iphreeqc/database/phreeqc.dat

2117 lines
60 KiB
Plaintext
Raw Blame History

# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1.0 H 1.008
H(0) H2 0 H
H(1) H+ -1.0 H
E e- 0 0 0
O H2O 0 O 16.0
O(0) O2 0 O
O(-2) H2O 0 0
Ca Ca+2 0 Ca 40.08
Mg Mg+2 0 Mg 24.312
Na Na+ 0 Na 22.9898
K K+ 0 K 39.102
Fe Fe+2 0 Fe 55.847
Fe(+2) Fe+2 0 Fe
Fe(+3) Fe+3 -2.0 Fe
Mn Mn+2 0 Mn 54.938
Mn(+2) Mn+2 0 Mn
Mn(+3) Mn+3 0 Mn
Al Al+3 0 Al 26.9815
Ba Ba+2 0 Ba 137.34
Sr Sr+2 0 Sr 87.62
Si H4SiO4 0 SiO2 28.0843
Cl Cl- 0 Cl 35.453
C CO3-2 2.0 HCO3 12.0111
C(+4) CO3-2 2.0 HCO3
C(-4) CH4 0 CH4
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
S SO4-2 0 SO4 32.064
S(6) SO4-2 0 SO4
S(-2) HS- 1.0 S
N NO3- 0 N 14.0067
N(+5) NO3- 0 N
N(+3) NO2- 0 N
N(0) N2 0 N
N(-3) NH4+ 0 N 14.0067
#Amm AmmH+ 0 AmmH 17.031
B H3BO3 0 B 10.81
P PO4-3 2.0 P 30.9738
F F- 0 F 18.9984
Li Li+ 0 Li 6.939
Br Br- 0 Br 79.904
Zn Zn+2 0 Zn 65.37
Cd Cd+2 0 Cd 112.4
Pb Pb+2 0 Pb 207.19
Cu Cu+2 0 Cu 63.546
Cu(+2) Cu+2 0 Cu
Cu(+1) Cu+1 0 Cu
# redox-uncoupled gases
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # O2 gas
Mtg Mtg 0 Mtg 16.032 # CH4 gas
Sg H2Sg 0.0 H2Sg 32.064 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-gamma 9.0 0
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
-dw 9.31e-9 838 16.315 0.809 2.376 24.01 0
# Dw(25 C) dw_T a a2 visc a3 a_v_dif
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif
# For SC, Dw(TK) *= (viscos_0_tc / viscos)^2.376
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn.
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.)
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT.
e- = e-
H2O = H2O
-dw 2.299e-9 -254
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Li+ = Li+
-gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
-dw 1.03e-9 -14 4.03 0.8341 1.679
Na+ = Na+
-gamma 4.0 0.075
-gamma 4.08 0.082 # halite solubility
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
-dw 1.33e-9 75 3.627 0 0.7037
K+ = K+
-gamma 3.5 0.015
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
-dw 1.96e-9 254 3.484 0 0.1964
Mg+2 = Mg+2
-gamma 5.5 0.20
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
-dw 0.705e-9 -4 5.569 0 1.047
Ca+2 = Ca+2
-gamma 5.0 0.1650
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
-dw 0.792e-9 34 5.411 0 1.046
Sr+2 = Sr+2
-gamma 5.260 0.121
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
Ba+2 = Ba+2
-gamma 5.0 0
-gamma 4.0 0.153 # Barite solubility
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
-dw 0.848e-9 174 10.53 0 3.0
Fe+2 = Fe+2
-gamma 6.0 0
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
-dw 0.719e-9
Mn+2 = Mn+2
-gamma 6.0 0
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
-dw 0.688e-9
Al+3 = Al+3
-gamma 9.0 0
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353.
-dw 0.559e-9
H4SiO4 = H4SiO4
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
-dw 1.10e-9
Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 216 3.160 0.2071 0.7432
CO3-2 = CO3-2
-gamma 5.4 0
-Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
SO4-2 = SO4-2
-gamma 5.0 -0.04
-Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
-viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605
-dw 1.07e-9 -114 17 6.02e-2 4.94e-2
NO3- = NO3-
-gamma 3.0 0
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
-dw 1.90e-9 104 1.11
#AmmH+ = AmmH+
# -gamma 2.5 0
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
# -dw 1.98e-9 178 3.747 0 1.220
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt
-dw 1.1e-9
PO4-3 = PO4-3
-gamma 4.0 0
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
-dw 0.612e-9
F- = F-
-gamma 3.5 0
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
-dw 1.46e-9 -36 4.352
Br- = Br-
-gamma 3.0 0
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
-dw 2.01e-9 139 2.94 0 1.304
Zn+2 = Zn+2
-gamma 5.0 0
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
-dw 0.715e-9
Cd+2 = Cd+2
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
-dw 0.717e-9
Pb+2 = Pb+2
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
-dw 0.945e-9
Cu+2 = Cu+2
-gamma 6.0 0
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
-dw 0.733e-9
# redox-uncoupled gases
Hdg = Hdg # H2
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
Mtg = Mtg # CH4
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
H2Sg = H2Sg # H2S
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-gamma 3.5 0
