iphreeqc/cvode.cpp
Darth Vader b8745514b6 Squashed 'phreeqcpp/' changes from da9d06b..2243d25
2243d25 Merge commit '013c822f76e5dc2e4fc19e87c6e5777aea6151d2'
c1af6f3 added newlines for CRAN
013c822 added newlines for CRAN
e4bd9ba [phreeqc3] fixes -Wclass-memaccess warnings for CRAN
29f06d2 fixed alignment in Description of solution
09a2680 guarded write_banner with NO_UTF8_ENCODING
082edbb changed src/print.cpp back to windows-1252 encoding; updated check_utf.sh
8d7c1fc adding mcd_Jtot and mcd_Jconc
9f0f622  Merge branch 'master' of github.com:usgs-coupled/phreeqc3
1040066 Merge remote-tracking branch 'usgs-coupled/master'
2a94644 cleaned up to eliminate some prints
07a864d all jacobians are consistent. Looks pretty good.
56975a7 Saved surface for numerical derivatives
df0d68b Runs all the test cases. Numerical derivatives work, but still some changes in residuals before and after jacobian calculations.
6bd936e Fixed numerical derivative (non-pitzer)
0dde2b0 removed comments
aef51fa Finally have derivatives right, I think
20281a0 always reset gases
13ec2fc best I could do for H2S while maintaining old tests. Used INCREMENTAL reactions
8be1ba8 revised jacobian_pz with new logic. Works with fixed_pressure examples H2S, H2S_pz, H2S_pz_appt, H2S_NaCl_Na2SO4.
71cf2a9 still produces different residuals
9022ded Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases
cb1f9af Finished up C, Fortran, documentation. Need to check DOxygen
9dad447 Merge remote-tracking branch 'origin/master' into state
d647eec Added StateSave, StateApply, StateDelete with documentation for C++. Need testing, Fortran, and C
48cb5e8 Including OH- in converting units. Revised calculated density for H+ and OH-. Makes a difference in several test cases. Removed timing at end of .out in test cases. Checking in all test cases and selected output.
47e1ce5 added OH in density iteration calculation, test case NaOH_density
4aefb06 allow Fe(+3), equivalent to Fe(3), in TOT and TOTMOL. Previously fixed in SELECTED_OUTPUT -total
bea0ad1 unused variable, punch Fe(+3)
eaf788b fixed add_constant, undefined surface null pointer, added test cases
2212f9c fixed bug in reprep when sit had surface species. Added capability of sit + edl, have not tested it
79956e3 made tally_table a vector of class tally
58b0d1f Merge commit 'd77c11ec700085f19b76af6543013e23ee0739d3'
d77c11e [phreeqci] fixed header error with phast
63175ab [phreeqci] fixed header error with phast
0feb715 [phreeqci] fixed WINDOWS.H already included error on windows builds
123cc8a [phreeqci] fixed _ASSERTE error on linux builds
22c4a62 [phreeqci] struct to class changes
4cee19d Merge commit '2d8ca2d0f37d13ad67be582208a4e65edfcf702f'
2d8ca2d [phreeqci] added 'new' debugging
d0c8212 [phreeqci] added 'new' debugging
9661fea tokadd_heading leak
4565c5d catching upMerge remote-tracking branch 'origin/master' into classify
c22d792 fix notab leak
6d2b45a Merge remote-tracking branch 'usgs-coupled/master'
38cfe18 memory leak user_print, pitz/sit store, add uphill_NPa, remove TESTINT
24f9bf7 removed TESTING definition
e2ce928 Tony agreed with change for all_cells, new test case
d2a5d63 reset all_cells in all cases
e3c0d61 initialize aphi
c960e05 builds on vs2005; still needs to initialize class pitz_param* aphi
71dc944 cl1mp, bad initialization
2e5f255 fixed errors/warnings from ming and intel
369733e converted to classes
7961b16 release.txt, couple size_t
5d76f82 copy operator works well enough
7ce8947 updated InternalCopy for operator equal
7bd13ff new/delete theta params, pitz_param_copy
50e8903 new/delete pitz_params
87d6792 reverting changes to sit_params and theta_params. Will consider using new and delet
dcb9efe sit_params
ac3335e theta_params
8878232 delete rate, unused cptr
492df61 descriptions
25e0621 cell_data
051ddba stag_data
33157a2 fixed more size_t and initialized all structs
f86f430 back to original set of files I think
af1b761 removing CReaction and Classes files
006d1de reorganizing
287f81c elt_list vectorized
7228bd0 move struct rxn_token
28de8b5 more size_t
d2e3a4e Removed cxxChemRxn
ce64720 cleaned up, removed struct reaction
028e908 moving to CReaction
dc2dc53 vectorized token
9fd3f2a save_values rewritten with map
8a6cef5 vectorized save_values
8685225 fixed clang errors, needed .c_str
318e267 (size_t) max and count
1547d91 finished up spread
b5c7ba4 going to work on warnings
4c848b4 all inverse structures vectorized. Starting on solver workspace
980d58e finished vectorizing struct inverse. Need to do sub structs
d13bb76 removed count_elts
89ab28d vector inverse elts
d575ade tidy.cpp, title_x
16fd18f removed string_duplicate from prep.cpp
82a10d6 revised get_elt and get_token
d7e3be4 cleaned up some string_duplicate
76366a6 fixed processing file names
157a458 description_x
51fec19 class_main
c748922 added const qualifier for all the parsing
380a6ea methods set to const, variables need to follow
6d67e22 copier and dash
48e6b93 fixed a new master, advection punch_temp and print_temp, some tidying
5f21daf unknown->master now a vector. Using size instead of a null to end list.
3c432d0 user_graph commands, alk_list
2b14f80 last_model
7a6b8b6  Merge branch 'warnings_redux' into vectorize_2
885a2f7 Fix memory bug in ex13_impl, tweak Makefile.
6907bb0 base, sit arrays
90e8412 starting on pitzer
bd0cad9 vector kinetics arrays
1850c32 basic commands are now std::string
78a83ed c,d in polint
d82d5d6 vector llnl parameters, removed hash references
7c538b6  Revert "delete s[i]"
97bcfd7  Merge branch 'warnings_redux' into vectorize
15a8991 delete s[i]
0b19404 master new/delete
b100f85 more new/delete. Fixed str_tolower for ming
fd93f84 needed to new/delete species and phase structs
1986e00 alphabetize tokens
ee6fa53 bool analytic
cc614e6 add_logk for logk, species, phases
67447c5 Removed hashtable, all hashes have been replaced with maps.
ee7d2c5 replaced hash for isotope_ratio, isotope_alpha, calculate_value with maps. Fixed some case errors with new maps.
52e0622 replase master_isotope_hash_table with master_isotope_map
c01c8d6 replace logk_hash_table with logk_map. Added str_tolower(std::string)
3e69461 replaced phases_hash_table with phases_map
effafe0 replace species_hash_table with species_map
8bff6d3 removed HASH code. replaced elements_hash_table with elements_map
90e9ee0 removed ineq_init. Vector advection_print, advection_punch
2f38047 size_t for subscripts
5161ea7 Merged origin/master, Alphabetized Basic toks
f8e05c1 only call qsort with more than one element
1ab8641 remove _v, use std::vector only, alloc at least 1 scratch
9732a1c cannot qsort size 0 vector
67fc478 one more .data
2f0f5e1 Some replacements of .data() were incorrect
ba9813a remove .data()
43765f8 need <struct xxx>
0feb20d after merging origin/master, one fix needed
f136feb Merging origin/master. Merge remote-tracking branch 'origin/master' into warnings_redux
71aa5b9 bug count_sys not incremented
e43550c vector inverse
d4cc14e vector x
6c0edef vector rates
e3cc46a vector save_values
41b9965 vector species_list
449a54f vector mb_unknowns
51514eb vector delta, sum_jacobx
f0707aa vector sum_mb1, sum_mb2
7d303de vector trxn.token
83cfb29 elt_list, moved qsort to elt_list_combine
e8c9027 vector elt_list
0957a52 vector theta_params
b1af156 vector pitz_params
e3ea010 vector sit_params
b87d0cd vector my_array, residual, delta
e43471a vector s_x
622d361 vector s_x
3d41ef8 vector logk
e8dd208 vector sys
3c9f594 vector master
de1ba62 vector s
e7c78a8 vector phases
f2c64fe vector elements
e8af689 vector isotope_alpha
ba2601a vector isotope_ratio
76da4f8 finished master_isotope
4bb1c80 vector master_isotope
97e574d vector calculate_value**
9d9fbfb cl1 variables converted to std::vector
1e0d410 using memset
54b0d4d starting on space
5a649c2 Merge pull request #2 from usgs-coupled/gasphasepressures
a992537 (void)sscanf, removed SKIP, removed PHREEQ98
6a5bb8a Merge pull request #1 from usgs-coupled/mar10
d9ced82 Fixed uninitialized constructors and couple of other warnings
c79d2c2 working on UTF-8
fcee4d5 Added delta_h_species, delta_h_phase, dh_a0, dh_bdot Basic functions
81e862d Tonys changes Mar 10. SIs in inverse calulations
9e8b382 Merge remote-tracking branch 'usgs-coupled/master'
053b4c6 Merge remote-tracking branch 'origin/master'
20091aa Merge branch 'log10molalities' into gasphasepressures
41e1112 Last of changes for GetGasPhasePressures and GetGasPhasePhi, openmp and mpi. MPI fortrans not tested.
e1f9cb1 more checking in. Should be down to tweaks for SetGasPhaseMoles.
00ee6e3 C++ is working with OpenMP and MPI for Get/SetGasPhaseMoles. Need to add c and F90.
c3a3153 Added GetSpeciesLog10Molalities. Tested OpenMP with VS. Tested MPI with MinGW. Fortran, C, and C++ seem to work.
e8b11f3 added optional 6th argument to Basic function sys to change sort order from molality or moles to the name. Added synonym PAD$. Added new mytest/sys_sort.
3e4fc7e cleanup commented lines
54b992f working on tabs and no newline
2181847 Merge branch 'master' of https://github.com/usgs-coupled/phreeqc3
deeecb0 needed strexpr in ADD_HEADING to allow expressions
9b7785f [iphreeqccom] updated date
711b1d0 Merge commit '608e74f5d3c55a4d91a4e08d86f2fd6df0ce0a05'
608e74f [wphast] updated date
5128e13 [phreeqc3] updated image location
fba8ae2 [phreeqc3] updated image location
43988f0 initialize punch_newline
176fb02 Moved initialization from header to constructor, special characters in As.out
c9f796a added ADD_HEADING for IPhreeqc
1362f0f Added EOL_NOTAB$ and NO_NEWLINE$, updated release notes
2b4dbbd Merge commit 'cd51d8aeed46909e5f028a19089acfef43d6ede9'
f2023c4 Merge branch 'gtest' into 'master'
cd51d8a reset for dlls
54161f4 reset for dlls
01c99a7 Merge remote-tracking branch 'github/master'
23f3917 Merge remote-tracking branch 'scharlton2/master'
f6644e6 check for null pointer. Encoding for .out file
9319c9d Merge commit '5b816fa1fd82eb94e2702b6bd9df6066fb71267b'
5b816fa added src/phreeqcpp/common/PHRQ_exports.h
07717b1 added src/phreeqcpp/common/PHRQ_exports.h
d8c638f Merge remote-tracking branch 'origin/master' into gtest
87bbb6a adjusted alignment for utf-8 strings
03bda16 added write_banner to non-DOS and added UTF8 define
995de52 converted to utf-8
fc8fe3e re-added src/ZedGraph.dll
fbae3e9 code change for extending porosity definition. Change to TonyLitharge2a
46257e7 added googletest and fixed some minor bugs
13ca055 added googletest and fixed some minor bugs
f1dda6c Fixed problem with exchange-related when exchanger is defined as CaX2
20daad4 I guess cxxSurface::NO_EDL is correct
801812d Tony's changes to implicit Nernst-Planck calculation
6b4892c added Basic function DEBYE_LENGTH and test case zeta
921ab10 Changed tidy_exchange_min and tidy_exchange_kin to tidy only for new_def and n_user >= 0. Fixed bug if surf_charge not defined for NO_EDL. Added test MoreExchMix
2aef60a Finished up surface and exchange related for cases where related phase or kinetic reaction was modified. Proportionality should now be maintained. Added test cases.
569e1e1 Exchange related. Needed to update in case the related entity changed.
ea54e02 Free str in callback in PBasic
a87cd1f Merge commit '1871b026ca8487c23a025415dbc0b2eca01f9af4'
1871b02 fixed some c2011 warnings, added more info for -formula errors, fixed pressure llnl examples
aa4d023 fixed some c2011 warnings, added more info for -formula errors, fixed pressure llnl examples
e1465e3 Commit from David's Email 2020-05-22; Implementing llnl-type databases with higher temperature nad pressure
e18e1ec Tony bug fix for TRANSPORT. Harmonic mean for boundary? Added Cub example.
44f077e Merge commit 'e68934133fc9cd45e7cccc397c55e13f7ee92e5b'
e689341 [phreeqci] Testing subtree merges
4f34fd0 [phreeqci] Testing subtree merges
69c0bb3 fixed conflict on merge
55c4dba Merge commit 'b25fc5bdd48b6d3ab8d677f7d38ad3a462789500'
b25fc5b fixed conflict on merge
ca80be6 fixed conflict on merge
49a74a6 [phreeqc3] Testing subtree merges
aec6f90 [phreeqc3] Testing subtree merges
c4c224a Merge commit '84865ad5ac30a9edb86c89ced4194d127ee896fd'
0bf4138 Merge commit '4a8727cecd9fefd1587485820e913c0e666b77d9'
553875f Merge commit 'aab8bc12ea8be8aec5943e1c77a54b19d28168cb'
aab8bc1 Merge commit '84865ad5ac30a9edb86c89ced4194d127ee896fd'
7bd02ff Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff
84865ad Added .gitlab-ci.yml
d398195 Added .gitlab-ci.yml
40c2787 Added .gitlab-ci.yml
3b6ce6c Added .gitlab-ci.yml
daf64a1 Added .gitlab-ci.yml
ae06f35 Fixed GFW bug on new elements in TRANSPORT
9cc783b added Basic functions for PHAST: velocity_x, velocity_y, velocity_z, transport_cell_no
79f768a Merge branch 'master' into 'master'
bd7634a removed j = j in loop
542394c IPhreeqc: ifdef'd out references to std::cerr and std::cout
6067ce8 Merge branch 'implicit3' into 'master'
21bd20f Fixed more compile warnings. Removed andra_kin_ss from testing, results are inconsistent between Linux and Windows, presumably the ifs in RATES
97b9c58 Merge branch 'implicit3' into 'master'
45db5cf Another Linux warning, lower tol on andra_kin_ss.
443be1c Merge branch 'implicit3' into 'master'
9a29aaf Last Linux compile warnings. Added more precision to andra_kin_ss.
6dafd7d Merge branch 'implicit3' into 'master'
fbde633 Fixing Linux compiler warnings, checking in new regression test files.
2207711 Merge branch 'implicit3' into 'master'
77e36a2 Tony fixed some transport, revised colloid_U. New cases added to Makefile.
f07caf9 Changed back print to allow incremental_reactions to work correctly
beadd07 Merge commit '5947da90657d1cb8f832152b4573dca0bbefb49e'
6a49d41 changes to make related and mixing items independent of case. surface_mix test case.
