 87.62
Si H4SiO4 0 SiO2 28.0843
Cl Cl- 0 Cl 35.453
C CO3-2 2 HCO3 12.0111
C(+4) CO3-2 2 HCO3
C(-4) CH4 0 CH4
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
S SO4-2 0 SO4 32.064
S(6) SO4-2 0 SO4
S(-2) HS- 1 S
N NO3- 0 N 14.0067
N(+5) NO3- 0 NO3
N(+3) NO2- 0 NO2
N(0) N2 0 N
#N(-3) NH4+ 0 NH4 14.0067
Amm AmmH+ 0 AmmH 17.031
B H3BO3 0 B 10.81
P PO4-3 2 P 30.9738
F F- 0 F 18.9984
Li Li+ 0 Li 6.939
Br Br- 0 Br 79.904
Zn Zn+2 0 Zn 65.37
Cd Cd+2 0 Cd 112.4
Pb Pb+2 0 Pb 207.19
Cu Cu+2 0 Cu 63.546
Cu(+2) Cu+2 0 Cu
Cu(+1) Cu+1 0 Cu
# redox-uncoupled gases
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # O2 gas
Mtg Mtg 0 Mtg 16.032 # CH4 gas
Sg H2Sg 0 H2Sg 32.064 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-gamma 9 0
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4
-dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0
# Dw(25 C) dw_T a a2 visc a3 a_v_dif
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion.
# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+)
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.)
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.)
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT.
e- = e-
H2O = H2O
-dw 2.299e-9 -254
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Li+ = Li+
-gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
-dw 1.03e-9 -14 4.03 0.8341 1.679
Na+ = Na+
-gamma 4 0.075
-gamma 4.08 0.082 # halite solubility
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
-dw 1.33e-9 75 3.627 0 0.7037
K+ = K+
-gamma 3.5 0.015
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028
-dw 1.96e-9 254 3.484 0 0.1964
Mg+2 = Mg+2
-gamma 5.5 0.2
-Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
-dw 0.705e-9 -4 5.569 0 1.047
Ca+2 = Ca+2
-gamma 5 0.165
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M
-dw 0.792e-9 34 5.411 0 1.046
Sr+2 = Sr+2
-gamma 5.26 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
Ba+2 = Ba+2
-gamma 5 0
-gamma 4 0.153 # Barite solubility
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
-dw 0.848e-9 174 10.53 0 3
Fe+2 = Fe+2
-gamma 6 0
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
-dw 0.719e-9
Mn+2 = Mn+2
-gamma 6 0
-Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
-dw 0.688e-9
Al+3 = Al+3
-gamma 9 0
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353
-dw 0.559e-9
H4SiO4 = H4SiO4
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1
-dw 1.1e-9
Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 216 3.16 0.2071 0.7432
CO3-2 = CO3-2
-gamma 5.4 0
-Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
SO4-2 = SO4-2
-gamma 5 -0.04
-Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
-viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605
-dw 1.07e-9 -114 17 6.02e-2 4.94e-2
NO3- = NO3-
-gamma 3 0
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381
-dw 1.9e-9 104 1.11
AmmH+ = AmmH+
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 203 1.47 2.644 6.81e-2
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
-dw 1.1e-9
PO4-3 = PO4-3
-gamma 4 0
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
-dw 0.612e-9
F- = F-
-gamma 3.5 0
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
-dw 1.46e-9 -36 4.352
Br- = Br-
-gamma 3 0
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859
-dw 2.09e-9 208 3.5 0 0.5737
Zn+2 = Zn+2
-gamma 5 0
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
-dw 0.715e-9
Cd+2 = Cd+2
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
-dw 0.717e-9
Pb+2 = Pb+2
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
-dw 0.945e-9
Cu+2 = Cu+2
-gamma 6 0
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
-dw 0.733e-9
# redox-uncoupled gases
Hdg = Hdg # H2
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
Mtg = Mtg # CH4
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
H2Sg = H2Sg # H2S
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
2 H+ + 2 e- = H2
-log_k -3.15
-delta_h -1.759 kcal
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
H+ + Cl- = HCl
-log_k -0.5
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50<35>C
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329; -delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
-dw 1.18e-9 -190 11.386
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.2
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