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.08
-delta_h 134.79 kcal
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
2 H+ + 2 e- = H2
-log_k -3.15
-delta_h -1.759 kcal
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
H+ + Cl- = HCl
-log_k -0.5
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50<35>C
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329; -delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
-dw 1.18e-9 -190 11.386
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.20
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
-delta_h -61.039 kcal
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
SO4-2 + H+ = HSO4-
-log_k 1.988; -delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
-dw 1.22e-9 1000 15.0 2.861
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
-gamma 5.0 0
-dw 0.731e-9
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
-log_k 33.65
-delta_h -60.140 kcal
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
-dw 1.73e-9
HS- + H+ = H2S
-log_k 6.994; -delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
H2Sg = HSg- + H+
-log_k -6.994; -delta_h 5.30 kcal
-analytical_expression 11.17 -0.02386 -3279.0
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
-dw 1.73e-9
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.570
-delta_h -43.760 kcal
-gamma 3.0 0
-Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt
-dw 1.91e-9
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
-log_k 207.08
-delta_h -312.130 kcal
-Vm 7 # Pray et al., 1952, IEC 44. 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-log_k 119.077
-delta_h -187.055 kcal
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
-dw 1.98e-9 178 3.747 0 1.220
#AmmH+ = Amm + H+
NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
-dw 2.28e-9
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# -log_k 119.077
# -delta_h -187.055 kcal
# -gamma 2.5 0
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-gamma 6.54 -0.08
-log_k 1.106; -delta_h 4.30 kcal
-Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339
-viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748
-dw 1.35e-9 500 12.50 3.0 -1
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
H3BO3 + F- = BF(OH)3-
-log_k -0.4
-delta_h 1.850 kcal
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
-log_k 7.63
-delta_h 1.618 kcal
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
-log_k 13.67
-delta_h -1.614 kcal
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
-log_k 20.28
-delta_h -1.846 kcal
PO4-3 + H+ = HPO4-2
-log_k 12.346
-delta_h -3.530 kcal
-gamma 5.0 0
-dw 0.69e-9
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
PO4-3 + 2 H+ = H2PO4-
-log_k 19.553
-delta_h -4.520 kcal
-gamma 5.4 0
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
-dw 0.846e-9
PO4-3 + 3H+ = H3PO4
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
delta_h -10.1 kJ
-Vm 7.47 12.4 6.29 -3.29 0
H+ + F- = HF
-log_k 3.18
-delta_h 3.18 kcal
-analytic -2.033 0.012645 429.01
-Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt
H+ + 2 F- = HF2-
-log_k 3.76
-delta_h 4.550 kcal
-Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt
Ca+2 + H2O = CaOH+ + H+
-log_k -12.78
Ca+2 + CO3-2 = CaCO3
-log_k 3.224; -delta_h 3.545 kcal
-analytic -1228.732 -0.299440 35512.75 485.818
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
-Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
Ca+2 + CO3-2 + H+ = CaHCO3+
-log_k 11.435; -delta_h -0.871 kcal
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
-gamma 6.0 0
-Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt
-dw 5.06e-10
Ca+2 + SO4-2 = CaSO4
-log_k 2.25
-delta_h 1.325 kcal
-dw 4.71e-10
-Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt
Ca+2 + HSO4- = CaHSO4+
-log_k 1.08
Ca+2 + PO4-3 = CaPO4-
-log_k 6.459
-delta_h 3.10 kcal
-gamma 5.4 0.0
Ca+2 + HPO4-2 = CaHPO4
-log_k 2.739
-delta_h 3.3 kcal
Ca+2 + H2PO4- = CaH2PO4+
-log_k 1.408
-delta_h 3.4 kcal
-gamma 5.4 0.0
# Ca+2 + F- = CaF+
# -log_k 0.94
# -delta_h 4.120 kcal
# -gamma 5.5 0.0
# -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt
Mg+2 + H2O = MgOH+ + H+
-log_k -11.44
-delta_h 15.952 kcal
-gamma 6.5 0
Mg+2 + CO3-2 = MgCO3
-log_k 2.98
-delta_h 2.713 kcal
-analytic 0.9910 0.00667
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
-dw 4.21e-10
Mg+2 + H+ + CO3-2 = MgHCO3+
-log_k 11.399
-delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-gamma 4.0 0