5947da9 initial Tony changes
8089c10 initial Tony changes
009aec7 Merge remote-tracking branch 'coupled/master'
4676ee4 added more P-R gas paramteters
c07314c Merge commit '492a4d257f300b7a9e0b5dc7e212c8f85ecb7f6e'
492a4d2 Merge remote-tracking branch 'coupled/master'
81ca633 Merge remote-tracking branch 'coupled/master'
950fca2 CRAN: replaced deprecated std::ptr_fun with lambda function
597bcd7 CRAN: replaced deprecated std::ptr_fun with lambda function
044e0ea phreeqc_ptr bug in internal copy
5934297 Merge commit '5c53fb207238bc0e846123a7e0d71a48bd9976ab'
5c53fb2 Merge commit '1327e93127e40e7a55ec629dcc9dd91ec29e77fe'
c117e18 Tony fix of index error
b90ddb5 Fixed Tony's fix, added implicit_as example
03acc3f changed abs to fabs
1fef40e added implicit, max_mixf to internal copy
32939ba Merge commit '1327e93127e40e7a55ec629dcc9dd91ec29e77fe'
b3bf691 fixed > > in templates for gcc
c929113 Tony fix May 31
1327e93 Implicit seems to be working with Tony's latest changes
55ea163 Implicit seems to be working with Tony's latest changes
c7111f7 Sort of works, still bugs and serious errors compared to explicit
600c7ee Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION
2291700 Fixed gas_phase_mix bug, added test case
035a4e0 Tony tweak to transport.cpp
bd4fc25 Merge branch 'tony20190117' into 'master'
71c994b skipping restart
1257f8c Merge branch 'issue-3' into 'master'
ce33478 Fixed -Wcatch-value warnings reported by CRAN
040fd95 include restart, remove ex20_debug
d57264d 2. changes to solid solution numerical method
3fd8155 changes to solid solution numerical method
2b14a94 Tony's changes 20190117
ae6e8b0 added modify methods for restart files
b500c54 changed restart file to include UZ
fffac6d another try for ex20_debug
fa5ee50 fix problem with ex20_debug
d993901 encoding, limit.h
92c81f9 Revised logic for nmix
3cc84da Merge remote-tracking branch 'coupled/master' into ss_trans
56b5bf3 create valid ranges when sscanf doesn't return 2
c43c9af tweaked ss, changed surf function per Kinniburgh
b10df16 Corrected syntax of integer limit, previous commit actually changed ss convergence parameter, used to multiply by 0.99
d74c8ff Corrected syntax of integer limit
906cfd4 Check value of nmix
058375c removed check of ss when sum of components is small
2977db4 Tonys fix to diffusion bug with porosity change
f904467 revised lists to be cumulative for eq, gas, kin, ss
9285985 merging coupled/master into copy
7c23b62 Fixed string_duplicate memory error
2d5551a fixed sc7 for copy and initial time
4842d9e inverse iter 100000; finished copy operator; a bit more testing to go
4eefe43 ex20_debug fix
78e39cd still debugging copy
cee10e7 fixing bugs in copy operator
ebab4bc fixing bugs in copy operator
5a35e02 Fixed Linux warnings, memory errors
b86f793 Beginning to test copy operator
5d40e69 [IPhreeqc] added parens for clang++ -Wlogical-op-parentheses
936de38 removed register keywords and updated for misc clang warnings
ec9de4c beginning of checking copy operation
ebeddcd [iphreeqc] Changes for CRAN 3.4.7
9592d6e Merge branch 'dlpark-phreeqc3-TonyApr2018' into 'master'
7c0fb65 [phreeqc3] needed to check gas phase type for same model, added test case
9152ca2 Closes #1
ebc4f69 Merge branch 'dlpark-phreeqc3-TonyApr2018' into 'master'
97a0cec Fixed bug where 1W was interpreted as an isotope
2deb4ed added option -ddl to surface. Added test case
df7d5de Merge branch 'gammas' into 'master'
34abb5b gammas finished, working on reactants
5314827 Tony's changes; diffuse layer with pitzer
4271ca4 Tonys corrections, added balonis test
2e390fd commit fix for Mtg

git-subtree-dir: phreeqcpp
git-subtree-split: 2243d25babbc524e7875b3d591bb6b91c4399a95
2021-10-31 18:21:10 +00:00

3940 lines
100 KiB
C++

/*#define DEBUG_CVODE*/
/**************************************************************************
* *
* File : cvode.c *
* Programmers : Scott D. Cohen, Alan C. Hindmarsh, Radu Serban, *
* and Dan Shumaker @ LLNL *
* Version of : 24 July 2002 *
*------------------------------------------------------------------------*
* Copyright (c) 2002, The Regents of the University of California *
* Produced at the Lawrence Livermore National Laboratory *
* All rights reserved *
* For details, see LICENSE below *
*------------------------------------------------------------------------*
* This is the implementation file for the main CVODE integrator. *
* It is independent of the CVODE linear solver in use. *
* *
*------------------------------------------------------------------------*
* LICENSE *
*------------------------------------------------------------------------*
* Copyright (c) 2002, The Regents of the University of California. *
* Produced at the Lawrence Livermore National Laboratory. *
* Written by S.D. Cohen, A.C. Hindmarsh, R. Serban, *
* D. Shumaker, and A.G. Taylor. *
* UCRL-CODE-155951 (CVODE) *
* UCRL-CODE-155950 (CVODES) *
* UCRL-CODE-155952 (IDA) *
* UCRL-CODE-237203 (IDAS) *
* UCRL-CODE-155953 (KINSOL) *
* All rights reserved. *
* *
* This file is part of SUNDIALS. *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright *
* notice, this list of conditions and the disclaimer below. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the disclaimer (as noted below) *
* in the documentation and/or other materials provided with the *
* distribution. *
* *
* 3. Neither the name of the UC/LLNL nor the names of its contributors *
* may be used to endorse or promote products derived from this software *
* without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT *
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE *
* REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, *
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY *
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT *
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE *
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
**************************************************************************/
#include "Phreeqc.h"
#include "nvector_serial.h"
#define Ith(v,i) NV_Ith_S(v,i-1)
/************************************************************/
/******************* BEGIN Imports **************************/
/************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "cvode.h"
#include "sundialstypes.h"
#include "nvector.h"
#include "sundialsmath.h"
#if !defined(WIN32_MEMORY_DEBUG)
#define malloc MACHENV_MALLOC PHRQ_malloc
#endif
#define MACHENV machEnv->phreeqc_ptr->
#define CVMEM cv_mem->cv_machenv->phreeqc_ptr->
#define MACHENV_MALLOC MACHENV
#define CVMEM_MALLOC CVMEM
#include "phqalloc.h"
/* WARNING don`t include any headers below here */
/************************************************************/
/******************** END Imports ***************************/
/************************************************************/
/***************************************************************/
/*********************** BEGIN Macros **************************/
/***************************************************************/
/* Macro: loop */
#define loop for(;;)
/***************************************************************/
/************************ END Macros ***************************/
/***************************************************************/
/************************************************************/
/************** BEGIN CVODE Private Constants ***************/
/*****************************************
*******************/
#define FOURTH RCONST(0.25) /* real 0.25 */
#define THREE RCONST(3.0) /* real 3.0 */
#define FOUR RCONST(4.0) /* real 4.0 */
#define HUN RCONST(100.0) /* real 100.0 */
#define TINY RCONST(1.0e-10) /* small number */
#define HALF RCONST(0.5) /* real 0.5 */
#define ZERO RCONST(0.0) /* real 0.0 */
#define ONE RCONST(1.0) /* real 1.0 */
#define TWO RCONST(2.0) /* real 2.0 */
#define TWELVE RCONST(12.0) /* real 12.0 */
/***************************************************************/
/************** BEGIN Default Constants ************************/
/***************************************************************/
#define HMIN_DEFAULT ZERO /* hmin default value */
#define HMAX_INV_DEFAULT ZERO /* hmax_inv default value */
#define MXHNIL_DEFAULT 10 /* mxhnil default value */
#define MXSTEP_DEFAULT 1000 /* mxstep default value */
/***************************************************************/
/*************** END Default Constants *************************/
/***************************************************************/
/***************************************************************/
/************ BEGIN Routine-Specific Constants *****************/
/***************************************************************/
/* CVodeDky */
#define FUZZ_FACTOR RCONST(100.0)
/* CVHin */
#define HLB_FACTOR RCONST(100.0)
#define HUB_FACTOR RCONST(0.1)
#define H_BIAS HALF
#define MAX_ITERS 40
/* CVSet */
#define CORTES RCONST(0.1)
/* CVStep return values */
#define SUCCESS_STEP 0
#define REP_ERR_FAIL -1
#define REP_CONV_FAIL -2
#define SETUP_FAILED -3
#define SOLVE_FAILED -4
/* CVStep control constants */
#define PREDICT_AGAIN -5
#define DO_ERROR_TEST 1
/* CVStep */
#define THRESH RCONST(1.5)
#define ETAMX1 RCONST(10000.0)
#define ETAMX2 RCONST(10.0)
#define ETAMX3 RCONST(10.0)
#define ETAMXF RCONST(0.2)
#define ETAMIN RCONST(0.1)
#define ETACF RCONST(0.25)
#define ADDON RCONST(0.000001)
#define BIAS1 RCONST(6.0)
#define BIAS2 RCONST(6.0)
#define BIAS3 RCONST(10.0)
#define ONEPSM RCONST(1.000001)
#define SMALL_NST 10 /* nst > SMALL_NST => use ETAMX3 */
#define MXNCF 10 /* max no. of convergence failures during */
/* one step try */
#define MXNEF 7 /* max no. of error test failures during */
/* one step try */
#define MXNEF1 3 /* max no. of error test failures before */
/* forcing a reduction of order */
#define SMALL_NEF 2 /* if an error failure occurs and */
/* SMALL_NEF <= nef <= MXNEF1, then */
/* reset eta = MIN(eta, ETAMXF) */
#define LONG_WAIT 10 /* number of steps to wait before */
/* considering an order change when */
/* q==1 and MXNEF1 error test failures */
/* have occurred */
/* CVnls return values */
#define SOLVED 0
#define CONV_FAIL -1
#define SETUP_FAIL_UNREC -2
#define SOLVE_FAIL_UNREC -3
/* CVnls input flags */
#define FIRST_CALL 0
#define PREV_CONV_FAIL -1
#define PREV_ERR_FAIL -2
/* CVnls other constants */
#define FUNC_MAXCOR 3 /* maximum no. of corrector iterations */
/* for iter == FUNCTIONAL */
#define NEWT_MAXCOR 3 /* maximum no. of corrector iterations */
/* for iter == NEWTON */
#define CRDOWN RCONST(0.3) /* constant used in the estimation of the */
/* convergence rate (crate) of the */
/* iterates for the nonlinear equation */
#define DGMAX RCONST(0.3) /* iter == NEWTON, |gamma/gammap-1| > DGMAX */
/* => call lsetup */
#define RDIV TWO /* declare divergence if ratio del/delp > RDIV */
#define MSBP 20 /* max no. of steps between lsetup calls */
#define TRY_AGAIN_CVODE 99 /* control constant for CVnlsNewton - should be */
/* distinct from CVnls return values */
/***************************************************************/
/*************** END Routine-Specific Constants ***************/
/***************************************************************/
/***************************************************************/
/***************** BEGIN Error Messages ************************/
/***************************************************************/
/* CVodeMalloc/CVReInit Error Messages */
#define CVM "CVodeMalloc/CVReInit-- "
#define MSG_Y0_NULL CVM "y0=NULL illegal.\n\n"
#define MSG_BAD_N CVM "N=%ld < 1 illegal.\n\n"
#define MSG_BAD_LMM_1 CVM "lmm=%d illegal.\n"
#define MSG_BAD_LMM_2 "The legal values are ADAMS=%d and BDF=%d.\n\n"
#define MSG_BAD_LMM MSG_BAD_LMM_1 MSG_BAD_LMM_2
#define MSG_BAD_ITER_1 CVM "iter=%d illegal.\n"
#define MSG_BAD_ITER_2 "The legal values are FUNCTIONAL=%d "
#define MSG_BAD_ITER_3 "and NEWTON=%d.\n\n"
#define MSG_BAD_ITER MSG_BAD_ITER_1 MSG_BAD_ITER_2 MSG_BAD_ITER_3
#define MSG_BAD_ITOL_1 CVM "itol=%d illegal.\n"
#define MSG_BAD_ITOL_2 "The legal values are SS=%d and SV=%d.\n\n"
#define MSG_BAD_ITOL MSG_BAD_ITOL_1 MSG_BAD_ITOL_2
#define MSG_F_NULL CVM "f=NULL illegal.\n\n"
#define MSG_RELTOL_NULL CVM "reltol=NULL illegal.\n\n"
#define MSG_BAD_RELTOL CVM "*reltol=%g < 0 illegal.\n\n"
#define MSG_ABSTOL_NULL CVM "abstol=NULL illegal.\n\n"
#define MSG_BAD_ABSTOL CVM "Some abstol component < 0.0 illegal.\n\n"
#define MSG_BAD_OPTIN_1 CVM "optIn=%d illegal.\n"
#define MSG_BAD_OPTIN_2 "The legal values are FALSE=%d and TRUE=%d.\n\n"
#define MSG_BAD_OPTIN MSG_BAD_OPTIN_1 MSG_BAD_OPTIN_2
#define MSG_BAD_OPT CVM "optIn=TRUE, but iopt=ropt=NULL.\n\n"
#define MSG_MEM_FAIL CVM "A memory request failed.\n\n"
#define MSG_BAD_EWT CVM "Some initial ewt component = 0.0 illegal.\n\n"
#define MSG_REI_NO_MEM "CVReInit-- cvode_mem = NULL illegal.\n\n"
#define MSG_REI_MAXORD1 "CVReInit-- Illegal attempt to increase "
#define MSG_REI_MAXORD2 "maximum method order from %d to %d.\n\n"
#define MSG_REI_MAXORD MSG_REI_MAXORD1 MSG_REI_MAXORD2
/* CVode error messages */
#define CVODE "CVode-- "
#define NO_MEM "cvode_mem=NULL illegal.\n\n"
#define MSG_CVODE_NO_MEM CVODE NO_MEM
#define MSG_LINIT_NULL CVODE "The linear solver's init routine is NULL.\n\n"
#define MSG_LSETUP_NULL CVODE "The linear solver's setup routine is NULL.\n\n"
#define MSG_LSOLVE_NULL CVODE "The linear solver's solve routine is NULL.\n\n"
#define MSG_LFREE_NULL CVODE "The linear solver's free routine is NULL.\n\n"
#define MSG_LINIT_FAIL CVODE "The linear solver's init routine failed.\n\n"
#define MSG_YOUT_NULL CVODE "yout=NULL illegal.\n\n"
#define MSG_T_NULL CVODE "t=NULL illegal.\n\n"
#define MSG_BAD_ITASK_1 CVODE "itask=%d illegal.\nThe legal values are"
#define MSG_BAD_ITASK_2 " NORMAL=%d and ONE_STEP=%d.\n\n"
#define MSG_BAD_ITASK MSG_BAD_ITASK_1 MSG_BAD_ITASK_2
#define MSG_BAD_HMIN_HMAX_1 CVODE "Inconsistent step size limits:\n"
#define MSG_BAD_HMIN_HMAX_2 "ropt[HMIN]=%g > ropt[HMAX]=%g.\n\n"
#define MSG_BAD_HMIN_HMAX MSG_BAD_HMIN_HMAX_1 MSG_BAD_HMIN_HMAX_2
#define MSG_BAD_H0 CVODE "h0=%g and tout-t0=%g inconsistent.\n\n"