-delta_h -61.039 kcal
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
SO4-2 + H+ = HSO4-
-log_k 1.988; -delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
-dw 1.22e-9 1000 15 2.861
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
-gamma 5 0
-dw 0.731e-9
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
-log_k 33.65
-delta_h -60.14 kcal
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
-dw 1.73e-9
HS- + H+ = H2S
-log_k 6.994; -delta_h -5.3 kcal
-analytical -11.17 0.02386 3279
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
H2Sg = HSg- + H+
-log_k -6.994; -delta_h 5.3 kcal
-analytical_expression 11.17 -0.02386 -3279
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
-dw 1.73e-9
2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.57
-delta_h -43.76 kcal
-gamma 3 0
-Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt
-dw 1.91e-9
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
-log_k 207.08
-delta_h -312.13 kcal
-Vm 7 # Pray et al., 1952, IEC 44 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
AmmH+ = Amm + H+
#NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
-dw 2.28e-9
AmmH+ + SO4-2 = AmmHSO4-
#NH4+ + SO4-2 = NH4SO4-
-gamma 2.08 -0.0416
-log_k 1.211; -delta_h 8.56 kJ
-Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172
-viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627
-dw 0.9e-9 100 2.1 2 0
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
H3BO3 + F- = BF(OH)3-
-log_k -0.4
-delta_h 1.85 kcal
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
-log_k 7.63
-delta_h 1.618 kcal
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
-log_k 13.67
-delta_h -1.614 kcal
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
-log_k 20.28
-delta_h -1.846 kcal
PO4-3 + H+ = HPO4-2
-log_k 12.346
-delta_h -3.53 kcal
-gamma 5 0
-dw 0.69e-9
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
PO4-3 + 2 H+ = H2PO4-
-log_k 19.553
-delta_h -4.52 kcal
-gamma 5.4 0
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
-dw 0.846e-9
PO4-3 + 3 H+ = H3PO4
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
delta_h -10.1 kJ
-Vm 7.47 12.4 6.29 -3.29 0
H+ + F- = HF
-log_k 3.18
-delta_h 3.18 kcal
-analytic -2.033 0.012645 429.01
-Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt
H+ + 2 F- = HF2-
-log_k 3.76
-delta_h 4.55 kcal
-Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt
Ca+2 + H2O = CaOH+ + H+
-log_k -12.78
Ca+2 + CO3-2 = CaCO3
-log_k 3.224; -delta_h 3.545 kcal
-analytic -1228.732 -0.29944 35512.75 485.818
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
-Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt
Ca+2 + CO3-2 + H+ = CaHCO3+
-log_k 10.91; -delta_h 4.38 kcal
-analytic -6.009 3.377e-2 2044
-gamma 6 0
-Vm 30.19 .01 5.75 -2.78 .308 5.4
-dw 5.06e-10
Ca+2 + SO4-2 = CaSO4
-log_k 2.25
-delta_h 1.325 kcal
-dw 4.71e-10
-Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt
Ca+2 + HSO4- = CaHSO4+
-log_k 1.08
Ca+2 + PO4-3 = CaPO4-
-log_k 6.459
-delta_h 3.1 kcal
-gamma 5.4 0
Ca+2 + HPO4-2 = CaHPO4
-log_k 2.739
-delta_h 3.3 kcal
Ca+2 + H2PO4- = CaH2PO4+
-log_k 1.408
-delta_h 3.4 kcal
-gamma 5.4 0
# Ca+2 + F- = CaF+
# -log_k 0.94
# -delta_h 4.120 kcal
# -gamma 5.5 0.0
# -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt
Mg+2 + H2O = MgOH+ + H+
-log_k -11.44
-delta_h 15.952 kcal
-gamma 6.5 0
Mg+2 + CO3-2 = MgCO3
-log_k 2.98
-delta_h 2.713 kcal
-analytic 0.991 0.00667
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt
-dw 4.21e-10
Mg+2 + H+ + CO3-2 = MgHCO3+
-log_k 11.399
-delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-gamma 4 0
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
-dw 4.78e-10
Mg+2 + SO4-2 = MgSO4
-gamma 0 0.2
-log_k 2.42; -delta_h 19 kJ
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm 8.65 -10.21 29.58 -18.6 1.061
-viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696
-dw 4.45e-10
SO4-2 + MgSO4 = Mg(SO4)2-2
-gamma 7 0.047
-log_k 0.52; -delta_h -13.6 kJ
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2
-viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3
-dw 0.845e-9 -200 8 0 0.965
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.1 kcal
-gamma 5.4 0
Mg+2 + HPO4-2 = MgHPO4
-log_k 2.87
-delta_h 3.3 kcal
Mg+2 + H2PO4- = MgH2PO4+
-log_k 1.513
-delta_h 3.4 kcal
-gamma 5.4 0
Mg+2 + F- = MgF+
-log_k 1.82
