mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-15 16:18:22 +01:00
195 lines
6.4 KiB
Plaintext
195 lines
6.4 KiB
Plaintext
DATABASE
|
|
###########################
|
|
SOLUTION_MASTER_SPECIES
|
|
H H+ -1 H 1.008 # phreeqc/
|
|
H(0) H2 0 H # phreeqc/
|
|
H(1) H+ -1 0.0 # phreeqc/
|
|
E e- 0 0.0 0.0 # phreeqc/
|
|
O H2O 0 O 16.0 # phreeqc/
|
|
O(0) O2 0 O # phreeqc/
|
|
O(-2) H2O 0 0.0 # phreeqc/
|
|
Na Na+ 0 Na 22.9898 # phreeqc/
|
|
Ba Ba+2 0 Ba 137.34 # phreeqc/
|
|
Sr Sr+2 0 Sr 87.62 # phreeqc/
|
|
Cl Cl- 0 Cl 35.453 # phreeqc/
|
|
S SO4-2 0 SO4 32.064 # phreeqc/
|
|
S(6) SO4-2 0 SO4 # phreeqc/
|
|
S(-2) HS- 1 S # phreeqc/
|
|
SOLUTION_SPECIES
|
|
H+ = H+
|
|
-gamma 9 0
|
|
-dw 9.31e-09
|
|
# source: phreeqc
|
|
e- = e-
|
|
# source: phreeqc
|
|
H2O = H2O
|
|
# source: phreeqc
|
|
Na+ = Na+
|
|
-gamma 4.08 0.082
|
|
-dw 1.33e-09
|
|
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -0.00333 0.566
|
|
# source: phreeqc
|
|
Ba+2 = Ba+2
|
|
-gamma 4 0.153
|
|
-dw 8.48e-10
|
|
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -0.00835 1
|
|
# source: phreeqc
|
|
Sr+2 = Sr+2
|
|
-gamma 5.26 0.121
|
|
-dw 7.94e-10
|
|
-Vm -0.0157 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -0.0041 1.97
|
|
# source: phreeqc
|
|
Cl- = Cl-
|
|
-gamma 3.63 0.017
|
|
-dw 2.03e-09
|
|
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
|
# source: phreeqc
|
|
SO4-2 = SO4-2
|
|
-gamma 5 -0.04
|
|
-dw 1.07e-09
|
|
-Vm 8 2.3 -46.04 6.245 3.82 0 0 0 0 1
|
|
# source: phreeqc
|
|
H2O = OH- + H+
|
|
-analytical_expression 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-05
|
|
-gamma 3.5 0
|
|
-dw 5.27e-09
|
|
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
|
|
# source: phreeqc
|
|
2 H2O = O2 + 4 H+ + 4 e-
|
|
-log_k -86.08
|
|
-delta_h 134.79 kcal
|
|
-dw 2.35e-09
|
|
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943
|
|
# source: phreeqc
|
|
2 H+ + 2 e- = H2
|
|
-log_k -3.15
|
|
-delta_h -1.759 kcal
|
|
-dw 5.13e-09
|
|
-Vm 6.52 0.78 0.12
|
|
# source: phreeqc
|
|
SO4-2 + H+ = HSO4-
|
|
-log_k 1.988
|
|
-delta_h 3.85 kcal
|
|
-analytical_expression -56.889 0.006473 2307.9 19.8858
|
|
-dw 1.33e-09
|
|
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
|
# source: phreeqc
|
|
HS- = S-2 + H+
|
|
-log_k -12.918
|
|
-delta_h 12.1 kcal
|
|
-gamma 5 0
|
|
-dw 7.31e-10
|
|
# source: phreeqc
|
|
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
|
-log_k 33.65
|
|
-delta_h -60.140 kcal
|
|
-gamma 3.5 0
|
|
-dw 1.73e-09
|
|
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441
|
|
# source: phreeqc
|
|
HS- + H+ = H2S
|
|
-log_k 6.994
|
|
-delta_h -5.30 kcal
|
|
-analytical_expression -11.17 0.02386 3279
|
|
-dw 2.1e-09
|
|
-Vm 7.81 2.96 -0.46
|
|
# source: phreeqc
|
|
Na+ + OH- = NaOH
|
|
-log_k -10
|
|
# source: phreeqc
|
|
Na+ + SO4-2 = NaSO4-
|
|
-log_k 0.7
|
|
-delta_h 1.120 kcal
|
|
-gamma 5.4 0
|
|
-dw 1.33e-09
|
|
-Vm 1e-05 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53
|
|
# source: phreeqc
|
|
Ba+2 + H2O = BaOH+ + H+
|
|
-log_k -13.47
|
|
-gamma 5 0
|
|
# source: phreeqc
|
|
Ba+2 + SO4-2 = BaSO4
|
|
-log_k 2.7
|
|
# source: phreeqc
|
|
Sr+2 + H2O = SrOH+ + H+
|
|
-log_k -13.29
|
|
-gamma 5 0
|
|
# source: phreeqc
|
|
Sr+2 + SO4-2 = SrSO4
|
|
-log_k 2.29
|
|
-delta_h 2.08 kcal
|
|
