mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-15 16:18:22 +01:00
3152 lines
104 KiB
Plaintext
3152 lines
104 KiB
Plaintext
# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 24/05/2024 01:41, 3147 lines, 110328 bytes, md5=7fc916311a573d0ad7ce880f996a9bbf
|
||
# Created 24 May 2024 01:58:45
|
||
# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc_rates.dat
|
||
|
||
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on:
|
||
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
|
||
# Details are given at the end of this file.
|
||
|
||
SOLUTION_MASTER_SPECIES
|
||
#
|
||
#element species alk gfw_formula element_gfw
|
||
#
|
||
H H+ -1 H 1.008
|
||
H(0) H2 0 H
|
||
H(1) H+ -1 H
|
||
E e- 1 0 0
|
||
O H2O 0 O 16
|
||
O(0) O2 0 O
|
||
O(-2) H2O 0 0
|
||
Ca Ca+2 0 Ca 40.08
|
||
Mg Mg+2 0 Mg 24.312
|
||
Na Na+ 0 Na 22.9898
|
||
K K+ 0 K 39.102
|
||
Fe Fe+2 0 Fe 55.847
|
||
Fe(+2) Fe+2 0 Fe
|
||
Fe(+3) Fe+3 -2 Fe
|
||
Mn Mn+2 0 Mn 54.938
|
||
Mn(+2) Mn+2 0 Mn
|
||
Mn(+3) Mn+3 0 Mn
|
||
Al Al+3 0 Al 26.9815
|
||
Ba Ba+2 0 Ba 137.34
|
||
Sr Sr+2 0 Sr 87.62
|
||
Si H4SiO4 0 SiO2 28.0843
|
||
Cl Cl- 0 Cl 35.453
|
||
C CO3-2 2 HCO3 12.0111
|
||
C(+4) CO3-2 2 HCO3
|
||
C(-4) CH4 0 CH4
|
||
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
|
||
S SO4-2 0 SO4 32.064
|
||
S(6) SO4-2 0 SO4
|
||
S(-2) HS- 1 S
|
||
N NO3- 0 N 14.0067
|
||
N(+5) NO3- 0 N
|
||
N(+3) NO2- 0 N
|
||
N(0) N2 0 N
|
||
N(-3) NH4+ 0 N 14.0067
|
||
#Amm AmmH+ 0 AmmH 17.031
|
||
B H3BO3 0 B 10.81
|
||
P PO4-3 2 P 30.9738
|
||
F F- 0 F 18.9984
|
||
Li Li+ 0 Li 6.939
|
||
Br Br- 0 Br 79.904
|
||
Zn Zn+2 0 Zn 65.37
|
||
Cd Cd+2 0 Cd 112.4
|
||
Pb Pb+2 0 Pb 207.19
|
||
Cu Cu+2 0 Cu 63.546
|
||
Cu(+2) Cu+2 0 Cu
|
||
Cu(+1) Cu+1 0 Cu
|
||
# redox-uncoupled gases
|
||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||
Oxg Oxg 0 Oxg 32 # O2 gas
|
||
Mtg Mtg 0 Mtg 16.032 # CH4 gas
|
||
Sg H2Sg 0 H2Sg 32.064 # H2S gas
|
||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||
|
||
SOLUTION_SPECIES
|
||
H+ = H+
|
||
-gamma 9 0
|
||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4
|
||
-dw 9.31e-9 838 16.315 0 2.376 24.01 0
|
||
# Dw(25 C) dw_T a a2 visc a3 a_v_dif
|
||
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc
|
||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif
|
||
|
||
# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+)
|
||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm)
|
||
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.)
|
||
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
|
||
|
||
# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT.
|
||
e- = e-
|
||
H2O = H2O
|
||
-dw 2.299e-9 -254
|
||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||
Li+ = Li+
|
||
-gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2
|
||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||
Na+ = Na+
|
||
-gamma 4 0.075
|
||
-gamma 4.08 0.082 # halite solubility
|
||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
|
||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||
-dw 1.33e-9 75 3.627 0 0.7037
|
||
K+ = K+
|
||
-gamma 3.5 0.015
|
||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||
-viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028
|
||
-dw 1.96e-9 254 3.484 0 0.1964
|
||
Mg+2 = Mg+2
|
||
-gamma 5.5 0.2
|
||
-Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||
-dw 0.705e-9 -4 5.569 0 1.047
|
||
Ca+2 = Ca+2
|
||
-gamma 5 0.165
|
||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1
|
||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M
|
||
-dw 0.792e-9 34 5.411 0 1.046
|
||
Sr+2 = Sr+2
|
||
-gamma 5.26 0.121
|
||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
|
||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||
-dw 0.794e-9 149 0.805 1.961 1e-9 0.7876
|
||
Ba+2 = Ba+2
|
||
-gamma 5 0
|
||
-gamma 4 0.153 # Barite solubility