-delta_h 3.2 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
# Na+ + OH- = NaOH
# -log_k -14.7 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
-Vm 7.95 0 0 0 0.609
-viscosity -4e-2 -2.717 1.67e-5
-dw 6.73e-10
Na+ + SO4-2 = NaSO4-
-gamma 5.5 0
-log_k 0.6; -delta_h -14.4 kJ
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
-Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325
-viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208
-dw 1.13e-9 -23 8.5 0.392 0.521
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt
K+ + HCO3- = KHCO3
-log_k -0.35; -delta_h 12 kJ
-gamma 0 9.4e-3
-Vm 9.48 0 0 0 -0.542
-viscosity 0.7 -1.289 9e-2
K+ + SO4-2 = KSO4-
-gamma 5.4 0.19
-log_k 0.6; -delta_h -10.4 kJ
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
-Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919
-viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69
-dw 0.9e-9 63 8.48 0 1.8
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
Fe+2 + H2O = FeOH+ + H+
-log_k -9.5
-delta_h 13.2 kcal
-gamma 5 0
Fe+2 + 3 H2O = Fe(OH)3- + 3 H+
-log_k -31
-delta_h 30.3 kcal
-gamma 5 0
Fe+2 + Cl- = FeCl+
-log_k 0.14
Fe+2 + CO3-2 = FeCO3
-log_k 4.38
Fe+2 + HCO3- = FeHCO3+
-log_k 2
Fe+2 + SO4-2 = FeSO4
-log_k 2.25
-delta_h 3.23 kcal
-Vm -13 0 123
Fe+2 + HSO4- = FeHSO4+
-log_k 1.08
Fe+2 + 2 HS- = Fe(HS)2
-log_k 8.95
Fe+2 + 3 HS- = Fe(HS)3-
-log_k 10.987
Fe+2 + HPO4-2 = FeHPO4
-log_k 3.6
Fe+2 + H2PO4- = FeH2PO4+
-log_k 2.7
-gamma 5.4 0
Fe+2 + F- = FeF+
-log_k 1
Fe+2 = Fe+3 + e-
-log_k -13.02
-delta_h 9.68 kcal
-gamma 9 0
Fe+3 + H2O = FeOH+2 + H+
-log_k -2.19
-delta_h 10.4 kcal
-gamma 5 0
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
-log_k -5.67
-delta_h 17.1 kcal
-gamma 5.4 0
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
-log_k -12.56
-delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
-log_k -21.6
-delta_h 31.9 kcal
-gamma 5.4 0
Fe+2 + 2 H2O = Fe(OH)2 + 2 H+
-log_k -20.57
-delta_h 28.565 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
-log_k -2.95
-delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
-log_k -6.3
-delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2
-log_k 1.48
-delta_h 5.6 kcal
-gamma 5 0
Fe+3 + 2 Cl- = FeCl2+
-log_k 2.13
-gamma 5 0
Fe+3 + 3 Cl- = FeCl3
-log_k 1.13
Fe+3 + SO4-2 = FeSO4+
-log_k 4.04
-delta_h 3.91 kcal
-gamma 5 0
Fe+3 + HSO4- = FeHSO4+2
-log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2-
-log_k 5.38
-delta_h 4.6 kcal
Fe+3 + HPO4-2 = FeHPO4+
-log_k 5.43
-delta_h 5.76 kcal
-gamma 5 0
Fe+3 + H2PO4- = FeH2PO4+2
-log_k 5.43
-gamma 5.4 0
Fe+3 + F- = FeF+2
-log_k 6.2
-delta_h 2.7 kcal
-gamma 5 0
Fe+3 + 2 F- = FeF2+
-log_k 10.8
-delta_h 4.8 kcal
-gamma 5 0
Fe+3 + 3 F- = FeF3
-log_k 14
-delta_h 5.4 kcal
Mn+2 + H2O = MnOH+ + H+
-log_k -10.59
-delta_h 14.4 kcal
-gamma 5 0
Mn+2 + 3 H2O = Mn(OH)3- + 3 H+
-log_k -34.8
-gamma 5 0
Mn+2 + Cl- = MnCl+
-log_k 0.61
-gamma 5 0
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
Mn+2 + 2 Cl- = MnCl2
-log_k 0.25
-Vm 1e-5 0 144
Mn+2 + 3 Cl- = MnCl3-
-log_k -0.31
-gamma 5 0
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
Mn+2 + CO3-2 = MnCO3
-log_k 4.9
Mn+2 + HCO3- = MnHCO3+
-log_k 1.95
-gamma 5 0
Mn+2 + SO4-2 = MnSO4
-log_k 2.25
-delta_h 3.37 kcal
-Vm -1.31 -1.83 62.3 -2.7
Mn+2 + 2 NO3- = Mn(NO3)2
-log_k 0.6
-delta_h -0.396 kcal
-Vm 6.16 0 29.4 0 0.9
Mn+2 + F- = MnF+
-log_k 0.84
-gamma 5 0
Mn+2 = Mn+3 + e-
-log_k -25.51
-delta_h 25.8 kcal
-gamma 9 0
Al+3 + H2O = AlOH+2 + H+
-log_k -5
-delta_h 11.49 kcal
-analytic -38.253 0 -656.27 14.327
-gamma 5.4 0
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
-log_k -10.1
-delta_h 26.9 kcal
-gamma 5.4 0
-analytic 88.5 0 -9391.6 -27.121
Al+3 + 3 H2O = Al(OH)3 + 3 H+
-log_k -16.9
-delta_h 39.89 kcal
-analytic 226.374 0 -18247.8 -73.597
Al+3 + 4 H2O = Al(OH)4- + 4 H+
-log_k -22.7
-delta_h 42.3 kcal
-analytic 51.578 0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
-gamma 4.5 0
Al+3 + 2 SO4-2 = Al(SO4)2-
-log_k 5
-delta_h 3.11 kcal
-gamma 4.5 0
Al+3 + HSO4- = AlHSO4+2
-log_k 0.46
Al+3 + F- = AlF+2
-log_k 7
-delta_h 1.06 kcal
-gamma 5.4 0
Al+3 + 2 F- = AlF2+
-log_k 12.7
-delta_h 1.98 kcal
-gamma 5.4 0
Al+3 + 3 F- = AlF3
-log_k 16.8
-delta_h 2.16 kcal
Al+3 + 4 F- = AlF4-
-log_k 19.4
-delta_h 2.2 kcal
-gamma 4.5 0
# Al+3 + 5 F- = AlF5-2
# log_k 20.6
# delta_h 1.840 kcal
# Al+3 + 6 F- = AlF6-3
# log_k 20.6
# delta_h -1.670 kcal
H4SiO4 = H3SiO4- + H+