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
-dw 4.78e-10
Mg+2 + SO4-2 = MgSO4
-gamma 0 0.20
-log_k 2.42; -delta_h 19.0 kJ
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm 8.65 -10.21 29.58 -18.60 1.061
-viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696
-dw 4.45e-10
SO4-2 + MgSO4 = Mg(SO4)2-2
-gamma 7 0.047
-log_k 0.52; -delta_h -13.6 kJ
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2
-viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3
-dw 0.845e-9 -200 8.0 0 0.965
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.10 kcal
-gamma 5.4 0
Mg+2 + HPO4-2 = MgHPO4
-log_k 2.87
-delta_h 3.3 kcal
Mg+2 + H2PO4- = MgH2PO4+
-log_k 1.513
-delta_h 3.4 kcal
-gamma 5.4 0
Mg+2 + F- = MgF+
-log_k 1.82
-delta_h 3.20 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
Na+ + OH- = NaOH
-log_k -10 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
-Vm 7.95 0 0 0 0.609
-viscosity -4e-2 -2.717 1.67e-5
-dw 6.73e-10
Na+ + SO4-2 = NaSO4-
-gamma 5.5 0
-log_k 0.6; -delta_h -14.4 kJ
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
-Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325
-viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208
-dw 1.13e-9 -23 8.50 0.392 0.521
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
K+ + HCO3- = KHCO3
-log_k -0.35; -delta_h 12 kJ
-gamma 0 9.4e-3
-Vm 9.48 0 0 0 -0.542
-viscosity 0.7 -1.289 9e-2
K+ + SO4-2 = KSO4-
-gamma 5.4 0.19
-log_k 0.6; -delta_h -10.4 kJ
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
-Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919
-viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690
-dw 0.90e-9 63 8.48 0 1.80
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
Fe+2 + H2O = FeOH+ + H+
-log_k -9.5
-delta_h 13.20 kcal
-gamma 5.0 0
Fe+2 + 3H2O = Fe(OH)3- + 3H+
-log_k -31.0
-delta_h 30.3 kcal
-gamma 5.0 0
Fe+2 + Cl- = FeCl+
-log_k 0.14
Fe+2 + CO3-2 = FeCO3
-log_k 4.38
Fe+2 + HCO3- = FeHCO3+
-log_k 2.0
Fe+2 + SO4-2 = FeSO4
-log_k 2.25
-delta_h 3.230 kcal
-Vm -13 0 123
Fe+2 + HSO4- = FeHSO4+
-log_k 1.08
Fe+2 + 2HS- = Fe(HS)2
-log_k 8.95
Fe+2 + 3HS- = Fe(HS)3-
-log_k 10.987
Fe+2 + HPO4-2 = FeHPO4
-log_k 3.6
Fe+2 + H2PO4- = FeH2PO4+
-log_k 2.7
-gamma 5.4 0
Fe+2 + F- = FeF+
-log_k 1.0
Fe+2 = Fe+3 + e-
-log_k -13.02
-delta_h 9.680 kcal
-gamma 9.0 0
Fe+3 + H2O = FeOH+2 + H+
-log_k -2.19
-delta_h 10.4 kcal
-gamma 5.0 0
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
-log_k -5.67
-delta_h 17.1 kcal
-gamma 5.4 0
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
-log_k -12.56
-delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
-log_k -21.6
-delta_h 31.9 kcal
-gamma 5.4 0
Fe+2 + 2H2O = Fe(OH)2 + 2H+
-log_k -20.57
-delta_h 28.565 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
-log_k -2.95
-delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
-log_k -6.3
-delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2
-log_k 1.48
-delta_h 5.6 kcal
-gamma 5.0 0
Fe+3 + 2 Cl- = FeCl2+
-log_k 2.13
-gamma 5.0 0
Fe+3 + 3 Cl- = FeCl3
-log_k 1.13
Fe+3 + SO4-2 = FeSO4+
-log_k 4.04
-delta_h 3.91 kcal
-gamma 5.0 0
Fe+3 + HSO4- = FeHSO4+2
-log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2-
-log_k 5.38
-delta_h 4.60 kcal
Fe+3 + HPO4-2 = FeHPO4+
-log_k 5.43
-delta_h 5.76 kcal
-gamma 5.0 0
Fe+3 + H2PO4- = FeH2PO4+2
-log_k 5.43
-gamma 5.4 0
Fe+3 + F- = FeF+2
-log_k 6.2
-delta_h 2.7 kcal
-gamma 5.0 0
Fe+3 + 2 F- = FeF2+
-log_k 10.8
-delta_h 4.8 kcal
-gamma 5.0 0
Fe+3 + 3 F- = FeF3
-log_k 14.0
-delta_h 5.4 kcal
Mn+2 + H2O = MnOH+ + H+
-log_k -10.59
-delta_h 14.40 kcal
-gamma 5.0 0
Mn+2 + 3H2O = Mn(OH)3- + 3H+
-log_k -34.8
-gamma 5.0 0
Mn+2 + Cl- = MnCl+
-log_k 0.61
-gamma 5.0 0
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
Mn+2 + 2 Cl- = MnCl2
-log_k 0.25
-Vm 1e-5 0 144
Mn+2 + 3 Cl- = MnCl3-
-log_k -0.31
-gamma 5.0 0
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
Mn+2 + CO3-2 = MnCO3
-log_k 4.9
Mn+2 + HCO3- = MnHCO3+
-log_k 1.95
-gamma 5.0 0
Mn+2 + SO4-2 = MnSO4
-log_k 2.25
-delta_h 3.370 kcal
-Vm -1.31 -1.83 62.3 -2.7
Mn+2 + 2 NO3- = Mn(NO3)2
-log_k 0.6
-delta_h -0.396 kcal
-Vm 6.16 0 29.4 0 0.9
Mn+2 + F- = MnF+
-log_k 0.84
-gamma 5.0 0
Mn+2 = Mn+3 + e-
-log_k -25.51
-delta_h 25.80 kcal
-gamma 9.0 0
Al+3 + H2O = AlOH+2 + H+
-log_k -5.0
-delta_h 11.49 kcal
-analytic -38.253 0.0 -656.27 14.327
-gamma 5.4 0
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353.