|
||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||
-dw 0.848e-9 174 10.53 0 3
|
||
Fe+2 = Fe+2
|
||
-gamma 6 0
|
||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||
-dw 0.719e-9
|
||
Mn+2 = Mn+2
|
||
-gamma 6 0
|
||
-Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||
-dw 0.688e-9
|
||
Al+3 = Al+3
|
||
-gamma 9 0
|
||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353
|
||
-dw 0.559e-9
|
||
H4SiO4 = H4SiO4
|
||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1
|
||
-dw 1.1e-9
|
||
Cl- = Cl-
|
||
-gamma 3.5 0.015
|
||
-gamma 3.63 0.017 # cf. pitzer.dat
|
||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||
-dw 2.033e-9 216 3.16 0.2071 0.7432
|
||
CO3-2 = CO3-2
|
||
-gamma 5.4 0
|
||
-Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316
|
||
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
|
||
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
|
||
SO4-2 = SO4-2
|
||
-gamma 5 -0.04
|
||
-Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||
-viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605
|
||
-dw 1.07e-9 -114 17 6.02e-2 4.94e-2
|
||
NO3- = NO3-
|
||
-gamma 3 0
|
||
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
|
||
-viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381
|
||
-dw 1.9e-9 104 1.11
|
||
# AmmH+ = AmmH+
|
||
# -gamma 2.50
|
||
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
|
||
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
|
||
H3BO3 = H3BO3
|
||
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
|
||
-dw 1.1e-9
|
||
PO4-3 = PO4-3
|
||
-gamma 4 0
|
||
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
|
||
-dw 0.612e-9
|
||
F- = F-
|
||
-gamma 3.5 0
|
||
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
|
||
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
|
||
-dw 1.46e-9 -36 4.352
|
||
Br- = Br-
|
||
-gamma 3 0
|
||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82
|
||
-dw 2.09e-9 208 3.5 0 0.5737
|
||
Zn+2 = Zn+2
|
||
-gamma 5 0
|
||
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
|
||
-dw 0.715e-9
|
||
Cd+2 = Cd+2
|
||
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
|
||
-dw 0.717e-9
|
||
Pb+2 = Pb+2
|
||
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||
-dw 0.945e-9
|
||
Cu+2 = Cu+2
|
||
-gamma 6 0
|
||
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
|
||
-dw 0.733e-9
|
||
# redox-uncoupled gases
|
||
Hdg = Hdg # H2
|
||
-Vm 6.52 0.78 0.12 # supcrt
|
||
-dw 5.13e-9
|
||
Oxg = Oxg # O2
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
-dw 2.35e-9
|
||
Mtg = Mtg # CH4
|
||
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 1.85e-9
|
||
Ntg = Ntg # N2
|
||
-Vm 7 # Pray et al., 1952, IEC 44, 1146
|
||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||
H2Sg = H2Sg # H2S
|
||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 2.1e-9
|
||
# aqueous species
|
||
H2O = OH- + H+
|
||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||
-gamma 3.5 0
|
||
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
|
||
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
|
||
-dw 5.27e-9 478 0.8695
|
||
2 H2O = O2 + 4 H+ + 4 e-
|
||
-log_k -86.08
|
||
-delta_h 134.79 kcal
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
-dw 2.35e-9
|
||
2 H+ + 2 e- = H2
|
||
-log_k -3.15
|
||
-delta_h -1.759 kcal
|
||
-Vm 6.52 0.78 0.12 # supcrt
|
||
-dw 5.13e-9
|
||
H+ + Cl- = HCl
|
||
-log_k -0.5
|
||
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50<35>C
|
||
-gamma 0 0.4256
|
||
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
|
||
CO3-2 + H+ = HCO3-
|
||
-log_k 10.329; -delta_h -3.561 kcal
|
||
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
||
-gamma 5.4 0
|
||
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
|
||
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
|
||
-dw 1.18e-9 -190 11.386
|
||
CO3-2 + 2 H+ = CO2 + H2O
|