-log_k -9.83
-delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
-gamma 4 0
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23
-delta_h 17.6 kcal
-analytic -294.0184 -0.07265 11204.49 108.18466 -1119669
-gamma 5.4 0
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
-log_k 30.18
-delta_h -16.26 kcal
-gamma 5 0
-Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt
Ba+2 + H2O = BaOH+ + H+
-log_k -13.47
-gamma 5 0
Ba+2 + CO3-2 = BaCO3
-log_k 2.71
-delta_h 3.55 kcal
-analytic 0.113 0.008721
-Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt
Ba+2 + HCO3- = BaHCO3+
-log_k 0.982
-delta_h 5.56 kcal
-analytic -3.0938 0.013669
Ba+2 + SO4-2 = BaSO4
-log_k 2.7
Sr+2 + H2O = SrOH+ + H+
-log_k -13.29
-gamma 5 0
Sr+2 + CO3-2 + H+ = SrHCO3+
-log_k 11.509
-delta_h 2.489 kcal
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
-gamma 5.4 0
Sr+2 + CO3-2 = SrCO3
-log_k 2.81
-delta_h 5.22 kcal
-analytic -1.019 0.012826
-Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt
Sr+2 + SO4-2 = SrSO4
-log_k 2.29
-delta_h 2.08 kcal
-Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility
Li+ + SO4-2 = LiSO4-
-log_k 0.64
-gamma 5 0
Cu+2 + e- = Cu+
-log_k 2.72
-delta_h 1.65 kcal
-gamma 2.5 0
Cu+ + 2 Cl- = CuCl2-
-log_k 5.5
-delta_h -0.42 kcal
-gamma 4 0
Cu+ + 3 Cl- = CuCl3-2
-log_k 5.7
-delta_h 0.26 kcal
-gamma 5 0
Cu+2 + CO3-2 = CuCO3
-log_k 6.73
Cu+2 + 2 CO3-2 = Cu(CO3)2-2
-log_k 9.83
Cu+2 + HCO3- = CuHCO3+
-log_k 2.7
Cu+2 + Cl- = CuCl+
-log_k 0.43
-delta_h 8.65 kcal
-gamma 4 0
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
Cu+2 + 2 Cl- = CuCl2
-log_k 0.16
-delta_h 10.56 kcal
-Vm 26.8 0 -136
Cu+2 + 3 Cl- = CuCl3-
-log_k -2.29
-delta_h 13.69 kcal
-gamma 4 0
Cu+2 + 4 Cl- = CuCl4-2
-log_k -4.59
-delta_h 17.78 kcal
-gamma 5 0
Cu+2 + F- = CuF+
-log_k 1.26
-delta_h 1.62 kcal
Cu+2 + H2O = CuOH+ + H+
-log_k -8
-gamma 4 0
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
-log_k -13.68
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
-log_k -26.9
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
-log_k -39.6
2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+
-log_k -10.359
-delta_h 17.539 kcal
-analytical 2.497 0 -3833
Cu+2 + SO4-2 = CuSO4
-log_k 2.31
-delta_h 1.22 kcal
-Vm 5.21 0 -14.6
Cu+2 + 3 HS- = Cu(HS)3-
-log_k 25.9
Zn+2 + H2O = ZnOH+ + H+
-log_k -8.96
-delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
-log_k -16.9
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
-log_k -28.4
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
-log_k -41.2
Zn+2 + Cl- = ZnCl+
-log_k 0.43
-delta_h 7.79 kcal
-gamma 4 0
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
Zn+2 + 2 Cl- = ZnCl2
-log_k 0.45
-delta_h 8.5 kcal
-Vm -10.1 4.57 241 -2.97 -1e-3
Zn+2 + 3 Cl- = ZnCl3-
-log_k 0.5
-delta_h 9.56 kcal
-gamma 4 0
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
Zn+2 + 4 Cl- = ZnCl4-2
-log_k 0.2
-delta_h 10.96 kcal
-gamma 5 0
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
Zn+2 + H2O + Cl- = ZnOHCl + H+
-log_k -7.48
Zn+2 + 2 HS- = Zn(HS)2
-log_k 14.94
Zn+2 + 3 HS- = Zn(HS)3-
-log_k 16.1
Zn+2 + CO3-2 = ZnCO3
-log_k 5.3
Zn+2 + 2 CO3-2 = Zn(CO3)2-2
-log_k 9.63
Zn+2 + HCO3- = ZnHCO3+
-log_k 2.1
Zn+2 + SO4-2 = ZnSO4
-log_k 2.37
-delta_h 1.36 kcal
-Vm 2.51 0 18.8
Zn+2 + 2 SO4-2 = Zn(SO4)2-2
-log_k 3.28
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
Zn+2 + Br- = ZnBr+
-log_k -0.58
Zn+2 + 2 Br- = ZnBr2
-log_k -0.98
Zn+2 + F- = ZnF+
-log_k 1.15
-delta_h 2.22 kcal
Cd+2 + H2O = CdOH+ + H+
-log_k -10.08
-delta_h 13.1 kcal
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
-log_k -20.35
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
-log_k -33.3
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
-log_k -47.35
2 Cd+2 + H2O = Cd2OH+3 + H+
-log_k -9.39
-delta_h 10.9 kcal
Cd+2 + H2O + Cl- = CdOHCl + H+
-log_k -7.404
-delta_h 4.355 kcal
Cd+2 + NO3- = CdNO3+
-log_k 0.4
-delta_h -5.2 kcal
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
Cd+2 + Cl- = CdCl+
-log_k 1.98
-delta_h 0.59 kcal
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
Cd+2 + 2 Cl- = CdCl2
-log_k 2.6
-delta_h 1.24 kcal
-Vm 5.53
Cd+2 + 3 Cl- = CdCl3-
-log_k 2.4
-delta_h 3.9 kcal
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
Cd+2 + CO3-2 = CdCO3
-log_k 2.9
Cd+2 + 2 CO3-2 = Cd(CO3)2-2
