iphreeqc/litephreeqc/test/barite_db.dat
Max Lübke 85762ad3f3 chore: Add LICENSE.txt for poet directory
refactor: Rename 'poet' directory to 'litephreeqc'
2025-10-28 09:39:40 +01:00

195 lines
6.4 KiB
Plaintext

DATABASE
###########################
SOLUTION_MASTER_SPECIES
H H+ -1 H 1.008 # phreeqc/
H(0) H2 0 H # phreeqc/
H(1) H+ -1 0.0 # phreeqc/
E e- 0 0.0 0.0 # phreeqc/
O H2O 0 O 16.0 # phreeqc/
O(0) O2 0 O # phreeqc/
O(-2) H2O 0 0.0 # phreeqc/
Na Na+ 0 Na 22.9898 # phreeqc/
Ba Ba+2 0 Ba 137.34 # phreeqc/
Sr Sr+2 0 Sr 87.62 # phreeqc/
Cl Cl- 0 Cl 35.453 # phreeqc/
S SO4-2 0 SO4 32.064 # phreeqc/
S(6) SO4-2 0 SO4 # phreeqc/
S(-2) HS- 1 S # phreeqc/
SOLUTION_SPECIES
H+ = H+
-gamma 9 0
-dw 9.31e-09
# source: phreeqc
e- = e-
# source: phreeqc
H2O = H2O
# source: phreeqc
Na+ = Na+
-gamma 4.08 0.082
-dw 1.33e-09
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -0.00333 0.566
# source: phreeqc
Ba+2 = Ba+2
-gamma 4 0.153
-dw 8.48e-10
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -0.00835 1
# source: phreeqc
Sr+2 = Sr+2
-gamma 5.26 0.121
-dw 7.94e-10
-Vm -0.0157 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -0.0041 1.97
# source: phreeqc
Cl- = Cl-
-gamma 3.63 0.017
-dw 2.03e-09
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
# source: phreeqc
SO4-2 = SO4-2
-gamma 5 -0.04
-dw 1.07e-09
-Vm 8 2.3 -46.04 6.245 3.82 0 0 0 0 1
# source: phreeqc
H2O = OH- + H+
-analytical_expression 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-05
-gamma 3.5 0
-dw 5.27e-09
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
# source: phreeqc
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
-dw 2.35e-09
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943
# source: phreeqc
2 H+ + 2 e- = H2
-log_k -3.15
-delta_h -1.759 kcal
-dw 5.13e-09
-Vm 6.52 0.78 0.12
# source: phreeqc
SO4-2 + H+ = HSO4-
-log_k 1.988
-delta_h 3.85 kcal
-analytical_expression -56.889 0.006473 2307.9 19.8858
-dw 1.33e-09
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
# source: phreeqc
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
-gamma 5 0
-dw 7.31e-10
# source: phreeqc
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
-log_k 33.65
-delta_h -60.140 kcal
-gamma 3.5 0
-dw 1.73e-09
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441
# source: phreeqc
HS- + H+ = H2S
-log_k 6.994
-delta_h -5.30 kcal
-analytical_expression -11.17 0.02386 3279
-dw 2.1e-09
-Vm 7.81 2.96 -0.46
# source: phreeqc
Na+ + OH- = NaOH
-log_k -10
# source: phreeqc
Na+ + SO4-2 = NaSO4-
-log_k 0.7
-delta_h 1.120 kcal
-gamma 5.4 0
-dw 1.33e-09
-Vm 1e-05 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53
# source: phreeqc
Ba+2 + H2O = BaOH+ + H+
-log_k -13.47
-gamma 5 0
# source: phreeqc
Ba+2 + SO4-2 = BaSO4
-log_k 2.7
# source: phreeqc
Sr+2 + H2O = SrOH+ + H+
-log_k -13.29
-gamma 5 0
# source: phreeqc
Sr+2 + SO4-2 = SrSO4
-log_k 2.29
-delta_h 2.08 kcal
-Vm 6.791 -0.9666 6.13 -2.739 -0.001
# source: phreeqc
PHASES
Barite
BaSO4 = Ba+2 + SO4-2
-log_k -9.97
-delta_h 6.35 kcal
-analytical_expression -282.43 -0.08972 5822 113.08
-Vm 52.9
# source: phreeqc
# comment:
Celestite
SrSO4 = Sr+2 + SO4-2
-log_k -6.63
-delta_h -4.037 kcal
-analytical_expression -7.14 0.00611 75 0 0 -1.79e-05
-Vm 46.4
# source: phreeqc
# comment:
RATES
Celestite # Palandri & Kharaka 2004<--------------------------------change me
# PARM(1): reactive surface area
# am: acid mechanism, nm: neutral mechanism, bm: base mechanism
-start
10 sr_i = SR("Celestite") # saturation ratio, (-)<----------change me
20 moles = 0 # init target variable, (mol)
30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310
40 sa = PARM(1) # reactive surface area, (m2)
100 r = 8.314462 # gas constant, (J K-1 mol-1)
110 dTi = (1 / TK) - (1 / 298.15) # (K-1)
120 ea_am = 23800 # activation energy am, (J mol-1)<-----------change me
130 ea_nm = 0 # activation energy nm, (J mol-1)<-----------change me
140 ea_bm = 0 # activation energy bm, (J mol-1)<-----------change me
150 log_k_am = -5.66 # reaction constant am<-------------------change me
rem log_k_nm = -99 # reaction constant nm<-------------------change me
rem log_k_bm = -99 # reaction constant bm<-------------------change me
180 n_am = 0.109 # H+ reaction order am<-----------------------change me
rem n_bm = 0 # H+ reaction order bm<-----------------------change me
200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am
rem nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r)
rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm
300 moles = sa * (am) * (1 - sr_i)
310 save moles * time
-end
Barite # Palandri & Kharaka 2004<-----------------------------------change me
# PARM(1): reactive surface area
# am: acid mechanism, nm: neutral mechanism, bm: base mechanism
-start
10 sr_i = SR("Barite") # saturation ratio, (-)<----------change me
20 moles = 0 # init target variable, (mol)
30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310
40 sa = PARM(1) # reactive surface area, (m2)
100 r = 8.314462 # gas constant, (J K-1 mol-1)
110 dTi = (1 / TK) - (1 / 298.15) # (K-1)
120 ea_am = 30800 # activation energy am, (J mol-1)<---------change me
130 ea_nm = 30800 # activation energy nm, (J mol-1)<---------change me
rem ea_bm = 0 # activation energy bm, (J mol-1)<---------change me
150 log_k_am = -6.90 # reaction constant am<-----------------change me
160 log_k_nm = -7.90 # reaction constant nm<-----------------change me
rem log_k_bm = -99 # reaction constant bm<-------------------change me
180 n_am = 0.22 # H+ reaction order am<----------------------change me
rem n_bm = 0 # H+ reaction order bm<-----------------------change me
200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am
210 nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r)
rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm
300 moles = sa * (am + nm) * (1 - sr_i)
310 save moles * time
-end
END