||
-log_k 16.681
|
||
-delta_h -5.738 kcal
|
||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
|
||
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
|
||
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
|
||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
|
||
-log_k -1.8
|
||
-analytical_expression 8.68 -0.0103 -2190
|
||
-Vm 14.58 1.84 4.14 -2.46 -3.2
|
||
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
|
||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
||
-log_k 41.071
|
||
-delta_h -61.039 kcal
|
||
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 1.85e-9
|
||
SO4-2 + H+ = HSO4-
|
||
-log_k 1.988; -delta_h 3.85 kcal
|
||
-analytic -56.889 0.006473 2307.9 19.8858
|
||
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
|
||
-dw 1.22e-9 1000 15 2.861
|
||
HS- = S-2 + H+
|
||
-log_k -12.918
|
||
-delta_h 12.1 kcal
|
||
-gamma 5 0
|
||
-dw 0.731e-9
|
||
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
||
-log_k 33.65
|
||
-delta_h -60.14 kcal
|
||
-gamma 3.5 0
|
||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
|
||
-dw 1.73e-9
|
||
HS- + H+ = H2S
|
||
-log_k 6.994; -delta_h -5.3 kcal
|
||
-analytical -11.17 0.02386 3279
|
||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 2.1e-9
|
||
2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||
-analytical_expression 10.227 -0.01384 -2200
|
||
-Vm 36.41 -71.95 0 0 2.58
|
||
-dw 2.1e-9
|
||
H2Sg = HSg- + H+
|
||
-log_k -6.994; -delta_h 5.3 kcal
|
||
-analytical_expression 11.17 -0.02386 -3279
|
||
-gamma 3.5 0
|
||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
|
||
-dw 1.73e-9
|
||
2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||
-analytical_expression 10.227 -0.01384 -2200
|
||
-Vm 36.41 -71.95 0 0 2.58
|
||
-dw 2.1e-9
|
||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||
-log_k 28.57
|
||
-delta_h -43.76 kcal
|
||
-gamma 3 0
|
||
-Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt
|
||
-dw 1.91e-9
|
||
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
||
-log_k 207.08
|
||
-delta_h -312.13 kcal
|
||
-Vm 7 # Pray et al., 1952, IEC 44 1146
|
||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
|
||
-log_k 119.077
|
||
-delta_h -187.055 kcal
|
||
-gamma 2.5 0
|
||
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
|
||
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||
-dw 1.98e-9 203 1.47 2.644 6.81e-2
|
||
#AmmH+ = Amm + H+
|
||
NH4+ = NH3 + H+
|
||
-log_k -9.252
|
||
-delta_h 12.48 kcal
|
||
-analytic 0.6322 -0.001225 -2835.76
|
||
-Vm 6.69 2.8 3.58 -2.88 1.43
|
||
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
|
||
-dw 2.28e-9
|
||
#AmmH+ + SO4-2 = AmmHSO4-
|
||
NH4+ + SO4-2 = NH4SO4-
|
||
-gamma 6.54 -0.08
|
||
-log_k 1.106; -delta_h 4.3 kcal
|
||
-Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339
|
||
-viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748
|
||
-dw 1.35e-9 500 12.5 3 -1
|
||
H3BO3 = H2BO3- + H+
|
||
-log_k -9.24
|
||
-delta_h 3.224 kcal
|
||
H3BO3 + F- = BF(OH)3-
|
||
-log_k -0.4
|
||
-delta_h 1.85 kcal
|
||
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
|
||
-log_k 7.63
|
||
-delta_h 1.618 kcal
|
||
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
|
||
-log_k 13.67
|
||
-delta_h -1.614 kcal
|
||
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
|
||
-log_k 20.28
|
||
-delta_h -1.846 kcal
|
||
PO4-3 + H+ = HPO4-2
|
||
-log_k 12.346
|
||
-delta_h -3.53 kcal
|
||
-gamma 5 0
|
||
-dw 0.69e-9
|
||
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
|
||
PO4-3 + 2 H+ = H2PO4-
|
||
-log_k 19.553
|
||
-delta_h -4.52 kcal
|
||
-gamma 5.4 0
|
||
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
|
||
-dw 0.846e-9
|
||
PO4-3 + 3 H+ = H3PO4
|
||
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
|
||
delta_h -10.1 kJ
|
||
-Vm 7.47 12.4 6.29 -3.29 0
|
||
H+ + F- = HF
|
||
-log_k 3.18
|
||