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
-log_k -10.1
-delta_h 26.90 kcal
-gamma 5.4 0
-analytic 88.50 0.0 -9391.6 -27.121
Al+3 + 3 H2O = Al(OH)3 + 3 H+
-log_k -16.9
-delta_h 39.89 kcal
-analytic 226.374 0.0 -18247.8 -73.597
Al+3 + 4 H2O = Al(OH)4- + 4 H+
-log_k -22.7
-delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
-gamma 4.5 0
Al+3 + 2SO4-2 = Al(SO4)2-
-log_k 5.0
-delta_h 3.11 kcal
-gamma 4.5 0
Al+3 + HSO4- = AlHSO4+2
-log_k 0.46
Al+3 + F- = AlF+2
-log_k 7.0
-delta_h 1.060 kcal
-gamma 5.4 0
Al+3 + 2 F- = AlF2+
-log_k 12.7
-delta_h 1.980 kcal
-gamma 5.4 0
Al+3 + 3 F- = AlF3
-log_k 16.8
-delta_h 2.160 kcal
Al+3 + 4 F- = AlF4-
-log_k 19.4
-delta_h 2.20 kcal
-gamma 4.5 0
# Al+3 + 5 F- = AlF5-2
# log_k 20.6
# delta_h 1.840 kcal
# Al+3 + 6 F- = AlF6-3
# log_k 20.6
# delta_h -1.670 kcal
H4SiO4 = H3SiO4- + H+
-log_k -9.83
-delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
-gamma 4 0
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23.0
-delta_h 17.6 kcal
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
-gamma 5.4 0
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
-log_k 30.18
-delta_h -16.260 kcal
-gamma 5.0 0
-Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt
Ba+2 + H2O = BaOH+ + H+
-log_k -13.47
-gamma 5.0 0
Ba+2 + CO3-2 = BaCO3
-log_k 2.71
-delta_h 3.55 kcal
-analytic 0.113 0.008721
-Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt
Ba+2 + HCO3- = BaHCO3+
-log_k 0.982
-delta_h 5.56 kcal
-analytic -3.0938 0.013669
Ba+2 + SO4-2 = BaSO4
-log_k 2.7
Sr+2 + H2O = SrOH+ + H+
-log_k -13.29
-gamma 5.0 0
Sr+2 + CO3-2 + H+ = SrHCO3+
-log_k 11.509
-delta_h 2.489 kcal
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
-gamma 5.4 0
Sr+2 + CO3-2 = SrCO3
-log_k 2.81
-delta_h 5.22 kcal
-analytic -1.019 0.012826
-Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt
Sr+2 + SO4-2 = SrSO4
-log_k 2.29
-delta_h 2.08 kcal
-Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility
Li+ + SO4-2 = LiSO4-
-log_k 0.64
-gamma 5.0 0
Cu+2 + e- = Cu+
-log_k 2.72
-delta_h 1.65 kcal
-gamma 2.5 0
Cu+ + 2Cl- = CuCl2-
-log_k 5.50
-delta_h -0.42 kcal
-gamma 4.0 0
Cu+ + 3Cl- = CuCl3-2
-log_k 5.70
-delta_h 0.26 kcal
-gamma 5.0 0.0
Cu+2 + CO3-2 = CuCO3
-log_k 6.73
Cu+2 + 2CO3-2 = Cu(CO3)2-2
-log_k 9.83
Cu+2 + HCO3- = CuHCO3+
-log_k 2.7
Cu+2 + Cl- = CuCl+
-log_k 0.43
-delta_h 8.65 kcal
-gamma 4.0 0
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
Cu+2 + 2Cl- = CuCl2
-log_k 0.16
-delta_h 10.56 kcal
-Vm 26.8 0 -136
Cu+2 + 3Cl- = CuCl3-
-log_k -2.29
-delta_h 13.69 kcal
-gamma 4.0 0
Cu+2 + 4Cl- = CuCl4-2
-log_k -4.59
-delta_h 17.78 kcal
-gamma 5.0 0
Cu+2 + F- = CuF+
-log_k 1.26
-delta_h 1.62 kcal
Cu+2 + H2O = CuOH+ + H+
-log_k -8.0
-gamma 4.0 0
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
-log_k -13.68
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
-log_k -26.9
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
-log_k -39.6
2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+
-log_k -10.359
-delta_h 17.539 kcal
-analytical 2.497 0.0 -3833.0
Cu+2 + SO4-2 = CuSO4
-log_k 2.31
-delta_h 1.220 kcal
-Vm 5.21 0 -14.6
Cu+2 + 3HS- = Cu(HS)3-
-log_k 25.9
Zn+2 + H2O = ZnOH+ + H+
-log_k -8.96
-delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
-log_k -16.9
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
-log_k -28.4
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
-log_k -41.2
Zn+2 + Cl- = ZnCl+
-log_k 0.43
-delta_h 7.79 kcal
-gamma 4.0 0
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
Zn+2 + 2 Cl- = ZnCl2
-log_k 0.45
-delta_h 8.5 kcal
-Vm -10.1 4.57 241 -2.97 -1e-3
Zn+2 + 3Cl- = ZnCl3-
-log_k 0.5
-delta_h 9.56 kcal
-gamma 4.0 0
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
Zn+2 + 4Cl- = ZnCl4-2
-log_k 0.2
-delta_h 10.96 kcal
-gamma 5.0 0
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
Zn+2 + H2O + Cl- = ZnOHCl + H+
-log_k -7.48
Zn+2 + 2HS- = Zn(HS)2
-log_k 14.94
Zn+2 + 3HS- = Zn(HS)3-
-log_k 16.1
Zn+2 + CO3-2 = ZnCO3
-log_k 5.3
Zn+2 + 2CO3-2 = Zn(CO3)2-2
-log_k 9.63
Zn+2 + HCO3- = ZnHCO3+
-log_k 2.1
Zn+2 + SO4-2 = ZnSO4
-log_k 2.37
-delta_h 1.36 kcal
-Vm 2.51 0 18.8
Zn+2 + 2SO4-2 = Zn(SO4)2-2
-log_k 3.28