-log_k 6.4
Cd+2 + HCO3- = CdHCO3+
-log_k 1.5
Cd+2 + SO4-2 = CdSO4
-log_k 2.46
-delta_h 1.08 kcal
-Vm 10.4 0 57.9
Cd+2 + 2 SO4-2 = Cd(SO4)2-2
-log_k 3.5
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
Cd+2 + Br- = CdBr+
-log_k 2.17
-delta_h -0.81 kcal
Cd+2 + 2 Br- = CdBr2
-log_k 2.9
Cd+2 + F- = CdF+
-log_k 1.1
Cd+2 + 2 F- = CdF2
-log_k 1.5
Cd+2 + HS- = CdHS+
-log_k 10.17
Cd+2 + 2 HS- = Cd(HS)2
-log_k 16.53
Cd+2 + 3 HS- = Cd(HS)3-
-log_k 18.71
Cd+2 + 4 HS- = Cd(HS)4-2
-log_k 20.9
Pb+2 + H2O = PbOH+ + H+
-log_k -7.71
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
-log_k -17.12
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
-log_k -28.06
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
-log_k -39.7
2 Pb+2 + H2O = Pb2OH+3 + H+
-log_k -6.36
Pb+2 + Cl- = PbCl+
-log_k 1.6
-delta_h 4.38 kcal
-Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt
Pb+2 + 2 Cl- = PbCl2
-log_k 1.8
-delta_h 1.08 kcal
-Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt
Pb+2 + 3 Cl- = PbCl3-
-log_k 1.7
-delta_h 2.17 kcal
-Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt
Pb+2 + 4 Cl- = PbCl4-2
-log_k 1.38
-delta_h 3.53 kcal
-Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt
Pb+2 + CO3-2 = PbCO3
-log_k 7.24
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
-log_k 10.64
Pb+2 + HCO3- = PbHCO3+
-log_k 2.9
Pb+2 + SO4-2 = PbSO4
-log_k 2.75
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
-log_k 3.47
Pb+2 + 2 HS- = Pb(HS)2
-log_k 15.27
Pb+2 + 3 HS- = Pb(HS)3-
-log_k 16.57
3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+
-log_k -23.88
-delta_h 26.5 kcal
Pb+2 + NO3- = PbNO3+
-log_k 1.17
Pb+2 + Br- = PbBr+
-log_k 1.77
-delta_h 2.88 kcal
Pb+2 + 2 Br- = PbBr2
-log_k 1.44
Pb+2 + F- = PbF+
-log_k 1.25
Pb+2 + 2 F- = PbF2
-log_k 2.56
Pb+2 + 3 F- = PbF3-
-log_k 3.42
Pb+2 + 4 F- = PbF4-2
-log_k 3.1
PHASES
Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250<35>C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
-log_k -8.336
-delta_h -2.589 kcal
-analytic -171.9773 -0.077993 2903.293 71.595
-Vm 34.04
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25<32>C: Hemingway and Robie, 1994; 50<35>175<37>C: B<>n<EFBFBD>zeth et al., 2018, GCA 224, 262-275
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
-log_k -10.89
-delta_h -2.48 kcal
-Vm 29.2
Rhodochrosite
MnCO3 = Mn+2 + CO3-2
-log_k -11.13
-delta_h -1.43 kcal
-Vm 31.1
Strontianite
SrCO3 = Sr+2 + CO3-2
-log_k -9.271
-delta_h -0.4 kcal
-analytic 155.0305 0 -7239.594 -56.58638
-Vm 39.69
Witherite
BaCO3 = Ba+2 + CO3-2
-log_k -8.562
-delta_h 0.703 kcal
-analytic 607.642 0.121098 -20011.25 -236.4948
-Vm 46
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
-log_k -4.58
-delta_h -0.109 kcal
-analytic 68.2401 0 -3221.51 -25.0627
-analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62
-Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol)
Anhydrite
CaSO4 = Ca+2 + SO4-2
-log_k -4.36
-delta_h -1.71 kcal
-analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323
-Vm 46.1 # 136.14 / 2.95
Celestite
SrSO4 = Sr+2 + SO4-2
-log_k -6.63
-delta_h -4.037 kcal
# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
-analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464
-Vm 46.4
Barite
BaSO4 = Ba+2 + SO4-2
-log_k -9.97
-delta_h 6.35 kcal
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
-Vm 52.9
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
Vm 216
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
-Vm 52.9
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.74; -delta_h 10.57 kJ
-analytical_expression -3.59 6.21e-3
Vm 147
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.57; -delta_h 2.35 kJ
-analytical_expression -1.978 1.38e-3
Vm 132
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -1.16; -delta_h 9.22 kJ
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
Vm 53.8
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
-log_k -3.421
-delta_h -36.155 kcal
-Vm 128.9
Fluorite
CaF2 = Ca+2 + 2 F-
-log_k -10.6
-delta_h 4.69 kcal
-analytic 66.348 0 -4298.2 -25.271
-Vm 15.7
SiO2(a)
SiO2 + 2 H2O = H4SiO4
-log_k -2.71
-delta_h 3.34 kcal
-analytic -0.26 0 -731
Chalcedony
SiO2 + 2 H2O = H4SiO4
-log_k -3.55
-delta_h 4.72 kcal
-analytic -0.09 0 -1032
-Vm 23.1
Quartz
SiO2 + 2 H2O = H4SiO4
-log_k -3.98
-delta_h 5.99 kcal
-analytic 0.41 0 -1309
-Vm 22.67