-Vm 6.791 -0.9666 6.13 -2.739 -0.001
|
|
# source: phreeqc
|
|
PHASES
|
|
Barite
|
|
BaSO4 = Ba+2 + SO4-2
|
|
-log_k -9.97
|
|
-delta_h 6.35 kcal
|
|
-analytical_expression -282.43 -0.08972 5822 113.08
|
|
-Vm 52.9
|
|
# source: phreeqc
|
|
# comment:
|
|
Celestite
|
|
SrSO4 = Sr+2 + SO4-2
|
|
-log_k -6.63
|
|
-delta_h -4.037 kcal
|
|
-analytical_expression -7.14 0.00611 75 0 0 -1.79e-05
|
|
-Vm 46.4
|
|
# source: phreeqc
|
|
# comment:
|
|
RATES
|
|
Celestite # Palandri & Kharaka 2004<--------------------------------change me
|
|
# PARM(1): reactive surface area
|
|
# am: acid mechanism, nm: neutral mechanism, bm: base mechanism
|
|
-start
|
|
10 sr_i = SR("Celestite") # saturation ratio, (-)<----------change me
|
|
20 moles = 0 # init target variable, (mol)
|
|
30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310
|
|
40 sa = PARM(1) # reactive surface area, (m2)
|
|
|
|
100 r = 8.314462 # gas constant, (J K-1 mol-1)
|
|
110 dTi = (1 / TK) - (1 / 298.15) # (K-1)
|
|
120 ea_am = 23800 # activation energy am, (J mol-1)<-----------change me
|
|
130 ea_nm = 0 # activation energy nm, (J mol-1)<-----------change me
|
|
140 ea_bm = 0 # activation energy bm, (J mol-1)<-----------change me
|
|
150 log_k_am = -5.66 # reaction constant am<-------------------change me
|
|
rem log_k_nm = -99 # reaction constant nm<-------------------change me
|
|
rem log_k_bm = -99 # reaction constant bm<-------------------change me
|
|
180 n_am = 0.109 # H+ reaction order am<-----------------------change me
|
|
rem n_bm = 0 # H+ reaction order bm<-----------------------change me
|
|
200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am
|
|
rem nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r)
|
|
rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm
|
|
|
|
300 moles = sa * (am) * (1 - sr_i)
|
|
310 save moles * time
|
|
-end
|
|
|
|
Barite # Palandri & Kharaka 2004<-----------------------------------change me
|
|
# PARM(1): reactive surface area
|
|
# am: acid mechanism, nm: neutral mechanism, bm: base mechanism
|
|
-start
|
|
10 sr_i = SR("Barite") # saturation ratio, (-)<----------change me
|
|
20 moles = 0 # init target variable, (mol)
|
|
30 IF ((M <= 0) AND (sr_i < 1)) OR (sr_i = 1.0) THEN GOTO 310
|
|
40 sa = PARM(1) # reactive surface area, (m2)
|
|
|
|
100 r = 8.314462 # gas constant, (J K-1 mol-1)
|
|
110 dTi = (1 / TK) - (1 / 298.15) # (K-1)
|
|
120 ea_am = 30800 # activation energy am, (J mol-1)<---------change me
|
|
130 ea_nm = 30800 # activation energy nm, (J mol-1)<---------change me
|
|
rem ea_bm = 0 # activation energy bm, (J mol-1)<---------change me
|
|
150 log_k_am = -6.90 # reaction constant am<-----------------change me
|
|
160 log_k_nm = -7.90 # reaction constant nm<-----------------change me
|
|
rem log_k_bm = -99 # reaction constant bm<-------------------change me
|
|
180 n_am = 0.22 # H+ reaction order am<----------------------change me
|
|
rem n_bm = 0 # H+ reaction order bm<-----------------------change me
|
|
200 am = (10 ^ log_k_am) * EXP(-ea_am * dTi / r) * ACT("H+") ^ n_am
|
|
210 nm = (10 ^ log_k_nm) * EXP(-ea_nm * dTi / r)
|
|
rem bm = (10 ^ log_k_bm) * EXP(-ea_bm * dTi / r) * ACT("H+") ^ n_bm
|
|
|
|
300 moles = sa * (am + nm) * (1 - sr_i)
|
|
310 save moles * time
|
|
-end
|
|
|
|
END |