#define MSG_BAD_TOUT_1 CVODE "Trouble interpolating at tout = %g.\n"
#define MSG_BAD_TOUT_2 "tout too far back in direction of integration.\n\n"
#define MSG_BAD_TOUT MSG_BAD_TOUT_1 MSG_BAD_TOUT_2
#define MSG_MAX_STEPS_1 CVODE "At t=%g, mxstep=%d steps taken on "
#define MSG_MAX_STEPS_2 "this call before\nreaching tout=%g.\n\n"
#define MSG_MAX_STEPS MSG_MAX_STEPS_1 MSG_MAX_STEPS_2
#define MSG_EWT_NOW_BAD_1 CVODE "At t=%g, "
#define MSG_EWT_NOW_BAD_2 "some ewt component has become <= 0.0.\n\n"
#define MSG_EWT_NOW_BAD MSG_EWT_NOW_BAD_1 MSG_EWT_NOW_BAD_2
#define MSG_TOO_MUCH_ACC CVODE "At t=%g, too much accuracy requested.\n\n"
#define MSG_HNIL_1 CVODE "Warning.. internal t=%g and step size h=%g\n"
#define MSG_HNIL_2 "are such that t + h == t on the next step.\n"
#define MSG_HNIL_3 "The solver will continue anyway.\n\n"
#define MSG_HNIL MSG_HNIL_1 MSG_HNIL_2 MSG_HNIL_3
#define MSG_HNIL_DONE_1 CVODE "The above warning has been issued %d times "
#define MSG_HNIL_DONE_2 "and will not be\nissued again for this problem.\n\n"
#define MSG_HNIL_DONE MSG_HNIL_DONE_1 MSG_HNIL_DONE_2
#define MSG_ERR_FAILS_1 CVODE "At t=%g and step size h=%g, the error test\n"
#define MSG_ERR_FAILS_2 "failed repeatedly or with |h| = hmin.\n\n"
#define MSG_ERR_FAILS MSG_ERR_FAILS_1 MSG_ERR_FAILS_2
#define MSG_CONV_FAILS_1 CVODE "At t=%g and step size h=%g, the corrector\n"
#define MSG_CONV_FAILS_2 "convergence failed repeatedly or "
#define MSG_CONV_FAILS_3 "with |h| = hmin.\n\n"
#define MSG_CONV_FAILS MSG_CONV_FAILS_1 MSG_CONV_FAILS_2 MSG_CONV_FAILS_3
#define MSG_SETUP_FAILED_1 CVODE "At t=%g, the setup routine failed in an "
#define MSG_SETUP_FAILED_2 "unrecoverable manner.\n\n"
#define MSG_SETUP_FAILED MSG_SETUP_FAILED_1 MSG_SETUP_FAILED_2
#define MSG_SOLVE_FAILED_1 CVODE "At t=%g, the solve routine failed in an "
#define MSG_SOLVE_FAILED_2 "unrecoverable manner.\n\n"
#define MSG_SOLVE_FAILED MSG_SOLVE_FAILED_1 MSG_SOLVE_FAILED_2
#define MSG_TOO_CLOSE_1 CVODE "tout=%g too close to t0=%g to start"
#define MSG_TOO_CLOSE_2 " integration.\n\n"
#define MSG_TOO_CLOSE MSG_TOO_CLOSE_1 MSG_TOO_CLOSE_2
/* CVodeDky Error Messages */
#define DKY "CVodeDky-- "
#define MSG_DKY_NO_MEM DKY NO_MEM
#define MSG_BAD_K DKY "k=%d illegal.\n\n"
#define MSG_BAD_T_1 DKY "t=%g illegal.\n"
#define MSG_BAD_T_2 "t not in interval tcur-hu=%g to tcur=%g.\n\n"
#define MSG_BAD_T MSG_BAD_T_1 MSG_BAD_T_2
#define MSG_BAD_DKY DKY "dky=NULL illegal.\n\n"
/***************************************************************/
/****************** END Error Messages *************************/
/***************************************************************/
/************************************************************/
/*************** END CVODE Private Constants ****************/
/************************************************************/
/**************************************************************/
/********* BEGIN Private Helper Functions Prototypes **********/
/**************************************************************/
static booleantype CVAllocVectors(CVodeMem cv_mem, integertype neq,
int maxord, M_Env machEnv);
static void CVFreeVectors(CVodeMem cv_mem, int maxord);
static booleantype CVEwtSet(CVodeMem cv_mem, N_Vector ycur);
static booleantype CVEwtSetSS(CVodeMem cv_mem, N_Vector ycur);
static booleantype CVEwtSetSV(CVodeMem cv_mem, N_Vector ycur);
static booleantype CVHin(CVodeMem cv_mem, realtype tout);
static realtype CVUpperBoundH0(CVodeMem cv_mem, realtype tdist);
static realtype CVYddNorm(CVodeMem cv_mem, realtype hg);
static int CVStep(CVodeMem cv_mem);
#ifdef ORIGINAL_CVBDFStab
static int CVsldet(CVodeMem cv_mem);
#endif
static void CVAdjustParams(CVodeMem cv_mem);
static void CVAdjustOrder(CVodeMem cv_mem, int deltaq);
static void CVAdjustAdams(CVodeMem cv_mem, int deltaq);
static void CVAdjustBDF(CVodeMem cv_mem, int deltaq);
static void CVIncreaseBDF(CVodeMem cv_mem);
static void CVDecreaseBDF(CVodeMem cv_mem);
static void CVRescale(CVodeMem cv_mem);
static void CVPredict(CVodeMem cv_mem);
static void CVSet(CVodeMem cv_mem);
static void CVSetAdams(CVodeMem cv_mem);
static realtype CVAdamsStart(CVodeMem cv_mem, realtype m[]);
static void CVAdamsFinish(CVodeMem cv_mem, realtype m[], realtype M[],
realtype hsum);
static realtype CVAltSum(int iend, realtype a[], int k);
static void CVSetBDF(CVodeMem cv_mem);
static void CVSetTqBDF(CVodeMem cv_mem, realtype hsum, realtype alpha0,
realtype alpha0_hat, realtype xi_inv,
realtype xistar_inv);
static int CVnls(CVodeMem cv_mem, int nflag);
static int CVnlsFunctional(CVodeMem cv_mem);
static int CVnlsNewton(CVodeMem cv_mem, int nflag);
static int CVNewtonIteration(CVodeMem cv_mem);
static int CVHandleNFlag(CVodeMem cv_mem, int *nflagPtr, realtype saved_t,
int *ncfPtr);
static void CVRestore(CVodeMem cv_mem, realtype saved_t);
static booleantype CVDoErrorTest(CVodeMem cv_mem, int *nflagPtr,
int *kflagPtr, realtype saved_t,
int *nefPtr, realtype * dsmPtr);
static void CVCompleteStep(CVodeMem cv_mem);
static void CVPrepareNextStep(CVodeMem cv_mem, realtype dsm);
static void CVSetEta(CVodeMem cv_mem);
static realtype CVComputeEtaqm1(CVodeMem cv_mem);
static realtype CVComputeEtaqp1(CVodeMem cv_mem);
static void CVChooseEta(CVodeMem cv_mem);
static void CVBDFStab(CVodeMem cv_mem);
static int CVHandleFailure(CVodeMem cv_mem, int kflag);
/**************************************************************/
/********** END Private Helper Functions Prototypes ***********/
/**************************************************************/
/**************************************************************/
/**************** BEGIN Readability Constants *****************/
/**************************************************************/
#define uround (cv_mem->cv_uround)
#define zn (cv_mem->cv_zn)
#define ewt (cv_mem->cv_ewt)
#define y (cv_mem->cv_y)
#define acor (cv_mem->cv_acor)
#define tempv (cv_mem->cv_tempv)
#define ftemp (cv_mem->cv_ftemp)
#define q (cv_mem->cv_q)
#define qprime (cv_mem->cv_qprime)
#define qwait (cv_mem->cv_qwait)
#define L (cv_mem->cv_L)
#define h (cv_mem->cv_h)
#define hprime (cv_mem->cv_hprime)
#define eta (cv_mem-> cv_eta)
#define etaqm1 (cv_mem-> cv_etaqm1)
#define etaq (cv_mem-> cv_etaq)
#define etaqp1 (cv_mem-> cv_etaqp1)
#define nscon (cv_mem->cv_nscon)
#define ssdat (cv_mem->cv_ssdat)
#define hscale (cv_mem->cv_hscale)
#define tn (cv_mem->cv_tn)
#define tau (cv_mem->cv_tau)
#define tq (cv_mem->cv_tq)
#define l (cv_mem->cv_l)
#define rl1 (cv_mem->cv_rl1)
#define gamma (cv_mem->cv_gamma)
#define gammap (cv_mem->cv_gammap)
#define gamrat (cv_mem->cv_gamrat)
#define crate (cv_mem->cv_crate)
#define acnrm (cv_mem->cv_acnrm)
#define mnewt (cv_mem->cv_mnewt)
#define qmax (cv_mem->cv_qmax)
#define mxstep (cv_mem->cv_mxstep)
#define maxcor (cv_mem->cv_maxcor)
#define mxhnil (cv_mem->cv_mxhnil)
#define hmin (cv_mem->cv_hmin)
#define hmax_inv (cv_mem->cv_hmax_inv)
#define etamax (cv_mem->cv_etamax)
#define nst (cv_mem->cv_nst)
#define nfe (cv_mem->cv_nfe)
#define ncfn (cv_mem->cv_ncfn)
#define netf (cv_mem->cv_netf)
#define nni (cv_mem-> cv_nni)
#define nsetups (cv_mem->cv_nsetups)
#define nhnil (cv_mem->cv_nhnil)
#define lrw (cv_mem->cv_lrw)
#define liw (cv_mem->cv_liw)
#define linit (cv_mem->cv_linit)
#define lsetup (cv_mem->cv_lsetup)
#define lsolve (cv_mem->cv_lsolve)
#define lfree (cv_mem->cv_lfree)
#define lmem (cv_mem->cv_lmem)
#define qu (cv_mem->cv_qu)
#define nstlp (cv_mem->cv_nstlp)
#define hu (cv_mem->cv_hu)
#define saved_tq5 (cv_mem->cv_saved_tq5)
#define jcur (cv_mem->cv_jcur)
#define tolsf (cv_mem->cv_tolsf)
#define setupNonNull (cv_mem->cv_setupNonNull)
#define machenv (cv_mem->cv_machenv)
#define sldeton (cv_mem->cv_sldeton)
/**************************************************************/
/***************** END Readability Constants ******************/
/**************************************************************/
/***************************************************************/
/************* BEGIN CVODE Implementation **********************/
/***************************************************************/
/***************************************************************/
/********* BEGIN Exported Functions Implementation *************/
/***************************************************************/
#if defined(PHREEQCI_GUI)
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#endif
/******************** CVodeMalloc *******************************
CVodeMalloc allocates and initializes memory for a problem. All
problem specification inputs are checked for errors. If any
error occurs during initialization, it is reported to the file
whose file pointer is errfp and NULL is returned. Otherwise, the
pointer to successfully initialized problem memory is returned.
*****************************************************************/
void *
CVodeMalloc(integertype N, RhsFn f, realtype t0, N_Vector y0,
int lmm, int iter, int itol,
realtype * reltol, void *abstol,
void *f_data, FILE * errfp, booleantype optIn,
long int iopt[], realtype ropt[], M_Env machEnv)
{
booleantype allocOK, ioptExists, roptExists, neg_abstol, ewtsetOK;
int maxord;
CVodeMem cv_mem;
#if !defined(R_SO)
FILE *fp;
#endif
int i, k;
/* Check for legal input parameters */
#if !defined(R_SO)
fp = (errfp == NULL) ? stdout : errfp;
#endif
if (y0 == NULL)
{
MACHENV warning_msg( MSG_Y0_NULL);
return (NULL);
}
if (N <= 0)
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_N, N));
return (NULL);
}
if ((lmm != ADAMS) && (lmm != BDF))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_LMM, lmm, ADAMS, BDF));
return (NULL);
}
if ((iter != FUNCTIONAL) && (iter != NEWTON))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_ITER, iter, FUNCTIONAL, NEWTON));
return (NULL);
}
if ((itol != SS) && (itol != SV))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_ITOL, itol, SS, SV));
return (NULL);
}
if (f == NULL)
{
MACHENV warning_msg(MSG_F_NULL);
return (NULL);
}
if (reltol == NULL)
{
MACHENV warning_msg(MSG_RELTOL_NULL);
return (NULL);
}
if (*reltol < ZERO)
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_RELTOL, (double) *reltol));
return (NULL);
}
if (abstol == NULL)
{
MACHENV warning_msg(MSG_ABSTOL_NULL);
return (NULL);
}
if (itol == SS)
{
neg_abstol = (*((realtype *) abstol) < ZERO);
}
else
{
neg_abstol = (N_VMin((N_Vector) abstol) < ZERO);
}
if (neg_abstol)
{
MACHENV warning_msg(MSG_BAD_ABSTOL);
return (NULL);
}
if ((optIn != FALSE) && (optIn != TRUE))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_OPTIN, optIn, FALSE, TRUE));
return (NULL);
}
if ((optIn) && (iopt == NULL) && (ropt == NULL))
{
MACHENV warning_msg(MSG_BAD_OPT);
return (NULL);
}
ioptExists = (iopt != NULL);
roptExists = (ropt != NULL);
/* Compute maxord */
maxord = (lmm == ADAMS) ? ADAMS_Q_MAX : BDF_Q_MAX;
if (optIn && ioptExists)
{
if (iopt[MAXORD] > 0)
maxord = MIN(maxord, iopt[MAXORD]);
}
cv_mem = (CVodeMem) malloc(sizeof(struct CVodeMemRec));
if (cv_mem == NULL)
{
MACHENV warning_msg(MSG_MEM_FAIL);
return (NULL);
}
/* Allocate the vectors */
allocOK = CVAllocVectors(cv_mem, N, maxord, machEnv);
if (!allocOK)
{
MACHENV warning_msg(MSG_MEM_FAIL);
MACHENV_MALLOC PHRQ_free(cv_mem);
return (NULL);
}
/* Copy tolerances into memory, and set the ewt vector */
cv_mem->cv_itol = itol;
cv_mem->cv_reltol = reltol;
cv_mem->cv_abstol = abstol;
ewtsetOK = CVEwtSet(cv_mem, y0);
if (!ewtsetOK)
{
MACHENV warning_msg(MSG_BAD_EWT);
CVFreeVectors(cv_mem, maxord);
MACHENV_MALLOC PHRQ_free(cv_mem);
return (NULL);
}
/* All error checking is complete at this point */
/* Copy the remaining input parameters into CVODE memory */
cv_mem->cv_N = N;
cv_mem->cv_f = f;
cv_mem->cv_f_data = f_data;
cv_mem->cv_lmm = lmm;
cv_mem->cv_iter = iter;
cv_mem->cv_optIn = optIn;
cv_mem->cv_iopt = iopt;
cv_mem->cv_ropt = ropt;
#if !defined(R_SO)
cv_mem->cv_errfp = fp;
#endif
tn = t0;
machenv = machEnv;
/* Set step parameters */
q = 1;
L = 2;
qwait = L;
qmax = maxord;
etamax = ETAMX1;
/* Set uround */
uround = UnitRoundoff();
/* Set the linear solver addresses to NULL.
(We check != NULL later, in CVode, if using NEWTON.) */
linit = NULL;
lsetup = NULL;
lsolve = NULL;
lfree = NULL;
lmem = NULL;
/* Initialize zn[0] in the history array */
N_VScale(ONE, y0, zn[0]);
/* Handle the remaining optional inputs (CVode checks ropt[HMAX]) */
hmax_inv = HMAX_INV_DEFAULT;
hmin = HMIN_DEFAULT;
if (optIn && roptExists)
{
if (ropt[HMIN] > ZERO)
hmin = ropt[HMIN];
}
mxhnil = MXHNIL_DEFAULT;
mxstep = MXSTEP_DEFAULT;
if (optIn && ioptExists)
{
if (iopt[MXHNIL] != 0)
mxhnil = iopt[MXHNIL];
if (iopt[MXSTEP] > 0)
mxstep = iopt[MXSTEP];
}
if ((!optIn) && roptExists)
ropt[H0] = ZERO;
/* Set maxcor */
maxcor = (iter == NEWTON) ? NEWT_MAXCOR : FUNC_MAXCOR;
/* Initialize all the counters */
nst = nfe = ncfn = netf = nni = nsetups = nhnil = nstlp = 0;
/* Initialize all other variables corresponding to optional outputs */
qu = 0;
hu = ZERO;
tolsf = ONE;
/* Initialize optional output locations in iopt, ropt */
/* and Stablilty Limit Detection data. */
nscon = 0;
sldeton = FALSE;
if (ioptExists)
{
iopt[NST] = iopt[NFE] = iopt[NSETUPS] = iopt[NNI] = 0;
iopt[NCFN] = iopt[NETF] = 0;
iopt[QU] = qu;
iopt[QCUR] = 0;
iopt[LENRW] = lrw;
iopt[LENIW] = liw;
if (optIn && iopt[SLDET] && (lmm == BDF))
{
sldeton = TRUE;
iopt[NOR] = 0;
for (i = 1; i <= 5; i++)
{
for (k = 1; k <= 3; k++)
ssdat[i - 1][k - 1] = ZERO;
}
}
}
if (roptExists)
{
ropt[HU] = hu;
ropt[HCUR] = ZERO;
ropt[TCUR] = t0;
ropt[TOLSF] = tolsf;
}
/* Problem has been successfully initialized */
return ((void *) cv_mem);
}
/******************** CVReInit **********************************
CVReInit re-initializes CVODE's memory for a problem, assuming
it has already been allocated in a prior CVodeMalloc call.
All problem specification inputs are checked for errors.
The problem size N is assumed to be unchanged since the call to
CVodeMalloc, and the maximum order maxord must not be larger.
If any error occurs during initialization, it is reported to the
file whose file pointer is errfp.
The return value is SUCCESS = 0 if no errors occurred, or
a negative value otherwise.