Gibbsite
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 8.11
-delta_h -22.8 kcal
-Vm 32.22
Al(OH)3(a)
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 10.8
-delta_h -26.5 kcal
Kaolinite
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
-log_k 7.435
-delta_h -35.3 kcal
-Vm 99.35
Albite
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
-log_k -18.002
-delta_h 25.896 kcal
-Vm 101.31
Anorthite
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
-log_k -19.714
-delta_h 11.58 kcal
-Vm 105.05
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
-log_k -20.573
-delta_h 30.82 kcal
-Vm 108.15
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
-log_k 12.703
-delta_h -59.376 kcal
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O
-log_k 68.38
-delta_h -151.494 kcal
Ca-Montmorillonite
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
-log_k -45.027
-delta_h 58.373 kcal
-Vm 156.16
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
-log_k 21.399
-delta_h -46.352 kcal
-Vm 68.34
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+
-log_k -40.267
-delta_h 54.684 kcal
-Vm 141.48
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
-log_k 32.2
-delta_h -46.8 kcal
-analytic 13.248 0 10217.1 -6.1894
-Vm 106.5808 # 277.11/2.60
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
-log_k 15.76
-delta_h -10.7 kcal
-Vm 143.765
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
-log_k 18.66
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
-log_k -4.008
-delta_h -30.845 kcal
-Vm 30.39
Goethite
FeOOH + 3 H+ = Fe+3 + 2 H2O
-log_k -1
-delta_h -14.48 kcal
-Vm 20.84
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
-log_k 4.891
Pyrite
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
-log_k -18.479
-delta_h 11.3 kcal
-Vm 23.48
FeS(ppt)
FeS + H+ = Fe+2 + HS-
-log_k -3.915
Mackinawite
FeS + H+ = Fe+2 + HS-
-log_k -4.648
-Vm 20.45
Sulfur
S + 2 H+ + 2 e- = H2S
-log_k 4.882
-delta_h -9.5 kcal
Vivianite
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
-log_k -36
Pyrolusite # H2O added for surface calc's
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
-log_k 41.38
-delta_h -65.11 kcal
Hausmannite
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
-log_k 61.03
-delta_h -100.64 kcal
Manganite
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
-log_k 25.34
Pyrochroite
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
-log_k 15.2
Halite
NaCl = Cl- + Na+
log_k 1.57
-delta_h 1.37
#-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
-Vm 27.1
Sylvite
KCl = K+ + Cl-
log_k 0.9
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
-delta_h -4.776 kcal
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
-T_c 304.2 # critical T, K
-P_c 72.86 # critical P, atm
-Omega 0.225 # acentric factor
H2O(g)
H2O = H2O
-log_k 1.506; delta_h -44.03 kJ
-T_c 647.3; -P_c 217.6; -Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
O2(g)
O2 = O2
-log_k -2.8983
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
-T_c 154.6; -P_c 49.8; -Omega 0.021
H2(g)
H2 = H2
-log_k -3.105
-delta_h -4.184 kJ
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2; -P_c 12.8; -Omega -0.225
N2(g)
N2 = N2
-log_k -3.1864
-analytic -58.453 1.818e-3 3199 17.909 -27460
-T_c 126.2; -P_c 33.5; -Omega 0.039
H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.2; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6; -P_c 45.4; -Omega 0.008
Amm(g)
Amm = Amm
#NH3(g)
# NH3 = NH3
-log_k 1.7966
-analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192
-T_c 405.6; -P_c 111.3; -Omega 0.25
# redox-uncoupled gases
Oxg(g)
Oxg = Oxg
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
-T_c 154.6; -P_c 49.8; -Omega 0.021
Hdg(g)
Hdg = Hdg
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2; -P_c 12.8; -Omega -0.225
Ntg(g)
Ntg = Ntg
-analytic -58.453 1.818e-3 3199 17.909 -27460
T_c 126.2; -P_c 33.5; -Omega 0.039
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6; -P_c 45.4; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.2; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
-log_k -2.209
-delta_h 4.91 kcal
-analytic 1.447 -0.004153 0 0 -214949
Alunite
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O
-log_k -1.4
-delta_h -50.25 kcal
Jarosite-K
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
-log_k -9.21
-delta_h -31.28 kcal
Zn(OH)2(e)