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
Zn+2 + Br- = ZnBr+
-log_k -0.58
Zn+2 + 2Br- = ZnBr2
-log_k -0.98
Zn+2 + F- = ZnF+
-log_k 1.15
-delta_h 2.22 kcal
Cd+2 + H2O = CdOH+ + H+
-log_k -10.08
-delta_h 13.1 kcal
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
-log_k -20.35
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
-log_k -33.3
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
-log_k -47.35
2Cd+2 + H2O = Cd2OH+3 + H+
-log_k -9.39
-delta_h 10.9 kcal
Cd+2 + H2O + Cl- = CdOHCl + H+
-log_k -7.404
-delta_h 4.355 kcal
Cd+2 + NO3- = CdNO3+
-log_k 0.4
-delta_h -5.2 kcal
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
Cd+2 + Cl- = CdCl+
-log_k 1.98
-delta_h 0.59 kcal
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
Cd+2 + 2 Cl- = CdCl2
-log_k 2.6
-delta_h 1.24 kcal
-Vm 5.53
Cd+2 + 3 Cl- = CdCl3-
-log_k 2.4
-delta_h 3.9 kcal
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
Cd+2 + CO3-2 = CdCO3
-log_k 2.9
Cd+2 + 2CO3-2 = Cd(CO3)2-2
-log_k 6.4
Cd+2 + HCO3- = CdHCO3+
-log_k 1.5
Cd+2 + SO4-2 = CdSO4
-log_k 2.46
-delta_h 1.08 kcal
-Vm 10.4 0 57.9
Cd+2 + 2SO4-2 = Cd(SO4)2-2
-log_k 3.5
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
Cd+2 + Br- = CdBr+
-log_k 2.17
-delta_h -0.81 kcal
Cd+2 + 2Br- = CdBr2
-log_k 2.9
Cd+2 + F- = CdF+
-log_k 1.1
Cd+2 + 2F- = CdF2
-log_k 1.5
Cd+2 + HS- = CdHS+
-log_k 10.17
Cd+2 + 2HS- = Cd(HS)2
-log_k 16.53
Cd+2 + 3HS- = Cd(HS)3-
-log_k 18.71
Cd+2 + 4HS- = Cd(HS)4-2
-log_k 20.9
Pb+2 + H2O = PbOH+ + H+
-log_k -7.71
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
-log_k -17.12
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
-log_k -28.06
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
-log_k -39.7
2 Pb+2 + H2O = Pb2OH+3 + H+
-log_k -6.36
Pb+2 + Cl- = PbCl+
-log_k 1.6
-delta_h 4.38 kcal
-Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt
Pb+2 + 2 Cl- = PbCl2
-log_k 1.8
-delta_h 1.08 kcal
-Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt
Pb+2 + 3 Cl- = PbCl3-
-log_k 1.7
-delta_h 2.17 kcal
-Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt
Pb+2 + 4 Cl- = PbCl4-2
-log_k 1.38
-delta_h 3.53 kcal
-Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt
Pb+2 + CO3-2 = PbCO3
-log_k 7.24
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
-log_k 10.64
Pb+2 + HCO3- = PbHCO3+
-log_k 2.9
Pb+2 + SO4-2 = PbSO4
-log_k 2.75
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
-log_k 3.47
Pb+2 + 2HS- = Pb(HS)2
-log_k 15.27
Pb+2 + 3HS- = Pb(HS)3-
-log_k 16.57
3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+
-log_k -23.88
-delta_h 26.5 kcal
Pb+2 + NO3- = PbNO3+
-log_k 1.17
Pb+2 + Br- = PbBr+
-log_k 1.77
-delta_h 2.88 kcal
Pb+2 + 2Br- = PbBr2
-log_k 1.44
Pb+2 + F- = PbF+
-log_k 1.25
Pb+2 + 2F- = PbF2
-log_k 2.56
Pb+2 + 3F- = PbF3-
-log_k 3.42
Pb+2 + 4F- = PbF4-2
-log_k 3.1
PHASES
Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250<35>C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
-log_k -8.336
-delta_h -2.589 kcal
-analytic -171.9773 -0.077993 2903.293 71.595
-Vm 34.04
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25<32>C: Hemingway and Robie, 1994; 50<35>175<37>C: B<>n<EFBFBD>zeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
-log_k -10.89
-delta_h -2.480 kcal
-Vm 29.2
Rhodochrosite
MnCO3 = Mn+2 + CO3-2
-log_k -11.13
-delta_h -1.430 kcal
-Vm 31.1
Strontianite
SrCO3 = Sr+2 + CO3-2
-log_k -9.271
-delta_h -0.400 kcal
-analytic 155.0305 0.0 -7239.594 -56.58638
-Vm 39.69
Witherite
BaCO3 = Ba+2 + CO3-2
-log_k -8.562
-delta_h 0.703 kcal
-analytic 607.642 0.121098 -20011.25 -236.4948
-Vm 46
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
-log_k -4.58
-delta_h -0.109 kcal
-analytic 68.2401 0.0 -3221.51 -25.0627
-analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62
-Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol)
Anhydrite
CaSO4 = Ca+2 + SO4-2
-log_k -4.36
-delta_h -1.710 kcal
-analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323.
-Vm 46.1 # 136.14 / 2.95
Celestite
SrSO4 = Sr+2 + SO4-2
-log_k -6.63
-delta_h -4.037 kcal
# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
-analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464.