*****************************************************************/
int
CVReInit(void *cvode_mem, RhsFn f, realtype t0, N_Vector y0,
int lmm, int iter, int itol,
realtype * reltol, void *abstol,
void *f_data, FILE * errfp, booleantype optIn,
long int iopt[], realtype ropt[], M_Env machEnv)
{
booleantype ioptExists, roptExists, neg_abstol, ewtsetOK;
int maxord, i, k;
CVodeMem cv_mem;
#if !defined(R_SO)
FILE *fp;
#endif
/* Check for legal input parameters */
#if !defined(R_SO)
fp = (errfp == NULL) ? stdout : errfp;
#endif
if (cvode_mem == NULL)
{
MACHENV warning_msg(MSG_REI_NO_MEM);
return (CVREI_NO_MEM);
}
cv_mem = (CVodeMem) cvode_mem;
if (y0 == NULL)
{
MACHENV warning_msg(MSG_Y0_NULL);
return (CVREI_ILL_INPUT);
}
if ((lmm != ADAMS) && (lmm != BDF))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_LMM, lmm, ADAMS, BDF));
return (CVREI_ILL_INPUT);
}
if ((iter != FUNCTIONAL) && (iter != NEWTON))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_ITER, iter, FUNCTIONAL, NEWTON));
return (CVREI_ILL_INPUT);
}
if ((itol != SS) && (itol != SV))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_ITOL, itol, SS, SV));
return (CVREI_ILL_INPUT);
}
if (f == NULL)
{
MACHENV warning_msg(MSG_F_NULL);
return (CVREI_ILL_INPUT);
}
if (reltol == NULL)
{
MACHENV warning_msg(MSG_RELTOL_NULL);
return (CVREI_ILL_INPUT);
}
if (*reltol < ZERO)
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_RELTOL, (double) *reltol));
return (CVREI_ILL_INPUT);
}
if (abstol == NULL)
{
MACHENV warning_msg(MSG_ABSTOL_NULL);
return (CVREI_ILL_INPUT);
}
if (itol == SS)
{
neg_abstol = (*((realtype *) abstol) < ZERO);
}
else
{
neg_abstol = (N_VMin((N_Vector) abstol) < ZERO);
}
if (neg_abstol)
{
MACHENV warning_msg(MSG_BAD_ABSTOL);
return (CVREI_ILL_INPUT);
}
if ((optIn != FALSE) && (optIn != TRUE))
{
MACHENV warning_msg(MACHENV sformatf(MSG_BAD_OPTIN, optIn, FALSE, TRUE));
return (CVREI_ILL_INPUT);
}
if ((optIn) && (iopt == NULL) && (ropt == NULL))
{
MACHENV warning_msg(MSG_BAD_OPT);
return (CVREI_ILL_INPUT);
}
ioptExists = (iopt != NULL);
roptExists = (ropt != NULL);
/* Compute new maxord and check against old value */
maxord = (lmm == ADAMS) ? ADAMS_Q_MAX : BDF_Q_MAX;
if (optIn && ioptExists)
{
if (iopt[MAXORD] > 0)
maxord = MIN(maxord, iopt[MAXORD]);
}
if (maxord > qmax)
{
MACHENV warning_msg(MACHENV sformatf(MSG_REI_MAXORD, qmax, maxord));
return (CVREI_ILL_INPUT);
}
/* Copy tolerances into memory, and set the ewt vector */
cv_mem->cv_itol = itol;
cv_mem->cv_reltol = reltol;
cv_mem->cv_abstol = abstol;
ewtsetOK = CVEwtSet(cv_mem, y0);
if (!ewtsetOK)
{
MACHENV warning_msg(MSG_BAD_EWT);
return (CVREI_ILL_INPUT);
}
/* All error checking is complete at this point */
/* Copy the remaining input parameters into CVODE memory */
cv_mem->cv_f = f;
cv_mem->cv_f_data = f_data;
cv_mem->cv_lmm = lmm;
cv_mem->cv_iter = iter;
cv_mem->cv_optIn = optIn;
cv_mem->cv_iopt = iopt;
cv_mem->cv_ropt = ropt;
#if !defined(R_SO)
cv_mem->cv_errfp = fp;
#endif
tn = t0;
machenv = machEnv;
/* Set step parameters */
q = 1;
L = 2;
qwait = L;
qmax = maxord;
etamax = ETAMX1;
/* Set uround */
uround = UnitRoundoff();
/* Initialize zn[0] in the history array */
N_VScale(ONE, y0, zn[0]);
/* Handle the remaining optional inputs (CVode checks ropt[HMAX]) */
hmax_inv = HMAX_INV_DEFAULT;
hmin = HMIN_DEFAULT;
if (optIn && roptExists)
{
if (ropt[HMIN] > ZERO)
hmin = ropt[HMIN];
}
mxhnil = MXHNIL_DEFAULT;
mxstep = MXSTEP_DEFAULT;
if (optIn && ioptExists)
{
if (iopt[MXHNIL] != 0)
mxhnil = iopt[MXHNIL];
if (iopt[MXSTEP] > 0)
mxstep = iopt[MXSTEP];
}
if ((!optIn) && roptExists)
ropt[H0] = ZERO;
/* Set maxcor */
maxcor = (iter == NEWTON) ? NEWT_MAXCOR : FUNC_MAXCOR;
/* Initialize all the counters */
nst = nfe = ncfn = netf = nni = nsetups = nhnil = nstlp = 0;
/* Initialize all other vars corresponding to optional outputs */
qu = 0;
hu = ZERO;
tolsf = ONE;
/* Initialize optional output locations in iopt, ropt */
/* and Stablilty Limit Detection data. */
nscon = 0;
sldeton = FALSE;
if (ioptExists)
{
iopt[NST] = iopt[NFE] = iopt[NSETUPS] = iopt[NNI] = 0;
iopt[NCFN] = iopt[NETF] = 0;
iopt[QU] = qu;
iopt[QCUR] = 0;
iopt[LENRW] = lrw;
iopt[LENIW] = liw;
if (optIn && iopt[SLDET] && (lmm == BDF))
{
sldeton = TRUE;
iopt[NOR] = 0;
for (i = 1; i <= 5; i++)
{
for (k = 1; k <= 3; k++)
ssdat[i - 1][k - 1] = ZERO;
}
}
}
if (roptExists)
{
ropt[HU] = hu;
ropt[HCUR] = ZERO;
ropt[TCUR] = t0;
ropt[TOLSF] = tolsf;
}
/* Problem has been successfully re-initialized */
return (SUCCESS);
}
/**************************************************************/
/************** BEGIN More Readability Constants **************/
/**************************************************************/
#define N (cv_mem->cv_N)
#define f (cv_mem->cv_f)
#define f_data (cv_mem->cv_f_data)
#define lmm (cv_mem->cv_lmm)
#define iter (cv_mem->cv_iter)
#define itol (cv_mem->cv_itol)
#define reltol (cv_mem->cv_reltol)
#define abstol (cv_mem->cv_abstol)
#define optIn (cv_mem->cv_optIn)
#define iopt (cv_mem->cv_iopt)
#define ropt (cv_mem->cv_ropt)
#define errfp (cv_mem->cv_errfp)
/**************************************************************/
/*************** END More Readability Constants ***************/
/**************************************************************/
/********************* CVode ****************************************
This routine is the main driver of the CVODE package.
It integrates over a time interval defined by the user, by calling
CVStep to do internal time steps.
The first time that CVode is called for a successfully initialized
problem, it computes a tentative initial step size h.
CVode supports two modes, specified by itask: NORMAL and ONE_STEP.
In the NORMAL mode, the solver steps until it reaches or passes tout
and then interpolates to obtain y(tout).
In the ONE_STEP mode, it takes one internal step and returns.
********************************************************************/
int
CVode(void *cvode_mem, realtype tout, N_Vector yout, realtype * t, int itask)
{
int nstloc, kflag, istate, next_q, ier;
realtype rh, next_h;
booleantype hOK, ewtsetOK;
CVodeMem cv_mem;
realtype t0;
/* Check for legal inputs in all cases */
cv_mem = (CVodeMem) cvode_mem;
if (cvode_mem == NULL)
{
CVMEM warning_msg(MSG_CVODE_NO_MEM);
return (CVODE_NO_MEM);
}
if ((y = yout) == NULL)
{
CVMEM warning_msg(MSG_YOUT_NULL);
return (ILL_INPUT);
}
if (t == NULL)
{
CVMEM warning_msg(MSG_T_NULL);
return (ILL_INPUT);
}
t0 = tn;
*t = tn;
if ((itask != NORMAL) && (itask != ONE_STEP))
{
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_ITASK, itask, NORMAL, ONE_STEP));
return (ILL_INPUT);
}
/* Set hmax_inv from ropt[HMAX] and test for hmin > hmax */
if (optIn && ropt != NULL)
{
if (ropt[HMAX] > ZERO)
hmax_inv = ONE / ropt[HMAX];
if (hmin * hmax_inv > ONE)
{
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_HMIN_HMAX, (double) hmin,
(double) ropt[HMAX]));
return (ILL_INPUT);
}
}
/* On first call, check solver functions and call linit function */
if (nst == 0)
{
if (iter == NEWTON)
{
if (linit == NULL)
{
CVMEM warning_msg(MSG_LINIT_NULL);
return (ILL_INPUT);
}
if (lsetup == NULL)
{
CVMEM warning_msg(MSG_LSETUP_NULL);
return (ILL_INPUT);
}
if (lsolve == NULL)
{
CVMEM warning_msg(MSG_LSOLVE_NULL);
return (ILL_INPUT);
}
if (lfree == NULL)
{
CVMEM warning_msg(MSG_LFREE_NULL);
return (ILL_INPUT);
}
ier = linit(cv_mem);
if (ier != LINIT_OK)
{
CVMEM warning_msg(MSG_LINIT_FAIL);
return (ILL_INPUT);
}
}
/* On the first call, call f at (t0,y0), set zn[1] = y'(t0),
set initial h (from H0 or CVHin), and scale zn[1] by h */
CVMEM cvode_rate_sim_time = CVMEM cvode_rate_sim_time_start + tn;
CVMEM cvode_step_fraction = 0;
f(N, tn, zn[0], zn[1], f_data);
nfe = 1;
h = ZERO;
if (ropt != NULL)
h = ropt[H0];
if ((h != ZERO) && ((tout - tn) * h < ZERO))
{
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_H0, (double) h,
(double) (tout - tn)));
return (ILL_INPUT);
}
if (h == ZERO)
{
hOK = CVHin(cv_mem, tout);
if (!hOK)
{
CVMEM warning_msg(CVMEM sformatf(MSG_TOO_CLOSE, (double) tout,
(double) tn));
return (ILL_INPUT);
}
}
rh = ABS(h) * hmax_inv;
if (rh > ONE)
h /= rh;
if (ABS(h) < hmin)
h *= hmin / ABS(h);
hscale = h;
N_VScale(h, zn[1], zn[1]);
} /* end of first call block */
/* If not the first call, check if tout already reached */
if ((itask == NORMAL) && (nst > 0) && ((tn - tout) * h >= ZERO))
{
*t = tout;
ier = CVodeDky(cv_mem, tout, 0, yout);
if (ier != OKAY)
{ /* ier must be == BAD_T */
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_TOUT, (double) tout));
return (ILL_INPUT);
}
return (SUCCESS);
}
/* Looping point for internal steps */
nstloc = 0;
loop
{
next_h = h;
next_q = q;
/* Reset and check ewt */
if (nst > 0)
{
ewtsetOK = CVEwtSet(cv_mem, zn[0]);
if (!ewtsetOK)
{
CVMEM warning_msg(CVMEM sformatf(MSG_EWT_NOW_BAD, (double) tn));
istate = ILL_INPUT;
*t = tn;
N_VScale(ONE, zn[0], yout);
break;
}
}
/* Check for too many steps */
if (nstloc >= mxstep)
{
istate = TOO_MUCH_WORK;
*t = tn;
N_VScale(ONE, zn[0], yout);
break;
}
/* Check for too much accuracy requested */
if ((tolsf = uround * N_VWrmsNorm(zn[0], ewt)) > ONE)
{
CVMEM warning_msg(CVMEM sformatf(MSG_TOO_MUCH_ACC, (double) tn));
istate = TOO_MUCH_ACC;
*t = tn;
N_VScale(ONE, zn[0], yout);
tolsf *= TWO;
break;
}
/* Check for h below roundoff level in tn */
if (tn + h == tn)
{
nhnil++;
if (nhnil <= mxhnil)
CVMEM warning_msg(CVMEM sformatf(MSG_HNIL, (double) tn, (double) h));
if (nhnil == mxhnil)
CVMEM warning_msg(CVMEM sformatf(MSG_HNIL_DONE, mxhnil));
}
/* Call CVStep to take a step */
kflag = CVStep(cv_mem);
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After CVStep, y Fail\n");
}
else
{
CVMEM warning_msg("After CVStep, y OK\n");
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CCVMEM warning_msg("After CVStep, zn Fail\n");
}
else
{
CVMEM warning_msg("After CVStep, zn OK\n");
}
#endif
/* Process failed step cases, and exit loop */
if (kflag != SUCCESS_STEP)
{
istate = CVHandleFailure(cv_mem, kflag);
*t = tn;
N_VScale(ONE, zn[0], yout);
break;
}
nstloc++;
/* Check if in one-step mode, and if so copy y and exit loop */
if (itask == ONE_STEP)
{
istate = SUCCESS;
*t = tn;
N_VScale(ONE, zn[0], yout);
next_q = qprime;
next_h = hprime;
break;
}
CVMEM cvode_rate_sim_time = CVMEM cvode_rate_sim_time_start + tn;
CVMEM cvode_step_fraction = (tn - t0) / (tout - t0);
/*
CVMEM warning_msg(CVMEM sformatf("ODE: tn %e, t0 %e, tout %e, step_frac %e\n", (double) tn, (double) t0, (double) tout, (double) cvode_step_fraction));
*/
/* Check if tout reached, and if so interpolate and exit loop */
if ((tn - tout) * h >= ZERO)
{
/*
CVMEM warning_msg("*tn %e, t0 %e, tout %e, h %e\n", tn, t0, tout,h).c_str());
*/
CVMEM cvode_rate_sim_time = CVMEM cvode_rate_sim_time_start + tout;
CVMEM cvode_step_fraction = 1.0;
istate = SUCCESS;
*t = tout;
(void) CVodeDky(cv_mem, tout, 0, yout);
next_q = qprime;
next_h = hprime;
break;
}
}
/* End of step loop; load optional outputs and return */
if (iopt != NULL)
{
iopt[NST] = nst;
iopt[NFE] = nfe;
iopt[NSETUPS] = nsetups;
iopt[NNI] = nni;
iopt[NCFN] = ncfn;
iopt[NETF] = netf;
iopt[QU] = q;
iopt[QCUR] = next_q;
}
if (ropt != NULL)
{
ropt[HU] = h;
ropt[HCUR] = next_h;
ropt[TCUR] = tn;
ropt[TOLSF] = tolsf;
}
#ifdef DEBUG_CVODE
/*
* check interpolation
*/
CVMEM cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
CVMEM cvode_test = FALSE;
if (CVMEM cvode_error == TRUE)
{
//CVMEM warning_msg("End of cvode, Interpolated y Fail\n");
fprintf(stderr, "End of cvode, Interpolated y Fail\n");
return (-1);
}
else
{
//CVMEM warning_msg("End of cvode, Interpolated y OK\n");
//fprintf(stderr, "End of cvode, Interpolated y OK\n");
//for (int i = 0; i <= N; i++)
//{
// fprintf(stderr, "%d %e\n", i, Ith(y, i));
//}
}
#endif
return (istate);
}
/*************** CVodeDky ********************************************
This routine computes the k-th derivative of the interpolating
polynomial at the time t and stores the result in the vector dky.
The formula is:
q
dky = SUM c(j,k) * (t - tn)^(j-k) * h^(-j) * zn[j] ,
j=k
where c(j,k) = j*(j-1)*...*(j-k+1), q is the current order, and
zn[j] is the j-th column of the Nordsieck history array.
This function is called by CVode with k = 0 and t = tout, but
may also be called directly by the user.
**********************************************************************/
int
CVodeDky(void *cvode_mem, realtype t, int k, N_Vector dky)
{
realtype s, c, r;
realtype tfuzz, tp, tn1;
int i, j;
CVodeMem cv_mem;
cv_mem = (CVodeMem) cvode_mem;
/* Check all inputs for legality */
if (cvode_mem == NULL)
{
/*
CVMEM warning_msg(MSG_DKY_NO_MEM);
*/
return (DKY_NO_MEM);
}
if (dky == NULL)
{
CVMEM warning_msg(MSG_BAD_DKY);
return (BAD_DKY);
}
if ((k < 0) || (k > q))
{
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_K, k));
return (BAD_K);
}
tfuzz = FUZZ_FACTOR * uround * (ABS(tn) + ABS(hu));
if (hu < ZERO)
tfuzz = -tfuzz;
tp = tn - hu - tfuzz;
tn1 = tn + tfuzz;
if ((t - tp) * (t - tn1) > ZERO)
{
CVMEM warning_msg(CVMEM sformatf(MSG_BAD_T, (double) t, (double) (tn - hu),
(double) tn));
return (BAD_T);
}
/* Sum the differentiated interpolating polynomial */
s = (t - tn) / h;
for (j = q; j >= k; j--)
{
c = ONE;
for (i = j; i >= j - k + 1; i--)
c *= i;
if (j == q)
{
N_VScale(c, zn[q], dky);
}
else
{
N_VLinearSum(c, zn[j], s, dky, dky);
}
}
if (k == 0)
return (OKAY);
r = RPowerI(h, -k);
N_VScale(r, dky, dky);
return (OKAY);
}
/********************* CVodeFree **********************************
This routine frees the problem memory allocated by CVodeMalloc.