-delta_h 3.18 kcal
|
||
-analytic -2.033 0.012645 429.01
|
||
-Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt
|
||
H+ + 2 F- = HF2-
|
||
-log_k 3.76
|
||
-delta_h 4.55 kcal
|
||
-Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt
|
||
Ca+2 + H2O = CaOH+ + H+
|
||
-log_k -12.78
|
||
Ca+2 + CO3-2 = CaCO3
|
||
-log_k 3.224; -delta_h 3.545 kcal
|
||
-analytic -1228.732 -0.29944 35512.75 485.818
|
||
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||
-Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt
|
||
Ca+2 + CO3-2 + H+ = CaHCO3+
|
||
-log_k 10.91; -delta_h 4.38 kcal
|
||
-analytic -6.009 3.377e-2 2044
|
||
-gamma 6 0
|
||
-Vm 30.19 .01 5.75 -2.78 .308 5.4
|
||
-dw 5.06e-10
|
||
Ca+2 + SO4-2 = CaSO4
|
||
-log_k 2.25
|
||
-delta_h 1.325 kcal
|
||
-dw 4.71e-10
|
||
-Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt
|
||
Ca+2 + HSO4- = CaHSO4+
|
||
-log_k 1.08
|
||
Ca+2 + PO4-3 = CaPO4-
|
||
-log_k 6.459
|
||
-delta_h 3.1 kcal
|
||
-gamma 5.4 0
|
||
Ca+2 + HPO4-2 = CaHPO4
|
||
-log_k 2.739
|
||
-delta_h 3.3 kcal
|
||
Ca+2 + H2PO4- = CaH2PO4+
|
||
-log_k 1.408
|
||
-delta_h 3.4 kcal
|
||
-gamma 5.4 0
|
||
# Ca+2 + F- = CaF+
|
||
# -log_k 0.94
|
||
# -delta_h 4.120 kcal
|
||
# -gamma 5.5 0.0
|
||
# -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt
|
||
Mg+2 + H2O = MgOH+ + H+
|
||
-log_k -11.44
|
||
-delta_h 15.952 kcal
|
||
-gamma 6.5 0
|
||
Mg+2 + CO3-2 = MgCO3
|
||
-log_k 2.98
|
||
-delta_h 2.713 kcal
|
||
-analytic 0.991 0.00667
|
||
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt
|
||
-dw 4.21e-10
|
||
Mg+2 + H+ + CO3-2 = MgHCO3+
|
||
-log_k 11.399
|
||
-delta_h -2.771 kcal
|
||
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
|
||
-gamma 4 0
|
||
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
|
||
-dw 4.78e-10
|
||
Mg+2 + SO4-2 = MgSO4
|
||
-gamma 0 0.2
|
||
-log_k 2.42; -delta_h 19 kJ
|
||
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||
-Vm 8.65 -10.21 29.58 -18.6 1.061
|
||
-viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696
|
||
-dw 4.45e-10
|
||
SO4-2 + MgSO4 = Mg(SO4)2-2
|
||
-gamma 7 0.047
|
||
-log_k 0.52; -delta_h -13.6 kJ
|
||
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||
-Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2
|
||
-viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3
|
||
-dw 0.845e-9 -200 8 0 0.965
|
||
Mg+2 + PO4-3 = MgPO4-
|
||
-log_k 6.589
|
||
-delta_h 3.1 kcal
|
||
-gamma 5.4 0
|
||
Mg+2 + HPO4-2 = MgHPO4
|
||
-log_k 2.87
|
||
-delta_h 3.3 kcal
|
||
Mg+2 + H2PO4- = MgH2PO4+
|
||
-log_k 1.513
|
||
-delta_h 3.4 kcal
|
||
-gamma 5.4 0
|
||
Mg+2 + F- = MgF+
|
||
-log_k 1.82
|
||
-delta_h 3.2 kcal
|
||
-gamma 4.5 0
|
||
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
|
||
# Na+ + OH- = NaOH
|
||
# -log_k -14.7 # remove this complex
|
||
Na+ + HCO3- = NaHCO3
|
||
-log_k -0.06; -delta_h 21 kJ
|
||
-gamma 0 0.2
|
||
-Vm 7.95 0 0 0 0.609
|
||
-viscosity -4e-2 -2.717 1.67e-5
|
||
-dw 6.73e-10
|
||
Na+ + SO4-2 = NaSO4-
|
||
-gamma 5.5 0
|
||
-log_k 0.6; -delta_h -14.4 kJ
|
||
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||
-Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325
|
||
-viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208
|
||
-dw 1.13e-9 -23 8.5 0.392 0.521
|
||
Na+ + HPO4-2 = NaHPO4-
|
||
-log_k 0.29
|
||
-gamma 5.4 0
|
||
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
|
||
Na+ + F- = NaF
|
||
-log_k -0.24
|
||
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt
|
||
K+ + HCO3- = KHCO3
|
||
-log_k -0.35; -delta_h 12 kJ
|
||
-gamma 0 9.4e-3
|
||
-Vm 9.48 0 0 0 -0.542
|
||
-viscosity 0.7 -1.289 9e-2
|
||
K+ + SO4-2 = KSO4-
|
||
-gamma 5.4 0.19
|
||
-log_k 0.6; -delta_h -10.4 kJ
|
||
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
|
||
-Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919
|
||
-viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69