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
-log_k 11.5
Smithsonite
ZnCO3 = Zn+2 + CO3-2
-log_k -10
-delta_h -4.36 kcal
Sphalerite
ZnS + H+ = Zn+2 + HS-
-log_k -11.618
-delta_h 8.25 kcal
Willemite 289
Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4
-log_k 15.33
-delta_h -33.37 kcal
Cd(OH)2
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
-log_k 13.65
Otavite 315
CdCO3 = Cd+2 + CO3-2
-log_k -12.1
-delta_h -0.019 kcal
CdSiO3 328
CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4
-log_k 9.06
-delta_h -16.63 kcal
CdSO4 329
CdSO4 = Cd+2 + SO4-2
-log_k -0.1
-delta_h -14.74 kcal
Cerussite 365
PbCO3 = Pb+2 + CO3-2
-log_k -13.13
-delta_h 4.86 kcal
Anglesite 384
PbSO4 = Pb+2 + SO4-2
-log_k -7.79
-delta_h 2.15 kcal
Pb(OH)2 389
Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O
-log_k 8.15
-delta_h -13.99 kcal
GAS_BINARY_PARAMETERS
H2O(g) CO2(g) 0.19
H2O(g) H2S(g) 0.19
H2O(g) H2Sg(g) 0.19
H2O(g) CH4(g) 0.49
H2O(g) Mtg(g) 0.49
H2O(g) Methane(g) 0.49
H2O(g) N2(g) 0.49
H2O(g) Ntg(g) 0.49
H2O(g) Ethane(g) 0.49
H2O(g) Propane(g) 0.55
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
-log_k 0
Na+ + X- = NaX
-log_k 0
-gamma 4.08 0.082
K+ + X- = KX
-log_k 0.7
-gamma 3.5 0.015
-delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
-log_k -0.08
-gamma 6 0
-delta_h 1.4 # Merriam & Thomas, 1956
# !!!!!
# H+ + X- = HX
# -log_k 1.0
# -gamma 9.0 0
AmmH+ + X- = AmmHX
# NH4+ + X- = NH4X
-log_k 0.6
-gamma 2.5 0
-delta_h -2.4 # Laudelout et al., 1968
Ca+2 + 2 X- = CaX2
-log_k 0.8
-gamma 5 0.165
-delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2 X- = MgX2
-log_k 0.6
-gamma 5.5 0.2
-delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2 X- = SrX2
-log_k 0.91
-gamma 5.26 0.121
-delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2 X- = BaX2
-log_k 0.91
-gamma 4 0.153
-delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2 X- = MnX2
-log_k 0.52
-gamma 6 0
Fe+2 + 2 X- = FeX2
-log_k 0.44
-gamma 6 0
Cu+2 + 2 X- = CuX2
-log_k 0.6
-gamma 6 0
Zn+2 + 2 X- = ZnX2
-log_k 0.8
-gamma 5 0
Cd+2 + 2 X- = CdX2
-log_k 0.8
-gamma 0 0
Pb+2 + 2 X- = PbX2
-log_k 1.05
-gamma 0 0
Al+3 + 3 X- = AlX3
-log_k 0.41
-gamma 9 0
AlOH+2 + 2 X- = AlOHX2
-log_k 0.89
-gamma 0 0
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
-log_k 0
Hfo_sOH + H+ = Hfo_sOH2+
-log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
-log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
-log_k 0
Hfo_wOH + H+ = Hfo_wOH2+
-log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
-log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
-log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
-log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
-log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
-log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+
-log_k -17.6
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
-log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
-log_k -7.2 # table 10.5
#
# Cations from table 10.2
#
# Cadmium
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
-log_k 0.47
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
-log_k -2.91
# Zinc
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
-log_k 0.99
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
-log_k -1.99
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
-log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
-log_k 0.6 # table 10.5
# Lead
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
-log_k 4.65
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
-log_k 0.3 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
-log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
-log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
-log_k -3.5 # table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
-log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
-log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+
-log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
# Phosphate
Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O
-log_k 31.29
Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O
-log_k 25.39
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
-log_k 17.72
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
-log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
-log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
-log_k 0.79
#
# Derived constants table 10.10
#
Hfo_wOH + F- + H+ = Hfo_wF + H2O
-log_k 8.7
Hfo_wOH + F- = Hfo_wOHF-
-log_k 1.6
#
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
#
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
-log_k 12.56
Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69
MEAN_GAMMAS
CaCl2 Ca+2 1 Cl- 2
CaSO4 Ca+2 1 SO4-2 1
CaCO3 Ca+2 1 CO3-2 1
Ca(OH)2 Ca+2 1 OH- 2
MgCl2 Mg+2 1 Cl- 2
MgSO4 Mg+2 1 SO4-2 1
MgCO3 Mg+2 1 CO3-2 1
Mg(OH)2 Mg+2 1 OH- 2
NaCl Na+ 1 Cl- 1
Na2SO4 Na+ 2 SO4-2 1
NaHCO3 Na+ 1 HCO3- 1
Na2CO3 Na+ 2 CO3-2 1
NaOH Na+ 1 OH- 1
KCl K+ 1 Cl- 1
K2SO4 K+ 2 SO4-2 1
HCO3 K+ 1 HCO3- 1
K2CO3 K+ 2 CO3-2 1
KOH K+ 1 OH- 1
HCl H+ 1 Cl- 1
H2SO4 H+ 2 SO4-2 1