Such memory includes all the vectors allocated by CVAllocVectors,
and the memory lmem for the linear solver (deallocated by a call
to lfree).
*******************************************************************/
void
CVodeFree(void *cvode_mem)
{
CVodeMem cv_mem;
cv_mem = (CVodeMem) cvode_mem;
if (cvode_mem == NULL)
return;
CVFreeVectors(cv_mem, qmax);
if (iter == NEWTON)
lfree(cv_mem);
CVMEM_MALLOC PHRQ_free(cv_mem);
}
/***************************************************************/
/********** END Exported Functions Implementation **************/
/***************************************************************/
/*******************************************************************/
/******** BEGIN Private Helper Functions Implementation ************/
/*******************************************************************/
/****************** CVAllocVectors ***********************************
This routine allocates the CVODE vectors ewt, acor, tempv, ftemp, and
zn[0], ..., zn[maxord]. The length of the vectors is the input
parameter neq and the maximum order (needed to allocate zn) is the
input parameter maxord. If all memory allocations are successful,
CVAllocVectors returns TRUE. Otherwise all allocated memory is freed
and CVAllocVectors returns FALSE.
This routine also sets the optional outputs lrw and liw, which are
(respectively) the lengths of the real and integer work spaces
allocated here.
**********************************************************************/
static booleantype
CVAllocVectors(CVodeMem cv_mem, integertype neq, int maxord, M_Env machEnv)
{
int i, j;
/* Allocate ewt, acor, tempv, ftemp */
ewt = N_VNew(neq, machEnv);
if (ewt == NULL)
return (FALSE);
acor = N_VNew(neq, machEnv);
if (acor == NULL)
{
N_VFree(ewt);
return (FALSE);
}
tempv = N_VNew(neq, machEnv);
if (tempv == NULL)
{
N_VFree(ewt);
N_VFree(acor);
return (FALSE);
}
ftemp = N_VNew(neq, machEnv);
if (ftemp == NULL)
{
N_VFree(tempv);
N_VFree(ewt);
N_VFree(acor);
return (FALSE);
}
/* Allocate zn[0] ... zn[maxord] */
for (j = 0; j <= maxord; j++)
{
zn[j] = N_VNew(neq, machEnv);
if (zn[j] == NULL)
{
N_VFree(ewt);
N_VFree(acor);
N_VFree(tempv);
N_VFree(ftemp);
for (i = 0; i < j; i++)
N_VFree(zn[i]);
return (FALSE);
}
}
/* Set solver workspace lengths */
lrw = (maxord + 5) * neq;
liw = 0;
return (TRUE);
}
/***************** CVFreeVectors *********************************
This routine frees the CVODE vectors allocated in CVAllocVectors.
******************************************************************/
static void
CVFreeVectors(CVodeMem cv_mem, int maxord)
{
int j;
N_VFree(ewt);
N_VFree(acor);
N_VFree(tempv);
N_VFree(ftemp);
for (j = 0; j <= maxord; j++)
N_VFree(zn[j]);
}
/*********************** CVEwtSet **************************************
This routine is responsible for setting the error weight vector ewt,
according to tol_type, as follows:
(1) ewt[i] = 1 / (*reltol * ABS(ycur[i]) + *abstol), i=0,...,neq-1
if tol_type = SS
(2) ewt[i] = 1 / (*reltol * ABS(ycur[i]) + abstol[i]), i=0,...,neq-1
if tol_type = SV
CVEwtSet returns TRUE if ewt is successfully set as above to a
positive vector and FALSE otherwise. In the latter case, ewt is
considered undefined after the FALSE return from CVEwtSet.
All the real work is done in the routines CVEwtSetSS, CVEwtSetSV.
***********************************************************************/
static booleantype
CVEwtSet(CVodeMem cv_mem, N_Vector ycur)
{
switch (itol)
{
case SS:
return (CVEwtSetSS(cv_mem, ycur));
case SV:
return (CVEwtSetSV(cv_mem, ycur));
}
return (-99);
}
/*********************** CVEwtSetSS *********************************
This routine sets ewt as decribed above in the case tol_type = SS.
It tests for non-positive components before inverting. CVEwtSetSS
returns TRUE if ewt is successfully set to a positive vector
and FALSE otherwise. In the latter case, ewt is considered
undefined after the FALSE return from CVEwtSetSS.
********************************************************************/
static booleantype
CVEwtSetSS(CVodeMem cv_mem, N_Vector ycur)
{
realtype rtoli, atoli;
rtoli = *reltol;
atoli = *((realtype *) abstol);
N_VAbs(ycur, tempv);
N_VScale(rtoli, tempv, tempv);
N_VAddConst(tempv, atoli, tempv);
if (N_VMin(tempv) <= ZERO)
return (FALSE);
N_VInv(tempv, ewt);
return (TRUE);
}
/*********************** CVEwtSetSV *********************************
This routine sets ewt as decribed above in the case tol_type = SV.
It tests for non-positive components before inverting. CVEwtSetSV
returns TRUE if ewt is successfully set to a positive vector
and FALSE otherwise. In the latter case, ewt is considered
undefined after the FALSE return from CVEwtSetSV.
********************************************************************/
static booleantype
CVEwtSetSV(CVodeMem cv_mem, N_Vector ycur)
{
realtype rtoli;
rtoli = *reltol;
N_VAbs(ycur, tempv);
N_VLinearSum(rtoli, tempv, ONE, (N_Vector) abstol, tempv);
if (N_VMin(tempv) <= ZERO)
return (FALSE);
N_VInv(tempv, ewt);
return (TRUE);
}
/******************* CVHin ***************************************
This routine computes a tentative initial step size h0.
If tout is too close to tn (= t0), then CVHin returns FALSE and
h remains uninitialized. Otherwise, CVHin sets h to the chosen
value h0 and returns TRUE.
The algorithm used seeks to find h0 as a solution of
(WRMS norm of (h0^2 ydd / 2)) = 1,
where ydd = estimated second derivative of y.
*****************************************************************/
static booleantype
CVHin(CVodeMem cv_mem, realtype tout)
{
int sign, count;
realtype tdiff, tdist, tround, hlb, hub;
realtype hg, hgs, hnew, hrat, h0, yddnrm;
/* Test for tout too close to tn */
if ((tdiff = tout - tn) == ZERO)
return (FALSE);
sign = (tdiff > ZERO) ? 1 : -1;
tdist = ABS(tdiff);
tround = uround * MAX(ABS(tn), ABS(tout));
if (tdist < TWO * tround)
return (FALSE);
/* Set lower and upper bounds on h0, and take geometric mean
Exit with this value if the bounds cross each other */
hlb = HLB_FACTOR * tround;
hub = CVUpperBoundH0(cv_mem, tdist);
hg = RSqrt(hlb * hub);
hnew = hg;
if (hub < hlb)
{
if (sign == -1)
hg = -hg;
h = hg;
return (TRUE);
}
/* Loop up to MAX_ITERS times to find h0.
Stop if new and previous values differ by a factor < 2.
Stop if hnew/hg > 2 after one iteration, as this probably means
that the ydd value is bad because of cancellation error. */
count = 0;
loop
{
count++;
if (count >= MAX_ITERS)
break;
hgs = hg * sign;
yddnrm = CVYddNorm(cv_mem, hgs);
if (CVMEM cvode_error == TRUE)
{
hg /= 2.;
#ifdef DEBUG_CVODE
CVMEM warning_msg("halving step in CVHin\n");
#endif
continue;
}
hnew =
(yddnrm * hub * hub >
TWO) ? RSqrt(TWO / yddnrm) : RSqrt(hg * hub);
hrat = hnew / hg;
if ((hrat > HALF) && (hrat < TWO))
break;
if ((count >= 2) && (hrat > TWO))
{
hnew = hg;
break;
}
hg = hnew;
}
/* Apply bounds, bias factor, and attach sign */
h0 = H_BIAS * hnew;
if (h0 < hlb)
h0 = hlb;
if (h0 > hub)
h0 = hub;
if (sign == -1)
h0 = -h0;
h = h0;
return (TRUE);
}
/******************** CVUpperBoundH0 ******************************
This routine sets an upper bound on abs(h0) based on
tdist = abs(tout - t0) and the values of y[i]/y'[i].
******************************************************************/
static realtype
CVUpperBoundH0(CVodeMem cv_mem, realtype tdist)
{
realtype atoli, hub_inv, hub;
booleantype vectorAtol;
N_Vector temp1, temp2;
atoli = 0;
vectorAtol = (itol == SV);
if (!vectorAtol)
atoli = *((realtype *) abstol);
temp1 = tempv;
temp2 = acor;
N_VAbs(zn[0], temp1);
N_VAbs(zn[1], temp2);
if (vectorAtol)
{
N_VLinearSum(HUB_FACTOR, temp1, ONE, (N_Vector) abstol, temp1);
}
else
{
N_VScale(HUB_FACTOR, temp1, temp1);
N_VAddConst(temp1, atoli, temp1);
}
N_VDiv(temp2, temp1, temp1);
hub_inv = N_VMaxNorm(temp1);
hub = HUB_FACTOR * tdist;
if (hub * hub_inv > ONE)
hub = ONE / hub_inv;
return (hub);
}
/****************** CVYddNorm *************************************
This routine computes an estimate of the second derivative of y
using a difference quotient, and returns its WRMS norm.
******************************************************************/
static realtype
CVYddNorm(CVodeMem cv_mem, realtype hg)
{
realtype yddnrm;
N_VLinearSum(hg, zn[1], ONE, zn[0], y);
f(N, tn + hg, y, tempv, f_data);
#ifdef DEBUG_CVODE
if (cvode_error == TRUE)
{
CVMEM warning_msg("CVYddNorm error\n");
}
#endif
nfe++;
N_VLinearSum(ONE, tempv, -ONE, zn[1], tempv);
N_VScale(ONE / hg, tempv, tempv);
yddnrm = N_VWrmsNorm(tempv, ewt);
return (yddnrm);
}
/********************* CVStep **************************************
This routine performs one internal cvode step, from tn to tn + h.
It calls other routines to do all the work.
The main operations done here are as follows:
* preliminary adjustments if a new step size was chosen;
* prediction of the Nordsieck history array zn at tn + h;
* setting of multistep method coefficients and test quantities;
* solution of the nonlinear system;
* testing the local error;
* updating zn and other state data if successful;
* resetting stepsize and order for the next step.
* if SLDET is on, check for stability, reduce order if necessary.
On a failure in the nonlinear system solution or error test, the
step may be reattempted, depending on the nature of the failure.
********************************************************************/
static int
CVStep(CVodeMem cv_mem)
{
realtype saved_t, dsm;
int ncf, nef, nflag;
booleantype passed;
int kflag;
saved_t = tn;
ncf = nef = 0;
nflag = FIRST_CALL;
if ((nst > 0) && (hprime != h))
CVAdjustParams(cv_mem);
/* Looping point for attempts to take a step */
loop
{
bool predict_fail = false;
CVMEM cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
CVMEM cvode_test = FALSE;
if (CVMEM cvode_error == TRUE)
{
predict_fail = true;
#ifdef DEBUG_CVODE
CVMEM warning_msg("Before predict, y Fail, time %e\n", tn);
#endif
}
else
{
CVMEM cvode_prev_good_time = CVMEM cvode_last_good_time;
N_VScale(1.0, CVMEM cvode_last_good_y, CVMEM cvode_prev_good_y);
CVMEM cvode_last_good_time = tn;
N_VScale(1.0, y, CVMEM cvode_last_good_y);
#ifdef DEBUG_CVODE
CVMEM warning_msg("Before predict, y OK, time %e\n", tn);
#endif
}
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("Before predict, zn Fail\n");
}
else
{
CVMEM warning_msg("Before predict, zn OK\n");
}
saved_t = tn;
#endif
CVPredict(cv_mem);
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After predict, y Fail\n");
}
else
{
CVMEM warning_msg("After predict, y OK\n");
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After predict, zn Fail\n");
}
else
{
CVMEM warning_msg("After predict, zn OK\n");
}
#endif
CVSet(cv_mem);
nflag = CVnls(cv_mem, nflag);
if (CVMEM cvode_error == TRUE || predict_fail)
{
nflag = -1;
}
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After CVnls, y Fail\n");
}
else
{
CVMEM warning_msg("After CVnls, y OK\n");
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After CVnls, zn Fail\n");
}
else
{
CVMEM warning_msg("After CVnls, zn OK\n");
}
#endif
//fprintf(stderr, "\nTime %e,\th %e\n", tn, h);
kflag = CVHandleNFlag(cv_mem, &nflag, saved_t, &ncf);
if (kflag == PREDICT_AGAIN)
continue;
if (kflag != DO_ERROR_TEST)
return (kflag);
/* Return if nonlinear solve failed and recovery not possible. */
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("Before error test, y Fail\n");
}
else
{
CVMEM warning_msg("Before error test, y OK\n");
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("Before error test, zn Fail\n");
}
else
{
CVMEM warning_msg("Before error test, zn OK\n");
}
#endif
passed = CVDoErrorTest(cv_mem, &nflag, &kflag, saved_t, &nef, &dsm);
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg(CVMEM sformatf("After error test, y Fail, passed %d\n",
passed));
}
else
{
CVMEM warning_msg(CVMEM sformatf("After error test, y OK, passed %d\n",
passed));
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After error test, zn Fail\n");
}
else
{
CVMEM warning_msg("After error test, zn OK\n");
}
#endif
/* Return if error test failed and recovery not possible. */
if ((!passed) && (kflag == REP_ERR_FAIL))
return (kflag);
if (passed)
break;
/* Retry step if error test failed, nflag == PREV_ERR_FAIL */
}
#ifdef DEBUG_CVODE
CVMEM warning_msg("Finished step in CVStep\n");
#endif
/* Nonlinear system solve and error test were both successful.
Update data, and consider change of step and/or order. */
CVCompleteStep(cv_mem);
#ifdef DEBUG_CVODE
CVMEM cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
CVMEM cvode_test = FALSE;
if (CVMEM cvode_error == TRUE)
{
CVMEM warning_msg("After complete step, y Fail\n");
}
else
{
CVMEM warning_msg("After complete step, y OK\n");
}
CVMEM cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
CVMEM cvode_test = FALSE;
if (CVMEM cvode_error == TRUE)
{
CVMEM warning_msg("After complete step, zn Fail\n");
}
else
{
CVMEM warning_msg("After complete step, zn OK\n");
}
#endif
CVPrepareNextStep(cv_mem, dsm);
/* If Stablilty Limit Detection is turned on, call stability limit
detection routine for possible order reduction. */
if (sldeton)
CVBDFStab(cv_mem);
#ifdef DEBUG_CVODE
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After cvbfdstab, y Fail\n");
}
else
{
CVMEM warning_msg("After cvbfdstab, y OK\n");
}
cvode_test = TRUE;
f(N, tn, zn[0], ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("After cvbfdstab, zn Fail\n");
}
else
{
CVMEM warning_msg("After cvbfdstab, zn OK\n");
}
#endif
etamax = (nst <= SMALL_NST) ? ETAMX2 : ETAMX3;
/* Finally, we rescale the acor array to be the
estimated local error vector. */
N_VScale(ONE / tq[2], acor, acor);
return (SUCCESS_STEP);
}
/********************* CVAdjustParams ********************************
This routine is called when a change in step size was decided upon,
and it handles the required adjustments to the history array zn.
If there is to be a change in order, we call CVAdjustOrder and reset
q, L = q+1, and qwait. Then in any case, we call CVRescale, which
resets h and rescales the Nordsieck array.
**********************************************************************/
static void
CVAdjustParams(CVodeMem cv_mem)
{
if (qprime != q)
{
CVAdjustOrder(cv_mem, qprime - q);
q = qprime;
L = q + 1;
qwait = L;
}
CVRescale(cv_mem);
}
/********************* CVAdjustOrder *****************************
This routine is a high level routine which handles an order
change by an amount deltaq (= +1 or -1). If a decrease in order
is requested and q==2, then the routine returns immediately.
Otherwise CVAdjustAdams or CVAdjustBDF is called to handle the
order change (depending on the value of lmm).