|
||
-dw 0.9e-9 63 8.48 0 1.8
|
||
K+ + HPO4-2 = KHPO4-
|
||
-log_k 0.29
|
||
-gamma 5.4 0
|
||
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
|
||
Fe+2 + H2O = FeOH+ + H+
|
||
-log_k -9.5
|
||
-delta_h 13.2 kcal
|
||
-gamma 5 0
|
||
Fe+2 + 3 H2O = Fe(OH)3- + 3 H+
|
||
-log_k -31
|
||
-delta_h 30.3 kcal
|
||
-gamma 5 0
|
||
Fe+2 + Cl- = FeCl+
|
||
-log_k 0.14
|
||
Fe+2 + CO3-2 = FeCO3
|
||
-log_k 4.38
|
||
Fe+2 + HCO3- = FeHCO3+
|
||
-log_k 2
|
||
Fe+2 + SO4-2 = FeSO4
|
||
-log_k 2.25
|
||
-delta_h 3.23 kcal
|
||
-Vm -13 0 123
|
||
Fe+2 + HSO4- = FeHSO4+
|
||
-log_k 1.08
|
||
Fe+2 + 2 HS- = Fe(HS)2
|
||
-log_k 8.95
|
||
Fe+2 + 3 HS- = Fe(HS)3-
|
||
-log_k 10.987
|
||
Fe+2 + HPO4-2 = FeHPO4
|
||
-log_k 3.6
|
||
Fe+2 + H2PO4- = FeH2PO4+
|
||
-log_k 2.7
|
||
-gamma 5.4 0
|
||
Fe+2 + F- = FeF+
|
||
-log_k 1
|
||
Fe+2 = Fe+3 + e-
|
||
-log_k -13.02
|
||
-delta_h 9.68 kcal
|
||
-gamma 9 0
|
||
Fe+3 + H2O = FeOH+2 + H+
|
||
-log_k -2.19
|
||
-delta_h 10.4 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
|
||
-log_k -5.67
|
||
-delta_h 17.1 kcal
|
||
-gamma 5.4 0
|
||
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
|
||
-log_k -12.56
|
||
-delta_h 24.8 kcal
|
||
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
|
||
-log_k -21.6
|
||
-delta_h 31.9 kcal
|
||
-gamma 5.4 0
|
||
Fe+2 + 2 H2O = Fe(OH)2 + 2 H+
|
||
-log_k -20.57
|
||
-delta_h 28.565 kcal
|
||
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
|
||
-log_k -2.95
|
||
-delta_h 13.5 kcal
|
||
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
|
||
-log_k -6.3
|
||
-delta_h 14.3 kcal
|
||
Fe+3 + Cl- = FeCl+2
|
||
-log_k 1.48
|
||
-delta_h 5.6 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 Cl- = FeCl2+
|
||
-log_k 2.13
|
||
-gamma 5 0
|
||
Fe+3 + 3 Cl- = FeCl3
|
||
-log_k 1.13
|
||
Fe+3 + SO4-2 = FeSO4+
|
||
-log_k 4.04
|
||
-delta_h 3.91 kcal
|
||
-gamma 5 0
|
||
Fe+3 + HSO4- = FeHSO4+2
|
||
-log_k 2.48
|
||
Fe+3 + 2 SO4-2 = Fe(SO4)2-
|
||
-log_k 5.38
|
||
-delta_h 4.6 kcal
|
||
Fe+3 + HPO4-2 = FeHPO4+
|
||
-log_k 5.43
|
||
-delta_h 5.76 kcal
|
||
-gamma 5 0
|
||
Fe+3 + H2PO4- = FeH2PO4+2
|
||
-log_k 5.43
|
||
-gamma 5.4 0
|
||
Fe+3 + F- = FeF+2
|
||
-log_k 6.2
|
||
-delta_h 2.7 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 F- = FeF2+
|
||
-log_k 10.8
|
||
-delta_h 4.8 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 3 F- = FeF3
|
||
-log_k 14
|
||
-delta_h 5.4 kcal
|
||
Mn+2 + H2O = MnOH+ + H+
|
||
-log_k -10.59
|
||
-delta_h 14.4 kcal
|
||
-gamma 5 0
|
||
Mn+2 + 3 H2O = Mn(OH)3- + 3 H+
|
||
-log_k -34.8
|
||
-gamma 5 0
|
||
Mn+2 + Cl- = MnCl+
|
||
-log_k 0.61
|
||
-gamma 5 0
|
||
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
|
||
Mn+2 + 2 Cl- = MnCl2
|
||
-log_k 0.25
|
||
-Vm 1e-5 0 144
|
||
Mn+2 + 3 Cl- = MnCl3-
|
||
-log_k -0.31
|
||
-gamma 5 0
|
||
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
|
||
Mn+2 + CO3-2 = MnCO3
|
||
-log_k 4.9
|
||
Mn+2 + HCO3- = MnHCO3+
|
||
-log_k 1.95
|
||
-gamma 5 0
|
||
Mn+2 + SO4-2 = MnSO4
|
||
-log_k 2.25
|
||
-delta_h 3.37 kcal
|
||
-Vm -1.31 -1.83 62.3 -2.7
|
||
Mn+2 + 2 NO3- = Mn(NO3)2
|
||
-log_k 0.6
|
||
-delta_h -0.396 kcal
|
||
-Vm 6.16 0 29.4 0 0.9
|
||
Mn+2 + F- = MnF+
|
||
-log_k 0.84
|
||
-gamma 5 0
|
||
Mn+2 = Mn+3 + e-
|
||
-log_k -25.51
|
||
-delta_h 25.8 kcal
|
||
-gamma 9 0
|
||
Al+3 + H2O = AlOH+2 + H+
|
||
-log_k -5
|
||
-delta_h 11.49 kcal
|
||
-analytic -38.253 0 -656.27 14.327
|
||
-gamma 5.4 0
|
||
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353
|
||
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
|
||
-log_k -10.1
|
||
-delta_h 26.9 kcal
|
||
-gamma 5.4 0
|
||
-analytic 88.5 0 -9391.6 -27.121
|
||
Al+3 + 3 H2O = Al(OH)3 + 3 H+
|
||
-log_k -16.9
|
||
-delta_h 39.89 kcal
|
||
-analytic 226.374 0 -18247.8 -73.597
|
||
Al+3 + 4 H2O = Al(OH)4- + 4 H+
|
||
-log_k -22.7
|
||
-delta_h 42.3 kcal
|