HBr H+ 1 Br- 1
RATES
###########
#Quartz
###########
#
#######
# Example of quartz kinetic rates block:
# KINETICS
# Quartz
# -m0 158.8 # 90 % Qu
# -parms 0.146 1.5
# -step 3.1536e8 in 10
# -tol 1e-12
Quartz
-start
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
10 dif_temp = 1/TK - 1/298
20 pk_w = 13.7 + 4700.4 * dif_temp
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
# Integrate...
50 SAVE moles * TIME
-end
###########
#K-feldspar
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
# GFW Kspar 0.278 kg/mol
#
# Moles of Kspar per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
#
#
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
# -m 2.18 # Moles per L pore space
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
K-feldspar
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
280 moles = rate * TIME
290 SAVE moles
-end
###########
#Albite
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.46 # 2% Albite, 0.1 mm cubes
# -m 0.46 # Moles per L pore space
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
#
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
# GFW Albite 0.262 kg/mol
#
# Moles of Albite per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
Albite
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM Albite parameters
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
280 moles = rate * TIME
290 SAVE moles
-end
########
#Calcite
########
# Example of KINETICS data block for calcite rate,
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
# -time 1 day
Calcite
-start
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
2 REM PARM(2) = exponent for M/M0
10 si_cc = SI("Calcite")
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
30 k1 = 10^(0.198 - 444 / TK )
40 k2 = 10^(2.84 - 2177 /TK )
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK)
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK )
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
120 rate = rate * (1 - 10^(2/3*si_cc))
130 moles = rate * 0.001 * TIME # convert from mmol to mol
200 SAVE moles
-end
#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994,
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
# rate equation is mol m^-2 s^-1.
#
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms 0.3 0.67 .5 -0.11
# -time 1 day in 10
Pyrite
-start
1 REM Williamson and Rimstidt, 1994
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
3 REM PARM(2) = exp for (M/M0)
4 REM PARM(3) = exp for O2
5 REM PARM(4) = exp for H+
10 REM Dissolution in presence of DO
20 if (M <= 0) THEN GOTO 200
30 if (SI("Pyrite") >= 0) THEN GOTO 200
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
60 moles = 10^(log_area + log_rate) * TIME
200 SAVE moles
-end
##########
#Organic_C
##########
#
# Example of KINETICS data block for SOC (sediment organic carbon):
# KINETICS 1
# Organic_C
# -formula C
# -tol 1e-8
# -m 5e-3 # SOC in mol
# -time 30 year in 15
Organic_C
-start
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
2 REM Electron acceptors: O2, NO3, and SO4
10 if (M <= 0) THEN GOTO 200
20 mO2 = MOL("O2")
30 mNO3 = TOT("N(5)")
40 mSO4 = TOT("S(6)")
50 k_O2 = 1.57e-9 # 1/sec
60 k_NO3 = 1.67e-11 # 1/sec
70 k_SO4 = 1.e-13 # 1/sec
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
110 moles = rate * M * (M/M0) * TIME
200 SAVE moles
-end
###########
#Pyrolusite
###########
#
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
# Rate equation given as mol L^-1 s^-1
#
# Example of KINETICS data block for Pyrolusite
# KINETICS 1-12
# Pyrolusite
# -tol 1.e-7
# -m0 0.1
# -m 0.1
# -time 0.5 day in 10
Pyrolusite
-start
10 if (M <= 0) THEN GOTO 200
20 sr_pl = SR("Pyrolusite")
30 if (sr_pl > 1) THEN GOTO 100
40 REM sr_pl <= 1, undersaturated
50 Fe_t = TOT("Fe(2)")
60 if Fe_t < 1e-8 then goto 200
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
80 GOTO 200
100 REM sr_pl > 1, supersaturated
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
200 SAVE moles * SOLN_VOL
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
# hard-coded in calc_PR():
# kij CH4 CO2 H2S N2
# H2O 0.49 0.19 0.19 0.49
# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file.
# =============================================================================================
# The molar volumes of solids are entered with
# -Vm vm cm3/mol
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# --------------------
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
# The volume (cm3/mol) is
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
# + z^2 / 2 * Av * f(I^0.5)
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
# 41.84 transforms cal/bar/mol into cm3/mol.
# pb is pressure in bar.
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-H<>ckel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-H<>ckel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 <20> m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49<34>67.
# ref. 2: Procedures from ref. 1 using data compiled by Lalibert<72>, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).