******************************************************************/
static void
CVAdjustOrder(CVodeMem cv_mem, int deltaq)
{
if ((q == 2) && (deltaq != 1))
return;
switch (lmm)
{
case ADAMS:
CVAdjustAdams(cv_mem, deltaq);
break;
case BDF:
CVAdjustBDF(cv_mem, deltaq);
break;
}
}
/*************** CVAdjustAdams ***********************************
This routine adjusts the history array on a change of order q by
deltaq, in the case that lmm == ADAMS.
*****************************************************************/
static void
CVAdjustAdams(CVodeMem cv_mem, int deltaq)
{
int i, j;
realtype xi, hsum;
/* On an order increase, set new column of zn to zero and return */
if (deltaq == 1)
{
N_VConst(ZERO, zn[L]);
return;
}
/* On an order decrease, each zn[j] is adjusted by a multiple
of zn[q]. The coefficients in the adjustment are the
coefficients of the polynomial x*x*(x+xi_1)*...*(x+xi_j),
integrated, where xi_j = [t_n - t_(n-j)]/h. */
for (i = 0; i <= qmax; i++)
l[i] = ZERO;
l[1] = ONE;
hsum = ZERO;
for (j = 1; j <= q - 2; j++)
{
hsum += tau[j];
xi = hsum / hscale;
for (i = j + 1; i >= 1; i--)
l[i] = l[i] * xi + l[i - 1];
}
for (j = 1; j <= q - 2; j++)
l[j + 1] = q * (l[j] / (j + 1));
for (j = 2; j < q; j++)
N_VLinearSum(-l[j], zn[q], ONE, zn[j], zn[j]);
}
/********************** CVAdjustBDF *******************************
This is a high level routine which handles adjustments to the
history array on a change of order by deltaq in the case that
lmm == BDF. CVAdjustBDF calls CVIncreaseBDF if deltaq = +1 and
CVDecreaseBDF if deltaq = -1 to do the actual work.
******************************************************************/
static void
CVAdjustBDF(CVodeMem cv_mem, int deltaq)
{
switch (deltaq)
{
case 1:
CVIncreaseBDF(cv_mem);
return;
case -1:
CVDecreaseBDF(cv_mem);
return;
}
}
/******************** CVIncreaseBDF **********************************
This routine adjusts the history array on an increase in the
order q in the case that lmm == BDF.
A new column zn[q+1] is set equal to a multiple of the saved
vector (= acor) in zn[qmax]. Then each zn[j] is adjusted by
a multiple of zn[q+1]. The coefficients in the adjustment are the
coefficients of the polynomial x*x*(x+xi_1)*...*(x+xi_(q-1)),
where xi_j = [t_n - t_(n-j)]/h.
*********************************************************************/
static void
CVIncreaseBDF(CVodeMem cv_mem)
{
realtype alpha0, alpha1, prod, xi, xiold, hsum, A1;
int i, j;
for (i = 0; i <= qmax; i++)
l[i] = ZERO;
l[2] = alpha1 = prod = xiold = ONE;
alpha0 = -ONE;
hsum = hscale;
if (q > 1)
{
for (j = 1; j < q; j++)
{
hsum += tau[j + 1];
xi = hsum / hscale;
prod *= xi;
alpha0 -= ONE / (j + 1);
alpha1 += ONE / xi;
for (i = j + 2; i >= 2; i--)
l[i] = l[i] * xiold + l[i - 1];
xiold = xi;
}
}
A1 = (-alpha0 - alpha1) / prod;
if (L >= 0 && L <= qmax)
{
N_VScale(A1, zn[qmax], zn[L]);
for (j = 2; j <= q; j++)
{
N_VLinearSum(l[j], zn[L], ONE, zn[j], zn[j]);
}
}
}
/********************* CVDecreaseBDF ******************************
This routine adjusts the history array on a decrease in the
order q in the case that lmm == BDF.
Each zn[j] is adjusted by a multiple of zn[q]. The coefficients
in the adjustment are the coefficients of the polynomial
x*x*(x+xi_1)*...*(x+xi_(q-2)), where xi_j = [t_n - t_(n-j)]/h.
******************************************************************/
static void
CVDecreaseBDF(CVodeMem cv_mem)
{
realtype hsum, xi;
int i, j;
for (i = 0; i <= qmax; i++)
l[i] = ZERO;
l[2] = ONE;
hsum = ZERO;
for (j = 1; j <= q - 2; j++)
{
hsum += tau[j];
xi = hsum / hscale;
for (i = j + 2; i >= 2; i--)
l[i] = l[i] * xi + l[i - 1];
}
for (j = 2; j < q; j++)
N_VLinearSum(-l[j], zn[q], ONE, zn[j], zn[j]);
}
/**************** CVRescale ***********************************
This routine rescales the Nordsieck array by multiplying the
jth column zn[j] by eta^j, j = 1, ..., q. Then the value of
h is rescaled by eta, and hscale is reset to h.
***************************************************************/
static void
CVRescale(CVodeMem cv_mem)
{
int j;
realtype factor;
factor = eta;
for (j = 1; j <= q; j++)
{
N_VScale(factor, zn[j], zn[j]);
factor *= eta;
}
h = hscale * eta;
hscale = h;
nscon = 0;
}
/********************* CVPredict *************************************
This routine advances tn by the tentative step size h, and computes
the predicted array z_n(0), which is overwritten on zn. The
prediction of zn is done by repeated additions.
*********************************************************************/
static void
CVPredict(CVodeMem cv_mem)
{
int j, k;
tn += h;
for (k = 1; k <= q; k++)
for (j = q; j >= k; j--)
N_VLinearSum(ONE, zn[j - 1], ONE, zn[j], zn[j - 1]);
}
/************************** CVSet *********************************
This routine is a high level routine which calls CVSetAdams or
CVSetBDF to set the polynomial l, the test quantity array tq,
and the related variables rl1, gamma, and gamrat.
******************************************************************/
static void
CVSet(CVodeMem cv_mem)
{
switch (lmm)
{
case ADAMS:
CVSetAdams(cv_mem);
break;
case BDF:
CVSetBDF(cv_mem);
break;
}
rl1 = ONE / l[1];
gamma = h * rl1;
if (nst == 0)
gammap = gamma;
gamrat = (nst > 0) ? gamma / gammap : ONE; /* protect x / x != 1.0 */
}
/******************** CVSetAdams *********************************
This routine handles the computation of l and tq for the
case lmm == ADAMS.
The components of the array l are the coefficients of a
polynomial Lambda(x) = l_0 + l_1 x + ... + l_q x^q, given by
q-1
(d/dx) Lambda(x) = c * PRODUCT (1 + x / xi_i) , where
i=1
Lambda(-1) = 0, Lambda(0) = 1, and c is a normalization factor.
Here xi_i = [t_n - t_(n-i)] / h.
The array tq is set to test quantities used in the convergence
test, the error test, and the selection of h at a new order.
*****************************************************************/
static void
CVSetAdams(CVodeMem cv_mem)
{
realtype m[L_MAX], M[3], hsum;
if (q == 1)
{
l[0] = l[1] = tq[1] = tq[5] = ONE;
tq[2] = TWO;
tq[3] = TWELVE;
tq[4] = CORTES * tq[2]; /* = 0.1 * tq[2] */
return;
}
hsum = CVAdamsStart(cv_mem, m);
M[0] = CVAltSum(q - 1, m, 1);
M[1] = CVAltSum(q - 1, m, 2);
CVAdamsFinish(cv_mem, m, M, hsum);
}
/****************** CVAdamsStart ********************************
This routine generates in m[] the coefficients of the product
polynomial needed for the Adams l and tq coefficients for q > 1.
******************************************************************/
static realtype
CVAdamsStart(CVodeMem cv_mem, realtype m[])
{
realtype hsum, xi_inv, sum;
int i, j;
hsum = h;
m[0] = ONE;
for (i = 1; i <= q; i++)
m[i] = ZERO;
for (j = 1; j < q; j++)
{
if ((j == q - 1) && (qwait == 1))
{
sum = CVAltSum(q - 2, m, 2);
tq[1] = m[q - 2] / (q * sum);
}
xi_inv = h / hsum;
for (i = j; i >= 1; i--)
m[i] += m[i - 1] * xi_inv;
hsum += tau[j];
/* The m[i] are coefficients of product(1 to j) (1 + x/xi_i) */
}
return (hsum);
}
/****************** CVAdamsFinish *******************************
This routine completes the calculation of the Adams l and tq.
******************************************************************/
static void
CVAdamsFinish(CVodeMem cv_mem, realtype m[], realtype M[], realtype hsum)
{
int i;
realtype M0_inv, xi, xi_inv;
M0_inv = ONE / M[0];
l[0] = ONE;
for (i = 1; i <= q; i++)
l[i] = M0_inv * (m[i - 1] / i);
xi = hsum / h;
xi_inv = ONE / xi;
tq[2] = xi * M[0] / M[1];
tq[5] = xi / l[q];
if (qwait == 1)
{
for (i = q; i >= 1; i--)
m[i] += m[i - 1] * xi_inv;
M[2] = CVAltSum(q, m, 2);
tq[3] = L * M[0] / M[2];
}
tq[4] = CORTES * tq[2];
}
/****************** CVAltSum **************************************
CVAltSum returns the value of the alternating sum
sum (i= 0 ... iend) [ (-1)^i * (a[i] / (i + k)) ].
If iend < 0 then CVAltSum returns 0.
This operation is needed to compute the integral, from -1 to 0,
of a polynomial x^(k-1) M(x) given the coefficients of M(x).
******************************************************************/
static realtype
CVAltSum(int iend, realtype a[], int k)
{
int i, sign;
realtype sum;
if (iend < 0)
return (ZERO);
sum = ZERO;
sign = 1;
for (i = 0; i <= iend; i++)
{
sum += sign * (a[i] / (i + k));
sign = -sign;
}
return (sum);
}
/***************** CVSetBDF **************************************
This routine computes the coefficients l and tq in the case
lmm == BDF. CVSetBDF calls CVSetTqBDF to set the test
quantity array tq.
The components of the array l are the coefficients of a
polynomial Lambda(x) = l_0 + l_1 x + ... + l_q x^q, given by
q-1
Lambda(x) = (1 + x / xi*_q) * PRODUCT (1 + x / xi_i) , where
i=1
xi_i = [t_n - t_(n-i)] / h.
The array tq is set to test quantities used in the convergence
test, the error test, and the selection of h at a new order.
*****************************************************************/
static void
CVSetBDF(CVodeMem cv_mem)
{
realtype alpha0, alpha0_hat, xi_inv, xistar_inv, hsum;
int i, j;
l[0] = l[1] = xi_inv = xistar_inv = ONE;
for (i = 2; i <= q; i++)
l[i] = ZERO;
alpha0 = alpha0_hat = -ONE;
hsum = h;
if (q > 1)
{
for (j = 2; j < q; j++)
{
hsum += tau[j - 1];
xi_inv = h / hsum;
alpha0 -= ONE / j;
for (i = j; i >= 1; i--)
l[i] += l[i - 1] * xi_inv;
/* The l[i] are coefficients of product(1 to j) (1 + x/xi_i) */
}
/* j = q */
alpha0 -= ONE / q;
xistar_inv = -l[1] - alpha0;
hsum += tau[q - 1];
xi_inv = h / hsum;
alpha0_hat = -l[1] - xi_inv;
for (i = q; i >= 1; i--)
l[i] += l[i - 1] * xistar_inv;
}
CVSetTqBDF(cv_mem, hsum, alpha0, alpha0_hat, xi_inv, xistar_inv);
}
/****************** CVSetTqBDF ************************************
This routine sets the test quantity array tq when lmm == BDF.
******************************************************************/
static void
CVSetTqBDF(CVodeMem cv_mem, realtype hsum, realtype alpha0,
realtype alpha0_hat, realtype xi_inv, realtype xistar_inv)
{
realtype A1, A2, A3, A4, A5, A6;
realtype C, CPrime, CPrimePrime;
A1 = ONE - alpha0_hat + alpha0;
A2 = ONE + q * A1;
tq[2] = ABS(alpha0 * (A2 / A1));
tq[5] = ABS((A2) / (l[q] * xi_inv / xistar_inv));
if (qwait == 1)
{
C = xistar_inv / l[q];
A3 = alpha0 + ONE / q;
A4 = alpha0_hat + xi_inv;
CPrime = A3 / (ONE - A4 + A3);
tq[1] = ABS(CPrime / C);
hsum += tau[q];
xi_inv = h / hsum;
A5 = alpha0 - (ONE / (q + 1));
A6 = alpha0_hat - xi_inv;
CPrimePrime = A2 / (ONE - A6 + A5);
tq[3] = ABS(CPrimePrime * xi_inv * (q + 2) * A5);
}
tq[4] = CORTES * tq[2];
}
/****************** CVnls *****************************************
This routine attempts to solve the nonlinear system associated
with a single implicit step of the linear multistep method.
Depending on iter, it calls CVnlsFunctional or CVnlsNewton
to do the work.
******************************************************************/
static int
CVnls(CVodeMem cv_mem, int nflag)
{
switch (iter)
{
case FUNCTIONAL:
return (CVnlsFunctional(cv_mem));
case NEWTON:
return (CVnlsNewton(cv_mem, nflag));
}
return (-99);
}
/***************** CVnlsFunctional ********************************
This routine attempts to solve the nonlinear system using
functional iteration (no matrices involved).
******************************************************************/
static int
CVnlsFunctional(CVodeMem cv_mem)
{
int m;
realtype del, delp, dcon;
/* Initialize counter and evaluate f at predicted y */
delp = 0;
crate = ONE;
m = 0;
f(N, tn, zn[0], tempv, f_data);
nfe++;
if (CVMEM cvode_error == TRUE)
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsFunctional, Fail at beginning\n");
#endif
return (CONV_FAIL);
}
else
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsFunctional, OK at beginning\n");
#endif
}
N_VConst(ZERO, acor);
/* Loop until convergence; accumulate corrections in acor */
loop
{
/* Correct y directly from the last f value */
N_VLinearSum(h, tempv, -ONE, zn[1], tempv);
N_VScale(rl1, tempv, tempv);
N_VLinearSum(ONE, zn[0], ONE, tempv, y);
/* Get WRMS norm of current correction to use in convergence test */
N_VLinearSum(ONE, tempv, -ONE, acor, acor);
del = N_VWrmsNorm(acor, ewt);
N_VScale(ONE, tempv, acor);
/* Test for convergence. If m > 0, an estimate of the convergence
rate constant is stored in crate, and used in the test. */
if (m > 0)
crate = MAX(CRDOWN * crate, del / delp);
dcon = del * MIN(ONE, crate) / tq[4];
if (dcon <= ONE)
{
acnrm = (m == 0) ? del : N_VWrmsNorm(acor, ewt);
return (SOLVED); /* Convergence achieved */
}
/* Stop at maxcor iterations or if iter. seems to be diverging */
m++;
if ((m == maxcor) || ((m >= 2) && (del > RDIV * delp)))
return (CONV_FAIL);
/* Save norm of correction, evaluate f, and loop again */
delp = del;
f(N, tn, y, tempv, f_data);
if (CVMEM cvode_error == TRUE)
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsFunctional, Fail at end\n");
#endif
return (CONV_FAIL);
}
else
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsFunctional, OK at end\n");
#endif
}
nfe++;
}
}
/*********************** CVnlsNewton **********************************
This routine handles the Newton iteration. It calls lsetup if
indicated, calls CVNewtonIteration to perform the iteration, and
retries a failed attempt at Newton iteration if that is indicated.
See return values at top of this file.
**********************************************************************/
static int
CVnlsNewton(CVodeMem cv_mem, int nflag)
{
N_Vector vtemp1, vtemp2, vtemp3;
int convfail, ier;
booleantype callSetup;
vtemp1 = acor; /* rename acor as vtemp1 for readability */
vtemp2 = y; /* rename y as vtemp2 for readability */
vtemp3 = tempv; /* rename tempv as vtemp3 for readability */
/* Set flag convfail, input to lsetup for its evaluation decision */
convfail = ((nflag == FIRST_CALL) || (nflag == PREV_ERR_FAIL)) ?
NO_FAILURES : FAIL_OTHER;
/* Decide whether or not to call setup routine (if one exists) */
if (setupNonNull)
{
callSetup = (nflag == PREV_CONV_FAIL) || (nflag == PREV_ERR_FAIL) ||
(nst == 0) || (nst >= nstlp + MSBP)
|| (ABS(gamrat - ONE) > DGMAX);
}
else
{
crate = ONE;
callSetup = FALSE;
}
/* Looping point for the solution of the nonlinear system.