||
-analytic 51.578 0 -11168.9 -14.865
|
||
-gamma 4.5 0
|
||
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
|
||
Al+3 + SO4-2 = AlSO4+
|
||
-log_k 3.5
|
||
-delta_h 2.29 kcal
|
||
-gamma 4.5 0
|
||
Al+3 + 2 SO4-2 = Al(SO4)2-
|
||
-log_k 5
|
||
-delta_h 3.11 kcal
|
||
-gamma 4.5 0
|
||
Al+3 + HSO4- = AlHSO4+2
|
||
-log_k 0.46
|
||
Al+3 + F- = AlF+2
|
||
-log_k 7
|
||
-delta_h 1.06 kcal
|
||
-gamma 5.4 0
|
||
Al+3 + 2 F- = AlF2+
|
||
-log_k 12.7
|
||
-delta_h 1.98 kcal
|
||
-gamma 5.4 0
|
||
Al+3 + 3 F- = AlF3
|
||
-log_k 16.8
|
||
-delta_h 2.16 kcal
|
||
Al+3 + 4 F- = AlF4-
|
||
-log_k 19.4
|
||
-delta_h 2.2 kcal
|
||
-gamma 4.5 0
|
||
# Al+3 + 5 F- = AlF5-2
|
||
# log_k 20.6
|
||
# delta_h 1.840 kcal
|
||
# Al+3 + 6 F- = AlF6-3
|
||
# log_k 20.6
|
||
# delta_h -1.670 kcal
|
||
H4SiO4 = H3SiO4- + H+
|
||
-log_k -9.83
|
||
-delta_h 6.12 kcal
|
||
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
|
||
-gamma 4 0
|
||
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1
|
||
H4SiO4 = H2SiO4-2 + 2 H+
|
||
-log_k -23
|
||
-delta_h 17.6 kcal
|
||
-analytic -294.0184 -0.07265 11204.49 108.18466 -1119669
|
||
-gamma 5.4 0
|
||
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
|
||
-log_k 30.18
|
||
-delta_h -16.26 kcal
|
||
-gamma 5 0
|
||
-Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt
|
||
Ba+2 + H2O = BaOH+ + H+
|
||
-log_k -13.47
|
||
-gamma 5 0
|
||
Ba+2 + CO3-2 = BaCO3
|
||
-log_k 2.71
|
||
-delta_h 3.55 kcal
|
||
-analytic 0.113 0.008721
|
||
-Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt
|
||
Ba+2 + HCO3- = BaHCO3+
|
||
-log_k 0.982
|
||
-delta_h 5.56 kcal
|
||
-analytic -3.0938 0.013669
|
||
Ba+2 + SO4-2 = BaSO4
|
||
-log_k 2.7
|
||
Sr+2 + H2O = SrOH+ + H+
|
||
-log_k -13.29
|
||
-gamma 5 0
|
||
Sr+2 + CO3-2 + H+ = SrHCO3+
|
||
-log_k 11.509
|
||
-delta_h 2.489 kcal
|
||
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
|
||
-gamma 5.4 0
|
||
Sr+2 + CO3-2 = SrCO3
|
||
-log_k 2.81
|
||
-delta_h 5.22 kcal
|
||
-analytic -1.019 0.012826
|
||
-Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt
|
||
Sr+2 + SO4-2 = SrSO4
|
||
-log_k 2.29
|
||
-delta_h 2.08 kcal
|
||
-Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility
|
||
Li+ + SO4-2 = LiSO4-
|
||
-log_k 0.64
|
||
-gamma 5 0
|
||
Cu+2 + e- = Cu+
|
||
-log_k 2.72
|
||
-delta_h 1.65 kcal
|
||
-gamma 2.5 0
|
||
Cu+ + 2 Cl- = CuCl2-
|
||
-log_k 5.5
|
||
-delta_h -0.42 kcal
|
||
-gamma 4 0
|
||
Cu+ + 3 Cl- = CuCl3-2
|
||
-log_k 5.7
|
||
-delta_h 0.26 kcal
|
||
-gamma 5 0
|
||
Cu+2 + CO3-2 = CuCO3
|
||
-log_k 6.73
|
||
Cu+2 + 2 CO3-2 = Cu(CO3)2-2
|
||
-log_k 9.83
|
||
Cu+2 + HCO3- = CuHCO3+
|
||
-log_k 2.7
|
||
Cu+2 + Cl- = CuCl+
|
||
-log_k 0.43
|
||
-delta_h 8.65 kcal
|
||
-gamma 4 0
|
||
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
|
||
Cu+2 + 2 Cl- = CuCl2
|
||
-log_k 0.16
|
||
-delta_h 10.56 kcal
|
||
-Vm 26.8 0 -136
|
||
Cu+2 + 3 Cl- = CuCl3-
|
||
-log_k -2.29
|
||
-delta_h 13.69 kcal
|
||
-gamma 4 0
|
||
Cu+2 + 4 Cl- = CuCl4-2
|
||
-log_k -4.59
|
||
-delta_h 17.78 kcal
|
||
-gamma 5 0
|
||
Cu+2 + F- = CuF+
|
||
-log_k 1.26
|
||
-delta_h 1.62 kcal
|
||
Cu+2 + H2O = CuOH+ + H+
|
||
-log_k -8
|
||
-gamma 4 0
|
||
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
|
||
-log_k -13.68
|
||
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
|
||
-log_k -26.9
|
||
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
|
||
-log_k -39.6
|
||
2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+
|
||
-log_k -10.359
|
||
-delta_h 17.539 kcal
|
||
-analytical 2.497 0 -3833
|
||
Cu+2 + SO4-2 = CuSO4
|
||
-log_k 2.31
|
||
-delta_h 1.22 kcal
|
||
-Vm 5.21 0 -14.6
|
||
Cu+2 + 3 HS- = Cu(HS)3-
|
||
-log_k 25.9
|
||
Zn+2 + H2O = ZnOH+ + H+
|
||
-log_k -8.96
|
||
-delta_h 13.4 kcal
|
||
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
|
||
-log_k -16.9
|
||
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