-Vm 46.4
Barite
BaSO4 = Ba+2 + SO4-2
-log_k -9.97
-delta_h 6.35 kcal
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
-Vm 52.9
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
Vm 216
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
-Vm 52.9
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.74; -delta_h 10.57 kJ
-analytical_expression -3.59 6.21e-3
Vm 147
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.57; -delta_h 2.35 kJ
-analytical_expression -1.978 1.38e-3
Vm 132
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -1.16; -delta_h 9.22 kJ
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
Vm 53.8
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
-log_k -3.421
-delta_h -36.155 kcal
-Vm 128.9
Fluorite
CaF2 = Ca+2 + 2 F-
-log_k -10.6
-delta_h 4.69 kcal
-analytic 66.348 0.0 -4298.2 -25.271
-Vm 15.7
SiO2(a)
SiO2 + 2 H2O = H4SiO4
-log_k -2.71
-delta_h 3.340 kcal
-analytic -0.26 0.0 -731.0
Chalcedony
SiO2 + 2 H2O = H4SiO4
-log_k -3.55
-delta_h 4.720 kcal
-analytic -0.09 0.0 -1032.0
-Vm 23.1
Quartz
SiO2 + 2 H2O = H4SiO4
-log_k -3.98
-delta_h 5.990 kcal
-analytic 0.41 0.0 -1309.0
-Vm 22.67
Gibbsite
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 8.11
-delta_h -22.800 kcal
-Vm 32.22
Al(OH)3(a)
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 10.8
-delta_h -26.500 kcal
Kaolinite
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
-log_k 7.435
-delta_h -35.300 kcal
-Vm 99.35
Albite
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
-log_k -18.002
-delta_h 25.896 kcal
-Vm 101.31
Anorthite
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
-log_k -19.714
-delta_h 11.580 kcal
-Vm 105.05
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
-log_k -20.573
-delta_h 30.820 kcal
-Vm 108.15
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
-log_k 12.703
-delta_h -59.376 kcal
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
-log_k 68.38
-delta_h -151.494 kcal
Ca-Montmorillonite
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
-log_k -45.027
-delta_h 58.373 kcal
-Vm 156.16
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
-log_k 21.399
-delta_h -46.352 kcal
-Vm 68.34
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
-log_k -40.267
-delta_h 54.684 kcal
-Vm 141.48
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
-log_k 32.2
-delta_h -46.800 kcal
-analytic 13.248 0.0 10217.1 -6.1894
-Vm 106.5808 # 277.11/2.60
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
-log_k 15.760
-delta_h -10.700 kcal
-Vm 143.765
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
-log_k 18.66
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
-log_k -4.008
-delta_h -30.845 kcal
-Vm 30.39
Goethite
FeOOH + 3 H+ = Fe+3 + 2 H2O
-log_k -1.0
-delta_h -14.48 kcal
-Vm 20.84
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
-log_k 4.891
Pyrite
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
-log_k -18.479
-delta_h 11.300 kcal
-Vm 23.48
FeS(ppt)
FeS + H+ = Fe+2 + HS-
-log_k -3.915
Mackinawite
FeS + H+ = Fe+2 + HS-
-log_k -4.648
-Vm 20.45
Sulfur
S + 2H+ + 2e- = H2S
-log_k 4.882
-delta_h -9.5 kcal
Vivianite
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
-log_k -36.0
Pyrolusite # H2O added for surface calc's
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
-log_k 41.38
-delta_h -65.110 kcal
Hausmannite
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
-log_k 61.03
-delta_h -100.640 kcal
Manganite
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
-log_k 25.34
Pyrochroite
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
-log_k 15.2
Halite
NaCl = Cl- + Na+
log_k 1.570
-delta_h 1.37
#-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
-Vm 27.1
Sylvite
KCl = K+ + Cl-
log_k 0.900
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
-delta_h -4.776 kcal
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
-T_c 304.2 # critical T, K
-P_c 72.86 # critical P, atm
-Omega 0.225 # acentric factor
H2O(g)
H2O = H2O
-log_k 1.506; delta_h -44.03 kJ
-T_c 647.3; -P_c 217.60; -Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
O2(g)
O2 = O2
-log_k -2.8983
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
-T_c 154.6; -P_c 49.80; -Omega 0.021
H2(g)
H2 = H2
-log_k -3.1050
-delta_h -4.184 kJ
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2; -P_c 12.80; -Omega -0.225
N2(g)
N2 = N2
-log_k -3.1864
-analytic -58.453 1.818e-3 3199 17.909 -27460
-T_c 126.2; -P_c 33.50; -Omega 0.039
H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
#Amm(g)
# Amm = Amm
NH3(g)
NH3 = NH3
-log_k 1.7966
-analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192
-T_c 405.6; -P_c 111.3; -Omega 0.25
# redox-uncoupled gases
Oxg(g)
Oxg = Oxg
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
-T_c 154.6 ; -P_c 49.80 ; -Omega 0.021
Hdg(g)
Hdg = Hdg
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2 ; -P_c 12.80 ; -Omega -0.225
Ntg(g)
Ntg = Ntg
-analytic -58.453 1.81800e-3 3199 17.909 -27460
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
-log_k -2.209
-delta_h 4.910 kcal
-analytic 1.447 -0.004153 0.0 0.0 -214949.0
Alunite
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
-log_k -1.4
-delta_h -50.250 kcal
Jarosite-K
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
-log_k -9.21
-delta_h -31.280 kcal
Zn(OH)2(e)