Evaluate f at the predicted y, call lsetup if indicated, and
call CVNewtonIteration for the Newton iteration itself. */
loop
{
f(N, tn, zn[0], ftemp, f_data);
nfe++;
if (CVMEM cvode_error == TRUE)
{
#ifdef DEBUG_CVODE
CVMEM warning_msg(CVMEM sformatf("CVnlsNewton, start of loop, time %e\n",
tn));
#endif
return (CONV_FAIL);
}
else
{
#ifdef DEBUG_CVODE
CVMEM warning_msg(CVMEM sformatf(
"CVnlsNewton, OK, start of loop, time %e\n", tn));
#endif
}
if (callSetup)
{
ier = lsetup(cv_mem, convfail, zn[0], ftemp, &jcur,
vtemp1, vtemp2, vtemp3);
nsetups++;
callSetup = FALSE;
gamrat = crate = ONE;
gammap = gamma;
nstlp = nst;
/* Return if lsetup failed */
if (ier < 0)
return (SETUP_FAIL_UNREC);
if (ier > 0)
return (CONV_FAIL);
}
/* Set acor to zero and load prediction into y vector */
N_VConst(ZERO, acor);
N_VScale(ONE, zn[0], y);
/* Do the Newton iteration */
ier = CVNewtonIteration(cv_mem);
if (CVMEM cvode_error == TRUE)
{
return (CONV_FAIL);
}
CVMEM cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
CVMEM cvode_test = FALSE;
if (CVMEM cvode_error == TRUE)
{
#ifdef DEBUG_CVODE
CVMEM warning_msg(CVMEM sformatf(
"After CVNewtonIteration, Fail, ier %d\n", ier));
#endif
return (CONV_FAIL);
}
else
{
#ifdef DEBUG_CVODE
CVMEM warning_msg(CVMEM sformatf("After CVNewtonIteration, OK, ier %d\n",
ier));
#endif
}
/* If there is a convergence failure and the Jacobian-related
data appears not to be current, loop again with a call to lsetup
in which convfail=FAIL_BAD_J. Otherwise return. */
if (ier != TRY_AGAIN_CVODE)
return (ier);
callSetup = TRUE;
convfail = FAIL_BAD_J;
}
}
/********************** CVNewtonIteration ****************************
This routine performs the Newton iteration. If the iteration succeeds,
it returns the value SOLVED. If not, it may signal the CVnlsNewton
routine to call lsetup again and reattempt the iteration, by
returning the value TRY_AGAIN_CVODE. (In this case, CVnlsNewton must set
convfail to FAIL_BAD_J before calling setup again).
Otherwise, this routine returns one of the appropriate values
SOLVE_FAIL_UNREC or CONV_FAIL back to CVnlsNewton.
*********************************************************************/
static int
CVNewtonIteration(CVodeMem cv_mem)
{
int m, ret;
realtype del, delp, dcon;
N_Vector b;
mnewt = m = 0;
delp = 0;
/* Looping point for Newton iteration */
loop
{
/* Evaluate the residual of the nonlinear system */
N_VLinearSum(rl1, zn[1], ONE, acor, tempv);
N_VLinearSum(gamma, ftemp, -ONE, tempv, tempv);
/* Call the lsolve function */
b = tempv;
ret = lsolve(cv_mem, b, y, ftemp);
nni++;
if (ret < 0)
return (SOLVE_FAIL_UNREC);
/* If lsolve had a recoverable failure and Jacobian data is
not current, signal to try the solution again */
if (ret > 0)
{
if ((!jcur) && (setupNonNull))
return (TRY_AGAIN_CVODE);
return (CONV_FAIL);
}
/* Get WRMS norm of correction; add correction to acor and y */
del = N_VWrmsNorm(b, ewt);
N_VLinearSum(ONE, acor, ONE, b, acor);
N_VLinearSum(ONE, zn[0], ONE, acor, y);
/* Test for convergence. If m > 0, an estimate of the convergence
rate constant is stored in crate, and used in the test. */
if (m > 0)
{
crate = MAX(CRDOWN * crate, del / delp);
}
dcon = del * MIN(ONE, crate) / tq[4];
#ifdef DEBUG_CVODE
/* added before SOLVED */
cvode_test = TRUE;
f(N, tn, y, ftemp, f_data);
cvode_test = FALSE;
if (cvode_error == TRUE)
{
CVMEM warning_msg("CVnlsNewton, Fail at SOLVED\n");
return (CONV_FAIL);
}
else
{
CVMEM warning_msg("CVnlsNewton, OK at SOLVED\n");
}
#endif
if (dcon <= ONE)
{
acnrm = (m == 0) ? del : N_VWrmsNorm(acor, ewt);
jcur = FALSE;
return (SOLVED); /* Nonlinear system was solved successfully */
}
mnewt = ++m;
/* Stop at maxcor iterations or if iter. seems to be diverging.
If still not converged and Jacobian data is not current,
signal to try the solution again */
if ((m == maxcor) || ((m >= 2) && (del > RDIV * delp)))
{
if ((!jcur) && (setupNonNull))
return (TRY_AGAIN_CVODE);
return (CONV_FAIL);
}
/* Save norm of correction, evaluate f, and loop again */
delp = del;
f(N, tn, y, ftemp, f_data);
if (CVMEM cvode_error == TRUE)
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsNewton, Fail at end\n");
#endif
return (CONV_FAIL);
}
else
{
#ifdef DEBUG_CVODE
CVMEM warning_msg("CVnlsNewton, OK at end\n");
#endif
}
nfe++;
}
}
/********************** CVHandleNFlag *******************************
This routine takes action on the return value nflag = *nflagPtr
returned by CVnls, as follows:
If CVnls succeeded in solving the nonlinear system, then
CVHandleNFlag returns the constant DO_ERROR_TEST, which tells CVStep
to perform the error test.
If the nonlinear system was not solved successfully, then ncfn and
ncf = *ncfPtr are incremented and Nordsieck array zn is restored.
If the solution of the nonlinear system failed due to an
unrecoverable failure by setup, we return the value SETUP_FAILED.
If it failed due to an unrecoverable failure in solve, then we return
the value SOLVE_FAILED.
Otherwise, a recoverable failure occurred when solving the
nonlinear system (CVnls returned nflag == CONV_FAIL).
In this case, we return the value REP_CONV_FAIL if ncf is now
equal to MXNCF or |h| = hmin.
If not, we set *nflagPtr = PREV_CONV_FAIL and return the value
PREDICT_AGAIN, telling CVStep to reattempt the step.
*********************************************************************/
static int
CVHandleNFlag(CVodeMem cv_mem, int *nflagPtr, realtype saved_t, int *ncfPtr)
{
int nflag;
nflag = *nflagPtr;
if (nflag == SOLVED)
return (DO_ERROR_TEST);
/* The nonlinear soln. failed; increment ncfn and restore zn */
ncfn++;
CVRestore(cv_mem, saved_t);
/* Return if lsetup or lsolve failed unrecoverably */
if (nflag == SETUP_FAIL_UNREC)
return (SETUP_FAILED);
if (nflag == SOLVE_FAIL_UNREC)
return (SOLVE_FAILED);
/* At this point, nflag == CONV_FAIL; increment ncf */
(*ncfPtr)++;
etamax = ONE;
/* If we had MXNCF failures or |h| = hmin, return REP_CONV_FAIL */
if ((ABS(h) <= hmin * ONEPSM) || (*ncfPtr == MXNCF))
return (REP_CONV_FAIL);
/* Reduce step size; return to reattempt the step */
eta = MAX(ETACF, hmin / ABS(h));
*nflagPtr = PREV_CONV_FAIL;
CVRescale(cv_mem);
return (PREDICT_AGAIN);
}
/********************** CVRestore ************************************
This routine restores the value of tn to saved_t and undoes the
prediction. After execution of CVRestore, the Nordsieck array zn has
the same values as before the call to CVPredict.
********************************************************************/
static void
CVRestore(CVodeMem cv_mem, realtype saved_t)
{
int j, k;
tn = saved_t;
for (k = 1; k <= q; k++)
for (j = q; j >= k; j--)
N_VLinearSum(ONE, zn[j - 1], -ONE, zn[j], zn[j - 1]);
}
/******************* CVDoErrorTest ********************************
This routine performs the local error test.
The weighted local error norm dsm is loaded into *dsmPtr, and
the test dsm ?<= 1 is made.
If the test passes, CVDoErrorTest returns TRUE.
If the test fails, we undo the step just taken (call CVRestore),
set *nflagPtr to PREV_ERR_FAIL, and return FALSE.
If MXNEF error test failures have occurred or if ABS(h) = hmin,
we set *kflagPtr = REP_ERR_FAIL. (Otherwise *kflagPtr has the
value last returned by CVHandleNflag.)
If more than MXNEF1 error test failures have occurred, an order
reduction is forced.
******************************************************************/
static booleantype
CVDoErrorTest(CVodeMem cv_mem, int *nflagPtr, int *kflagPtr,
realtype saved_t, int *nefPtr, realtype * dsmPtr)
{
realtype dsm;
dsm = acnrm / tq[2];
/* If est. local error norm dsm passes test, return TRUE */
*dsmPtr = dsm;
if (dsm <= ONE)
return (TRUE);
/* Test failed; increment counters, set nflag, and restore zn array */
(*nefPtr)++;
netf++;
*nflagPtr = PREV_ERR_FAIL;
CVRestore(cv_mem, saved_t);
/* At MXNEF failures or |h| = hmin, return with kflag = REP_ERR_FAIL */
if ((ABS(h) <= hmin * ONEPSM) || (*nefPtr == MXNEF))
{
*kflagPtr = REP_ERR_FAIL;
return (FALSE);
}
/* Set etamax = 1 to prevent step size increase at end of this step */
etamax = ONE;
/* Set h ratio eta from dsm, rescale, and return for retry of step */
if (*nefPtr <= MXNEF1)
{
eta = ONE / (RPowerR(BIAS2 * dsm, ONE / L) + ADDON);
eta = MAX(ETAMIN, MAX(eta, hmin / ABS(h)));
if (*nefPtr >= SMALL_NEF)
eta = MIN(eta, ETAMXF);
CVRescale(cv_mem);
return (FALSE);
}
/* After MXNEF1 failures, force an order reduction and retry step */
if (q > 1)
{
eta = MAX(ETAMIN, hmin / ABS(h));
CVAdjustOrder(cv_mem, -1);
L = q;
q--;
qwait = L;
CVRescale(cv_mem);
return (FALSE);
}
/* If already at order 1, restart: reload zn from scratch */
eta = MAX(ETAMIN, hmin / ABS(h));
h *= eta;
hscale = h;
qwait = LONG_WAIT;
nscon = 0;
f(N, tn, zn[0], tempv, f_data);
if (CVMEM cvode_error == TRUE)
{
CVMEM warning_msg("CVDoErrorTest");
/*exit(8); */
CVMEM error_msg("CVDoErrorTest", 1 /* STOP */ );
#if !defined(R_SO)
exit(4);
#endif
}
nfe++;
N_VScale(h, tempv, zn[1]);
return (FALSE);
}
/*************** CVCompleteStep **********************************
This routine performs various update operations when the solution
to the nonlinear system has passed the local error test.
We increment the step counter nst, record the values hu and qu,
update the tau array, and apply the corrections to the zn array.
The tau[i] are the last q values of h, with tau[1] the most recent.
The counter qwait is decremented, and if qwait == 1 (and q < qmax)
we save acor and tq[5] for a possible order increase.
******************************************************************/
static void
CVCompleteStep(CVodeMem cv_mem)
{
int i, j;
nst++;
nscon++;
hu = h;
qu = q;
for (i = q; i >= 2; i--)
tau[i] = tau[i - 1];
if ((q == 1) && (nst > 1))
tau[2] = tau[1];
tau[1] = h;
for (j = 0; j <= q; j++)
N_VLinearSum(l[j], acor, ONE, zn[j], zn[j]);
qwait--;
if ((qwait == 1) && (q != qmax))
{
N_VScale(ONE, acor, zn[qmax]);
saved_tq5 = tq[5];
}
}
/************* CVPrepareNextStep **********************************
This routine handles the setting of stepsize and order for the
next step -- hprime and qprime. Along with hprime, it sets the
ratio eta = hprime/h. It also updates other state variables
related to a change of step size or order.
******************************************************************/
static void
CVPrepareNextStep(CVodeMem cv_mem, realtype dsm)
{
/* If etamax = 1, defer step size or order changes */
if (etamax == ONE)
{
qwait = MAX(qwait, 2);
qprime = q;
hprime = h;
eta = ONE;
return;
}
/* etaq is the ratio of new to old h at the current order */
etaq = ONE / (RPowerR(BIAS2 * dsm, ONE / L) + ADDON);
/* If no order change, adjust eta and acor in CVSetEta and return */
if (qwait != 0)
{
eta = etaq;
qprime = q;
CVSetEta(cv_mem);
return;
}
/* If qwait = 0, consider an order change. etaqm1 and etaqp1 are
the ratios of new to old h at orders q-1 and q+1, respectively.
CVChooseEta selects the largest; CVSetEta adjusts eta and acor */
qwait = 2;
etaqm1 = CVComputeEtaqm1(cv_mem);
etaqp1 = CVComputeEtaqp1(cv_mem);
CVChooseEta(cv_mem);
CVSetEta(cv_mem);
}
/***************** CVSetEta ***************************************
This routine adjusts the value of eta according to the various
heuristic limits and the optional input hmax. It also resets
etamax to be the estimated local error vector.
*******************************************************************/
static void
CVSetEta(CVodeMem cv_mem)
{
/* If eta below the threshhold THRESH, reject a change of step size */
if (eta < THRESH)
{
eta = ONE;
hprime = h;
}
else
{
/* Limit eta by etamax and hmax, then set hprime */
eta = MIN(eta, etamax);
eta /= MAX(ONE, ABS(h) * hmax_inv * eta);
hprime = h * eta;
if (qprime < q)
nscon = 0;
}
/* Reset etamax for the next step size change, and scale acor */
}
/*************** CVComputeEtaqm1 **********************************
This routine computes and returns the value of etaqm1 for a
possible decrease in order by 1.
******************************************************************/
static realtype
CVComputeEtaqm1(CVodeMem cv_mem)
{
realtype ddn;
etaqm1 = ZERO;
if (q > 1)
{
ddn = N_VWrmsNorm(zn[q], ewt) / tq[1];
etaqm1 = ONE / (RPowerR(BIAS1 * ddn, ONE / q) + ADDON);
}
return (etaqm1);
}
/*************** CVComputeEtaqp1 **********************************
This routine computes and returns the value of etaqp1 for a
possible increase in order by 1.
******************************************************************/
static realtype
CVComputeEtaqp1(CVodeMem cv_mem)
{
realtype dup, cquot;
etaqp1 = ZERO;
if (q != qmax)
{
cquot = (tq[5] / saved_tq5) * RPowerI(h / tau[2], L);
N_VLinearSum(-cquot, zn[qmax], ONE, acor, tempv);
dup = N_VWrmsNorm(tempv, ewt) / tq[3];
etaqp1 = ONE / (RPowerR(BIAS3 * dup, ONE / (L + 1)) + ADDON);
}
return (etaqp1);
}
/******************* CVChooseEta **********************************
Given etaqm1, etaq, etaqp1 (the values of eta for qprime =
q - 1, q, or q + 1, respectively), this routine chooses the
maximum eta value, sets eta to that value, and sets qprime to the
corresponding value of q. If there is a tie, the preference
order is to (1) keep the same order, then (2) decrease the order,
and finally (3) increase the order. If the maximum eta value
is below the threshhold THRESH, the order is kept unchanged and
eta is set to 1.
******************************************************************/
static void
CVChooseEta(CVodeMem cv_mem)
{
realtype etam;
etam = MAX(etaqm1, MAX(etaq, etaqp1));
if (etam < THRESH)
{
eta = ONE;
qprime = q;
return;
}
if (etam == etaq)
{
eta = etaq;
qprime = q;
}
else if (etam == etaqm1)
{
eta = etaqm1;
qprime = q - 1;
}
else
{
eta = etaqp1;
qprime = q + 1;
if (lmm == BDF)
N_VScale(ONE, acor, zn[qmax]);
}
}
/****************** CVHandleFailure ******************************
This routine prints error messages for all cases of failure by
CVStep. It returns to CVode the value that CVode is to return to
the user.