|
||
-log_k -28.4
|
||
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
|
||
-log_k -41.2
|
||
Zn+2 + Cl- = ZnCl+
|
||
-log_k 0.43
|
||
-delta_h 7.79 kcal
|
||
-gamma 4 0
|
||
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
|
||
Zn+2 + 2 Cl- = ZnCl2
|
||
-log_k 0.45
|
||
-delta_h 8.5 kcal
|
||
-Vm -10.1 4.57 241 -2.97 -1e-3
|
||
Zn+2 + 3 Cl- = ZnCl3-
|
||
-log_k 0.5
|
||
-delta_h 9.56 kcal
|
||
-gamma 4 0
|
||
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
|
||
Zn+2 + 4 Cl- = ZnCl4-2
|
||
-log_k 0.2
|
||
-delta_h 10.96 kcal
|
||
-gamma 5 0
|
||
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
|
||
Zn+2 + H2O + Cl- = ZnOHCl + H+
|
||
-log_k -7.48
|
||
Zn+2 + 2 HS- = Zn(HS)2
|
||
-log_k 14.94
|
||
Zn+2 + 3 HS- = Zn(HS)3-
|
||
-log_k 16.1
|
||
Zn+2 + CO3-2 = ZnCO3
|
||
-log_k 5.3
|
||
Zn+2 + 2 CO3-2 = Zn(CO3)2-2
|
||
-log_k 9.63
|
||
Zn+2 + HCO3- = ZnHCO3+
|
||
-log_k 2.1
|
||
Zn+2 + SO4-2 = ZnSO4
|
||
-log_k 2.37
|
||
-delta_h 1.36 kcal
|
||
-Vm 2.51 0 18.8
|
||
Zn+2 + 2 SO4-2 = Zn(SO4)2-2
|
||
-log_k 3.28
|
||
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
|
||
Zn+2 + Br- = ZnBr+
|
||
-log_k -0.58
|
||
Zn+2 + 2 Br- = ZnBr2
|
||
-log_k -0.98
|
||
Zn+2 + F- = ZnF+
|
||
-log_k 1.15
|
||
-delta_h 2.22 kcal
|
||
Cd+2 + H2O = CdOH+ + H+
|
||
-log_k -10.08
|
||
-delta_h 13.1 kcal
|
||
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
|
||
-log_k -20.35
|
||
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
|
||
-log_k -33.3
|
||
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
|
||
-log_k -47.35
|
||
2 Cd+2 + H2O = Cd2OH+3 + H+
|
||
-log_k -9.39
|
||
-delta_h 10.9 kcal
|
||
Cd+2 + H2O + Cl- = CdOHCl + H+
|
||
-log_k -7.404
|
||
-delta_h 4.355 kcal
|
||
Cd+2 + NO3- = CdNO3+
|
||
-log_k 0.4
|
||
-delta_h -5.2 kcal
|
||
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
|
||
Cd+2 + Cl- = CdCl+
|
||
-log_k 1.98
|
||
-delta_h 0.59 kcal
|
||
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
|
||
Cd+2 + 2 Cl- = CdCl2
|
||
-log_k 2.6
|
||
-delta_h 1.24 kcal
|
||
-Vm 5.53
|
||
Cd+2 + 3 Cl- = CdCl3-
|
||
-log_k 2.4
|
||
-delta_h 3.9 kcal
|
||
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
|
||
Cd+2 + CO3-2 = CdCO3
|
||
-log_k 2.9
|
||
Cd+2 + 2 CO3-2 = Cd(CO3)2-2
|
||
-log_k 6.4
|
||
Cd+2 + HCO3- = CdHCO3+
|
||
-log_k 1.5
|
||
Cd+2 + SO4-2 = CdSO4
|
||
-log_k 2.46
|
||
-delta_h 1.08 kcal
|
||
-Vm 10.4 0 57.9
|
||
Cd+2 + 2 SO4-2 = Cd(SO4)2-2
|
||
-log_k 3.5
|
||
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
|
||
Cd+2 + Br- = CdBr+
|
||
-log_k 2.17
|
||
-delta_h -0.81 kcal
|
||
Cd+2 + 2 Br- = CdBr2
|
||
-log_k 2.9
|
||
Cd+2 + F- = CdF+
|
||
-log_k 1.1
|
||
Cd+2 + 2 F- = CdF2
|
||
-log_k 1.5
|
||
Cd+2 + HS- = CdHS+
|
||
-log_k 10.17
|
||
Cd+2 + 2 HS- = Cd(HS)2
|
||
-log_k 16.53
|
||
Cd+2 + 3 HS- = Cd(HS)3-
|
||
-log_k 18.71
|
||
Cd+2 + 4 HS- = Cd(HS)4-2
|
||
-log_k 20.9
|
||
Pb+2 + H2O = PbOH+ + H+
|
||
-log_k -7.71
|
||
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
|
||
-log_k -17.12
|
||
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
|
||
-log_k -28.06
|
||
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
|
||
-log_k -39.7
|
||
2 Pb+2 + H2O = Pb2OH+3 + H+
|
||
-log_k -6.36
|
||
Pb+2 + Cl- = PbCl+
|
||
-log_k 1.6
|
||
-delta_h 4.38 kcal
|
||
-Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt
|
||
Pb+2 + 2 Cl- = PbCl2
|
||
-log_k 1.8
|
||
-delta_h 1.08 kcal
|
||
-Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt
|
||
Pb+2 + 3 Cl- = PbCl3-
|
||
-log_k 1.7
|
||
-delta_h 2.17 kcal
|
||
-Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt
|
||
Pb+2 + 4 Cl- = PbCl4-2
|
||
-log_k 1.38
|
||
-delta_h 3.53 kcal
|
||
-Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt
|
||
Pb+2 + CO3-2 = PbCO3
|
||
-log_k 7.24
|
||
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
|
||
-log_k 10.64
|
||