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
-log_k 11.5
Smithsonite
ZnCO3 = Zn+2 + CO3-2
-log_k -10.0
-delta_h -4.36 kcal
Sphalerite
ZnS + H+ = Zn+2 + HS-
-log_k -11.618
-delta_h 8.250 kcal
Willemite 289
Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
-log_k 15.33
-delta_h -33.37 kcal
Cd(OH)2
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
-log_k 13.65
Otavite 315
CdCO3 = Cd+2 + CO3-2
-log_k -12.1
-delta_h -0.019 kcal
CdSiO3 328
CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
-log_k 9.06
-delta_h -16.63 kcal
CdSO4 329
CdSO4 = Cd+2 + SO4-2
-log_k -0.1
-delta_h -14.74 kcal
Cerussite 365
PbCO3 = Pb+2 + CO3-2
-log_k -13.13
-delta_h 4.86 kcal
Anglesite 384
PbSO4 = Pb+2 + SO4-2
-log_k -7.79
-delta_h 2.15 kcal
Pb(OH)2 389
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
-log_k 8.15
-delta_h -13.99 kcal
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
-log_k 0.0
Na+ + X- = NaX
-log_k 0.0
-gamma 4.08 0.082
K+ + X- = KX
-log_k 0.7
-gamma 3.5 0.015
-delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
-log_k -0.08
-gamma 6.0 0
-delta_h 1.4 # Merriam & Thomas, 1956
# !!!!!
# H+ + X- = HX
# -log_k 1.0
# -gamma 9.0 0
# AmmH+ + X- = AmmHX
NH4+ + X- = NH4X
-log_k 0.6
-gamma 2.5 0
-delta_h -2.4 # Laudelout et al., 1968
Ca+2 + 2X- = CaX2
-log_k 0.8
-gamma 5.0 0.165
-delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2X- = MgX2
-log_k 0.6
-gamma 5.5 0.2
-delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2X- = SrX2
-log_k 0.91
-gamma 5.26 0.121
-delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2X- = BaX2
-log_k 0.91
-gamma 4.0 0.153
-delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2X- = MnX2
-log_k 0.52
-gamma 6.0 0
Fe+2 + 2X- = FeX2
-log_k 0.44
-gamma 6.0 0
Cu+2 + 2X- = CuX2
-log_k 0.6
-gamma 6.0 0
Zn+2 + 2X- = ZnX2
-log_k 0.8
-gamma 5.0 0
Cd+2 + 2X- = CdX2
-log_k 0.8
-gamma 0.0 0
Pb+2 + 2X- = PbX2
-log_k 1.05
-gamma 0.0 0
Al+3 + 3X- = AlX3
-log_k 0.41
-gamma 9.0 0
AlOH+2 + 2X- = AlOHX2
-log_k 0.89
-gamma 0.0 0
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
-log_k 0
Hfo_sOH + H+ = Hfo_sOH2+
-log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
-log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
-log_k 0
Hfo_wOH + H+ = Hfo_wOH2+
-log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
-log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
-log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
-log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
-log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
-log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
-log_k -17.6
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
-log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
-log_k -7.2 # table 10.5
#
# Cations from table 10.2
#
# Cadmium
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
-log_k 0.47
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
-log_k -2.91
# Zinc
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
-log_k 0.99
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
-log_k -1.99
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
-log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
-log_k 0.6 # table 10.5
# Lead
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
-log_k 4.65
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
-log_k 0.3 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
-log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
-log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
-log_k -3.5 # table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
-log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
-log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
-log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
# Phosphate
Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
-log_k 31.29
Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
-log_k 25.39
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
-log_k 17.72
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
-log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
-log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
-log_k 0.79
#
# Derived constants table 10.10
#
Hfo_wOH + F- + H+ = Hfo_wF + H2O
-log_k 8.7
Hfo_wOH + F- = Hfo_wOHF-
-log_k 1.6
#
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
#
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
-log_k 12.56
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
CALCULATE_VALUES
#INCLUDE$ \phreeqc\database\kinetic_rates.dat
# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html
# References
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
# Hermansk<73>, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
# Hermansk<73>, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
# KINETICS 1
# Albite_PK
# -formula NaAlSi3O8
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
# RATES
# Albite_PK # Palandri and Kharaka, 2004
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 put(affinity, -99, 1) # store value in memory
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
# 40 SAVE calc_value("Palandri_rate")
# -end
Palandri_rate
# in KINETICS, define 11 parms:
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factor, gas constant
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end
Sverdrup_rate
# in KINETICS, define 34 parms:
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
10 affinity = get(-99, 1)
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # temperature factors
70 dif_temp = 1 / TK - 1 / 281
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
90
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
110 aAl = act("Al+3")
120 aSi = act("H4SiO4")