*****************************************************************/
static int
CVHandleFailure(CVodeMem cv_mem, int kflag)
{
/* Set vector of absolute weighted local errors */
N_VProd(acor, ewt, tempv);
N_VAbs(tempv, tempv);
/* Depending on kflag, print error message and return error flag */
switch (kflag)
{
case REP_ERR_FAIL:
{
char * error_string = CVMEM sformatf(MSG_ERR_FAILS, (double) tn, (double) h);
CVMEM warning_msg(error_string);
}
return (ERR_FAILURE);
case REP_CONV_FAIL:
{
char * error_string = CVMEM sformatf(MSG_CONV_FAILS, (double) tn, (double) h);
CVMEM warning_msg(error_string);
}
return (CONV_FAILURE);
case SETUP_FAILED:
{
char * error_string = CVMEM sformatf(MSG_SETUP_FAILED, (double) tn);
CVMEM warning_msg(error_string);
}
return (SETUP_FAILURE);
case SOLVE_FAILED:
{
char * error_string = CVMEM sformatf(MSG_SOLVE_FAILED, (double) tn);
CVMEM warning_msg(error_string);
}
return (SOLVE_FAILURE);
}
return (-99);
}
/****************** CVBDFStab ***********************************
This routine handles the BDF Stability Limit Detection Algorithm
STALD. It is called if lmm = BDF and the SLDET option is on.
If the order is 3 or more, the required norm data is saved.
If a decision to reduce order has not already been made, and
enough data has been saved, CVsldet is called. If it signals
a stability limit violation, the order is reduced, and the step
size is reset accordingly.
*****************************************************************/
#ifdef ORIGINAL_CVBDFStab
void
CVBDFStab(CVodeMem cv_mem)
{
int i, k, ldflag, factorial;
realtype sq, sqm1, sqm2;
/* If order is 3 or greater, then save scaled derivative data,
push old data down in i, then add current values to top. */
if (q >= 3)
{
for (k = 1; k <= 3; k++)
{
for (i = 5; i >= 2; i--)
ssdat[i][k] = ssdat[i - 1][k];
}
factorial = 1;
for (i = 1; i <= q - 1; i++)
factorial *= i;
sq = factorial * q * (q + 1) * acnrm / tq[5];
sqm1 = factorial * q * N_VWrmsNorm(zn[q], ewt);
sqm2 = factorial * N_VWrmsNorm(zn[q - 1], ewt);
ssdat[1][1] = sqm2 * sqm2;
ssdat[1][2] = sqm1 * sqm1;
ssdat[1][3] = sq * sq;
}
if (qprime >= q)
{
/* If order is 3 or greater, and enough ssdat has been saved,
nscon >= q+5, then call stability limit detection routine. */
if ((q >= 3) && (nscon >= q + 5))
{
ldflag = CVsldet(cv_mem);
if (ldflag > 3)
{
/* A stability limit violation is indicated by
a return flag of 4, 5, or 6.
Reduce new order. */
qprime = q - 1;
eta = etaqm1;
eta = MIN(eta, etamax);
eta = eta / MAX(ONE, ABS(h) * hmax_inv * eta);
hprime = h * eta;
iopt[NOR] = iopt[NOR] + 1;
/* CVMEM warning_msg(CVMEM sformatf(
" Order reduced to %d by CVBDFStab at nst = %d,\n h = %e hnew = %e\n",
qprime,nst,h,h*eta)); */
}
}
}
else
{
/* Otherwise, let order increase happen, and
reset stability limit counter, nscon. */
nscon = 0;
}
}
#endif
void
CVBDFStab(CVodeMem cv_mem)
{
// appt try...
if (q >= 3 && qprime >= q)
{
if (tq[5] < saved_tq5)
qprime = 1;
//else
//nscon = 0;
}
//int i, k, ldflag, factorial;
//realtype sq, sqm1, sqm2;
///* If order is 3 or greater, then save scaled derivative data,
// push old data down in i, then add current values to top. */
//if (q >= 3)
//{
// for (k = 1; k <= 3; k++)
// {
// for (i = 5; i >= 2; i--)
// ssdat[i][k] = ssdat[i - 1][k];
// }
// factorial = 1;
// for (i = 1; i <= q - 1; i++)
// factorial *= i;
// sq = factorial * q * (q + 1) * acnrm / MAX(tq[5], TINY);
// sqm1 = factorial * q * N_VWrmsNorm(zn[q], ewt);
// sqm2 = factorial * N_VWrmsNorm(zn[q - 1], ewt);
// ssdat[1][1] = sqm2 * sqm2;
// ssdat[1][2] = sqm1 * sqm1;
// ssdat[1][3] = sq * sq;
//}
//if (qprime >= q)
//{
// /* If order is 3 or greater, and enough ssdat has been saved,
// nscon >= q+5, then call stability limit detection routine. */
// if ((q >= 3) && (nscon >= q + 5))
// {
// ldflag = CVsldet(cv_mem);
// //cv_mem->cv_machenv->phreeqc_ptr->set_forward_output_to_log(1); // appt
// qprime = 1; // appt try
// //CVMEM warning_msg(CVMEM sformatf(
// // "CVBDFStab: ldflag = %d, order(q) = %d, qprime = %d, nst = %d, h = %8.2e, time = %8.2e\n",
// // ldflag, q, qprime, nst, h, CVMEM cvode_last_good_time));
// if (ldflag > 3)
// {
// /* A stability limit violation is indicated by
// a return flag of 4, 5, or 6.
// Reduce new order. */
// qprime = q - 1;
// eta = etaqm1;
// eta = MIN(eta, etamax);
// eta = eta / MAX(ONE, ABS(h) * hmax_inv * eta);
// hprime = h * eta;
// iopt[NOR] = iopt[NOR] + 1;
// //CVMEM warning_msg(CVMEM sformatf(
// // " Order reduced to %d by CVBDFStab at nst = %d,\n h = %e hnew = %e\n",
// // qprime,nst,h,h*eta));
// }
// }
//}
//else
//{
// /* Otherwise, let order increase happen, and
// reset stability limit counter, nscon. */
// nscon = 0;
//}
}
/********************* CVsldet ************************************
This routine detects stability limitation using stored scaled
derivatives data. CVsldet returns the magnitude of the
dominate characteristic root, rr. The presents of a stability
limit is indicated by rr > "something a little less then 1.0",
and a positive kflag. This routine should only be called if
order is greater than or equal to 3, and data has been collected
for 5 time steps.
Returned values:
kflag = 1 -> Found stable characteristic root, normal matrix case
kflag = 2 -> Found stable characteristic root, quartic solution
kflag = 3 -> Found stable characteristic root, quartic solution,
with Newton correction
kflag = 4 -> Found stability violation, normal matrix case
kflag = 5 -> Found stability violation, quartic solution
kflag = 6 -> Found stability violation, quartic solution,
with Newton correction
kflag < 0 -> No stability limitation,
or could not compute limitation.
kflag = -1 -> Min/max ratio of ssdat too small.
kflag = -2 -> For normal matrix case, vmax > vrrt2*vrrt2
kflag = -3 -> For normal matrix case, The three ratios
are inconsistent.
kflag = -4 -> Small coefficient prevents elimination of quartics.
kflag = -5 -> R value from quartics not consistent.
kflag = -6 -> No corrected root passes test on qk values
kflag = -7 -> Trouble solving for sigsq.
kflag = -8 -> Trouble solving for B, or R via B.
kflag = -9 -> R via sigsq[k] disagrees with R from data.
********************************************************************/
#ifdef ORIGINAL_CVBDFStab
static int
CVsldet(CVodeMem cv_mem)
{
integertype i, k, j, it, kmin, kflag = 0;
realtype rat[5][4], rav[4], qkr[4], sigsq[4], smax[4], ssmax[4];
realtype drr[4], rrc[4], sqmx[4], qjk[4][4], vrat[5], qc[6][4], qco[6][4];
realtype rr, rrcut, vrrtol, vrrt2, sqtol, rrtol;
realtype smink, smaxk, sumrat, sumrsq, vmin, vmax, drrmax, adrr;
realtype /*small_cvode,*/ tem, sqmax, saqk, qp, s, sqmaxk, saqj, sqmin;
//realtype rsa, rsb, rsc, rsd, rse, rd1a, rd1b, rd1c, rd1d;
realtype rsa, rsb, rsc, rsd, rd1a, rd1b, rd1c;
//realtype rd2a, rd2b, rd2c, rd3a, rd3b, cest1, corr1;
realtype rd2a, rd2b, rd3a, cest1, corr1;
realtype ratp, ratm, qfac1, qfac2, bb, rrb;
/* The following are cutoffs and tolerances used by this routine */
rrcut = 0.98;
vrrtol = 1.0e-4;
vrrt2 = 5.0e-4;
sqtol = 1.0e-3;
rrtol = 1.0e-2;
rr = ZERO;
/* Index k corresponds to the degree of the interpolating polynomial. */
/* k = 1 -> q-1 */
/* k = 2 -> q */
/* k = 3 -> q+1 */
/* Index i is a backward-in-time index, i = 1 -> current time, */
/* i = 2 -> previous step, etc */
/* get maxima, minima, and variances, and form quartic coefficients */
for (k = 1; k <= 3; k++)
{
smink = ssdat[1][k];
smaxk = ZERO;
for (i = 1; i <= 5; i++)
{
smink = MIN(smink, ssdat[i][k]);
smaxk = MAX(smaxk, ssdat[i][k]);
}
if (smink < TINY * smaxk)
{
kflag = -1;
return (kflag);
}
smax[k] = smaxk;
ssmax[k] = smaxk * smaxk;
sumrat = ZERO;
sumrsq = ZERO;
for (i = 1; i <= 4; i++)
{
rat[i][k] = ssdat[i][k] / ssdat[i + 1][k];
sumrat = sumrat + rat[i][k];
sumrsq = sumrsq + rat[i][k] * rat[i][k];
}
rav[k] = FOURTH * sumrat;
vrat[k] = ABS(FOURTH * sumrsq - rav[k] * rav[k]);
qc[5][k] = ssdat[1][k] * ssdat[3][k] - ssdat[2][k] * ssdat[2][k];
qc[4][k] = ssdat[2][k] * ssdat[3][k] - ssdat[1][k] * ssdat[4][k];
qc[3][k] = ZERO;
qc[2][k] = ssdat[2][k] * ssdat[5][k] - ssdat[3][k] * ssdat[4][k];
qc[1][k] = ssdat[4][k] * ssdat[4][k] - ssdat[3][k] * ssdat[5][k];
for (i = 1; i <= 5; i++)
{
qco[i][k] = qc[i][k];
}
} /* End of k loop */
/* Isolate normal or nearly-normal matrix case. Three quartic will
have common or nearly-common roots in this case.
Return a kflag = 1 if this procedure works. If three root
differ more than vrrt2, return error kflag = -3. */
vmin = MIN(vrat[1], MIN(vrat[2], vrat[3]));
vmax = MAX(vrat[1], MAX(vrat[2], vrat[3]));
if (vmin < vrrtol * vrrtol)
{
if (vmax > vrrt2 * vrrt2)
{
kflag = -2;
return (kflag);
}
else
{
rr = (rav[1] + rav[2] + rav[3]) / THREE;
drrmax = ZERO;
for (k = 1; k <= 3; k++)
{
adrr = ABS(rav[k] - rr);
drrmax = MAX(drrmax, adrr);
}
if (drrmax > vrrt2)
{
kflag = -3;
}
kflag = 1;
/* can compute charactistic root, drop to next section */
}
}
else
{
/* use the quartics to get rr. */
if (ABS(qco[1][1]) < TINY * ssmax[1])
{
//small_cvode = qco[1][1];
kflag = -4;
return (kflag);
}
tem = qco[1][2] / qco[1][1];
for (i = 2; i <= 5; i++)
{
qco[i][2] = qco[i][2] - tem * qco[i][1];
}
qco[1][2] = ZERO;
tem = qco[1][3] / qco[1][1];
for (i = 2; i <= 5; i++)
{
qco[i][3] = qco[i][3] - tem * qco[i][1];
}
qco[1][3] = ZERO;
if (ABS(qco[2][2]) < TINY * ssmax[2])
{
//small_cvode = qco[2][2];
kflag = -4;
return (kflag);
}
tem = qco[2][3] / qco[2][2];
for (i = 3; i <= 5; i++)
{
qco[i][3] = qco[i][3] - tem * qco[i][2];
}
if (ABS(qco[4][3]) < TINY * ssmax[3])
{
//small_cvode = qco[4][3];
kflag = -4;
return (kflag);
}
rr = -qco[5][3] / qco[4][3];
if (rr < TINY || rr > HUN)
{
kflag = -5;
return (kflag);
}
for (k = 1; k <= 3; k++)
{
qkr[k] =
qc[5][k] + rr * (qc[4][k] +
rr * rr * (qc[2][k] + rr * qc[1][k]));
}
sqmax = ZERO;
for (k = 1; k <= 3; k++)
{
saqk = ABS(qkr[k]) / ssmax[k];
if (saqk > sqmax)
sqmax = saqk;
}
sqmin = sqmax;
if (sqmax < sqtol)
{
kflag = 2;
/* can compute charactistic root, drop to "given rr,etc" */
}
else
{
/* do Newton corrections to improve rr. */
for (it = 1; it <= 3; it++)
{
for (k = 1; k <= 3; k++)
{
qp = qc[4][k] + rr * rr * (THREE * qc[2][k] +
rr * FOUR * qc[1][k]);
drr[k] = ZERO;
if (ABS(qp) > TINY * ssmax[k])
drr[k] = -qkr[k] / qp;
rrc[k] = rr + drr[k];
}
for (k = 1; k <= 3; k++)
{
s = rrc[k];
sqmaxk = ZERO;
for (j = 1; j <= 3; j++)
{
qjk[j][k] = qc[5][j] + s * (qc[4][j] +
s * s * (qc[2][j] +
s * qc[1][j]));
saqj = ABS(qjk[j][k]) / ssmax[j];
if (saqj > sqmaxk)
sqmaxk = saqj;
}
sqmx[k] = sqmaxk;
}
sqmin = sqmx[1];
kmin = 1;
for (k = 2; k <= 3; k++)
{
if (sqmx[k] < sqmin)
{
kmin = k;
sqmin = sqmx[k];
}
}
rr = rrc[kmin];
if (sqmin < sqtol)
{
kflag = 3;
/* can compute charactistic root */
/* break out of Newton correction loop and drop to "given rr,etc" */
break;
}
else
{
for (j = 1; j <= 3; j++)
{
qkr[j] = qjk[j][kmin];
}
}
} /* end of Newton correction loop */
if (sqmin > sqtol)
{
kflag = -6;
return (kflag);
}
} /* end of if (sqmax < sqtol) else */
} /* end of if(vmin < vrrtol*vrrtol) else, quartics to get rr. */
/* given rr, find sigsq[k] and verify rr. */
/* All positive kflag drop to this section */
for (k = 1; k <= 3; k++)
{
rsa = ssdat[1][k];
rsb = ssdat[2][k] * rr;
rsc = ssdat[3][k] * rr * rr;
rsd = ssdat[4][k] * rr * rr * rr;
//rse = ssdat[5][k] * rr * rr * rr * rr;
rd1a = rsa - rsb;
rd1b = rsb - rsc;
rd1c = rsc - rsd;
//rd1d = rsd - rse;
rd2a = rd1a - rd1b;
rd2b = rd1b - rd1c;
//rd2c = rd1c - rd1d;
rd3a = rd2a - rd2b;
//rd3b = rd2b - rd2c;
/* rd3b = rd3b; */
if (ABS(rd1b) < TINY * smax[k])
{
kflag = -7;
return (kflag);
}
cest1 = -rd3a / rd1b;
if (cest1 < TINY || cest1 > FOUR)
{
kflag = -7;
return (kflag);
}
corr1 = (rd2b / cest1) / (rr * rr);
sigsq[k] = ssdat[3][k] + corr1;
}
if (sigsq[2] < TINY)
{
kflag = -8;
return (kflag);
}
ratp = sigsq[3] / sigsq[2];
ratm = sigsq[1] / sigsq[2];
qfac1 = FOURTH * (q * q - ONE);
qfac2 = TWO / (q - ONE);
bb = ratp * ratm - ONE - qfac1 * ratp;
tem = ONE - qfac2 * bb;
if (ABS(tem) < TINY)
{
kflag = -8;
return (kflag);
}
rrb = ONE / tem;
if (ABS(rrb - rr) > rrtol)
{
kflag = -9;
return (kflag);
}
/* Check to see if rr is above cutoff rrcut */
if (rr > rrcut)
{
if (kflag == 1)
kflag = 4;
if (kflag == 2)
kflag = 5;
if (kflag == 3)
kflag = 6;
}
/* All positive kflag returned at this point */
return (kflag);
}
#endif
/*******************************************************************/
/********* END Private Helper Functions Implementation *************/
/*******************************************************************/
/***************************************************************/
/************** END CVODE Implementation ***********************/
/***************************************************************/