130 R = tot("OrganicMatter")
140
150 REM # rate by H+
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
170 pk_H = pkH - 3 + e_H * dif_temp
180 CAl = CAl * 1e-6
190 CBC = CBC * 1e-6
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
210
220 REM # rate by hydrolysis
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
240 CAl = CAl * 1e-6
250 CBC = CBC * 1e-6
260 CSi = CSi * 1e-6
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
290
300 REM # rate by CO2
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
340
350 REM # rate by Organic Acids
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
370 COrg = COrg * 1e-6
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
400
410 REM # rate by OH-
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
430 CAl = CAl * 1e-6
440 CBC = CBC * 1e-6
450 CSi = CSi * 1e-6
460 pk_OH = pkOH - 3 + e_OH * dif_temp
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
480
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
500 area = sp_area * M0 * (M / M0)^0.67
510
520 rate = roughness * area * rate * affinity
530 SAVE rate * TIME
-end
Hermanska_rate
# in KINETICS, define 14 parms:
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
# (Note that logk25 values are not used, they were transformed to A's.)
10 affinity = get(-99, 1) # retrieve number from memory
20
30 REM # specific area m2/mol, surface roughness
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
50
60 REM # gas constant * Tk, act("H+")
70 RT = 8.314e-3 * TK : aH = act("H+")
80
90 REM # rate by H+
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
120
130 REM # rate by hydrolysis
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
150 rate_H2O = Ab * exp(- e_H2O / RT)
160
170 REM # rate by OH-
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
200
210 rate = rate_H + rate_H2O + rate_OH
220 area = sp_area * M0 * (M / M0)^0.67
230
240 rate = area * roughness * rate * affinity
250 SAVE rate * TIME
-end
RATES
###########
#Quartz
###########
#
#######
# Example of quartz kinetic rates block:
# KINETICS
# Quartz
# -m0 158.8 # 90 % Qu
# -parms 0.146 1.5
# -step 3.1536e8 in 10
# -tol 1e-12
Quartz
-start
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
10 dif_temp = 1/TK - 1/298
20 pk_w = 13.7 + 4700.4 * dif_temp
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
# Integrate...
50 SAVE moles * TIME
-end
###########
#K-feldspar
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
# GFW Kspar 0.278 kg/mol
#
# Moles of Kspar per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
#
#
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
# -m 2.18 # Moles per L pore space
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
K-feldspar
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
280 moles = rate * TIME
290 SAVE moles
-end
###########
#Albite
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.46 # 2% Albite, 0.1 mm cubes
# -m 0.46 # Moles per L pore space
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
#
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
# GFW Albite 0.262 kg/mol
#
# Moles of Albite per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
Albite
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM Albite parameters
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
280 moles = rate * TIME
290 SAVE moles
-end
########
#Calcite
########
# Example of KINETICS data block for calcite rate,
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257.
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
# -time 1 day
Calcite
-start
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
2 REM PARM(2) = exponent for M/M0
10 si_cc = SI("Calcite")
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
30 k1 = 10^(0.198 - 444.0 / TK )
40 k2 = 10^(2.84 - 2177.0 /TK )
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK)
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK )
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
120 rate = rate * (1 - 10^(2/3*si_cc))
130 moles = rate * 0.001 * TIME # convert from mmol to mol
200 SAVE moles
-end
#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994,
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
# rate equation is mol m^-2 s^-1.
#
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms 0.3 0.67 .5 -0.11
# -time 1 day in 10
Pyrite
-start
1 REM Williamson and Rimstidt, 1994
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
3 REM PARM(2) = exp for (M/M0)
4 REM PARM(3) = exp for O2
5 REM PARM(4) = exp for H+
10 REM Dissolution in presence of DO
20 if (M <= 0) THEN GOTO 200
30 if (SI("Pyrite") >= 0) THEN GOTO 200
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
60 moles = 10^(log_area + log_rate) * TIME
200 SAVE moles
-end
##########
#Organic_C
##########
#
# Example of KINETICS data block for SOC (sediment organic carbon):
# KINETICS 1
# Organic_C
# -formula C
# -tol 1e-8
# -m 5e-3 # SOC in mol
# -time 30 year in 15
Organic_C
-start
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
2 REM Electron acceptors: O2, NO3, and SO4
10 if (M <= 0) THEN GOTO 200
20 mO2 = MOL("O2")
30 mNO3 = TOT("N(5)")
40 mSO4 = TOT("S(6)")
50 k_O2 = 1.57e-9 # 1/sec
60 k_NO3 = 1.67e-11 # 1/sec
70 k_SO4 = 1.e-13 # 1/sec
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
110 moles = rate * M * (M/M0) * TIME
200 SAVE moles
-end
###########
#Pyrolusite
###########
#
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
# Rate equation given as mol L^-1 s^-1
#
# Example of KINETICS data block for Pyrolusite
# KINETICS 1-12
# Pyrolusite
# -tol 1.e-7
# -m0 0.1
# -m 0.1
# -time 0.5 day in 10
Pyrolusite
-start
10 if (M <= 0) THEN GOTO 200
20 sr_pl = SR("Pyrolusite")
30 if (sr_pl > 1) THEN GOTO 100
40 REM sr_pl <= 1, undersaturated
50 Fe_t = TOT("Fe(2)")
60 if Fe_t < 1e-8 then goto 200
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
80 GOTO 200
100 REM sr_pl > 1, supersaturated
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
200 SAVE moles * SOLN_VOL
-end
Albite_PK # Palandri and Kharaka, 2004
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
20 put(affinity, -99, 1) # store value in memory
30 for i = 2 to 11 : put(parm(i), -99, i) : next i
40 SAVE calc_value("Palandri_rate")
-end
Albite_Svd # Sverdrup, 2019
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
20 put(affinity, -99, 1)
30 for i = 2 to 34 : put(parm(i), -99, i) : next i
40 save calc_value("Sverdrup_rate")
-end
Albite_Hermanska # Hermanska et al., 2022, 2023
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
20 put(affinity, -99, 1) # store value in memory
30 for i = 2 to 14 : put(parm(i), -99, i) : next i
40 SAVE calc_value("Hermanska_rate")
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
# hard-coded in calc_PR():
# kij CH4 CO2 H2S N2
# H2O 0.49 0.19 0.19 0.49
# =============================================================================================
# The molar volumes of solids are entered with
# -Vm vm cm3/mol
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# --------------------
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
# The volume (cm3/mol) is
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
# + z^2 / 2 * Av * f(I^0.5)
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
# 41.84 transforms cal/bar/mol into cm3/mol.
# pb is pressure in bar.
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-H<>ckel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-H<>ckel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
# D_i = d1 + exp(-d2 tc)
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 <20> m_i)d^3 / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49<34>67.
# ref. 2: Procedures from ref. 1 using data compiled by Lalibert<72>, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).