Pb+2 + HCO3- = PbHCO3+
|
||
-log_k 2.9
|
||
Pb+2 + SO4-2 = PbSO4
|
||
-log_k 2.75
|
||
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
|
||
-log_k 3.47
|
||
Pb+2 + 2 HS- = Pb(HS)2
|
||
-log_k 15.27
|
||
Pb+2 + 3 HS- = Pb(HS)3-
|
||
-log_k 16.57
|
||
3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+
|
||
-log_k -23.88
|
||
-delta_h 26.5 kcal
|
||
Pb+2 + NO3- = PbNO3+
|
||
-log_k 1.17
|
||
Pb+2 + Br- = PbBr+
|
||
-log_k 1.77
|
||
-delta_h 2.88 kcal
|
||
Pb+2 + 2 Br- = PbBr2
|
||
-log_k 1.44
|
||
Pb+2 + F- = PbF+
|
||
-log_k 1.25
|
||
Pb+2 + 2 F- = PbF2
|
||
-log_k 2.56
|
||
Pb+2 + 3 F- = PbF3-
|
||
-log_k 3.42
|
||
Pb+2 + 4 F- = PbF4-2
|
||
-log_k 3.1
|
||
|
||
PHASES
|
||
Calcite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
-log_k -8.48
|
||
-delta_h -2.297 kcal
|
||
-analytic 17.118 -0.046528 -3496 # 0 - 250<35>C, Ellis, 1959, Plummer and Busenberg, 1982
|
||
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
|
||
Aragonite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
-log_k -8.336
|
||
-delta_h -2.589 kcal
|
||
-analytic -171.9773 -0.077993 2903.293 71.595
|
||
-Vm 34.04
|
||
Dolomite
|
||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||
-log_k -17.09
|
||
-delta_h -9.436 kcal
|
||
-analytic 31.283 -0.0898 -6438 # 25<32>C: Hemingway and Robie, 1994; 50<35>175<37>C: B<>n<EFBFBD>zeth et al., 2018, GCA 224, 262-275
|
||
-Vm 64.5
|
||
Siderite
|
||
FeCO3 = Fe+2 + CO3-2
|
||
-log_k -10.89
|
||
-delta_h -2.48 kcal
|
||
-Vm 29.2
|
||
Rhodochrosite
|
||
MnCO3 = Mn+2 + CO3-2
|
||
-log_k -11.13
|
||
-delta_h -1.43 kcal
|
||
-Vm 31.1
|
||
Strontianite
|
||
SrCO3 = Sr+2 + CO3-2
|
||
-log_k -9.271
|
||
-delta_h -0.4 kcal
|
||
-analytic 155.0305 0 -7239.594 -56.58638
|
||
-Vm 39.69
|
||
Witherite
|
||
BaCO3 = Ba+2 + CO3-2
|
||
-log_k -8.562
|
||
-delta_h 0.703 kcal
|
||
-analytic 607.642 0.121098 -20011.25 -236.4948
|
||
-Vm 46
|
||
Gypsum
|
||
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
|
||
-log_k -4.58
|
||
-delta_h -0.109 kcal
|
||
-analytic 68.2401 0 -3221.51 -25.0627
|
||
-analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62
|
||
-Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol)
|
||
Anhydrite
|
||
CaSO4 = Ca+2 + SO4-2
|
||
-log_k -4.36
|
||
-delta_h -1.71 kcal
|
||
-analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323
|
||
-Vm 46.1 # 136.14 / 2.95
|
||
Celestite
|
||
SrSO4 = Sr+2 + SO4-2
|
||
-log_k -6.63
|
||
-delta_h -4.037 kcal
|
||
# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
|
||
-analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464
|
||
-Vm 46.4
|
||
Barite
|
||
BaSO4 = Ba+2 + SO4-2
|
||
-log_k -9.97
|
||
-delta_h 6.35 kcal
|
||
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
|
||
-Vm 52.9
|
||
Arcanite
|
||
K2SO4 = SO4-2 + 2 K+
|
||
log_k -1.776; -delta_h 5 kcal
|
||
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
|
||
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
|
||
-Vm 65.5
|
||
Mirabilite
|
||
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
|
||
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
|
||
Vm 216
|
||
Thenardite
|
||
Na2SO4 = 2 Na+ + SO4-2
|
||
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
|
||
-Vm 52.9
|
||
Epsomite
|
||
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
|
||
log_k -1.74; -delta_h 10.57 kJ
|
||
-analytical_expression -3.59 6.21e-3
|
||
Vm 147
|
||
Hexahydrite
|
||
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
|
||
log_k -1.57; -delta_h 2.35 kJ
|
||
-analytical_expression -1.978 1.38e-3
|
||
Vm 132
|
||
Kieserite
|
||
MgSO4:H2O = Mg+2 + SO4-2 + H2O
|
||
log_k -1.16; -delta_h 9.22 kJ
|
||
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
|
||
Vm 53.8
|
||
Hydroxyapatite
|
||
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
|
||
-log_k -3.421
|
||
-delta_h -36.155 kcal
|
||
-Vm 128.9
|
||
Fluorite
|
||
CaF2 = Ca+2 + 2 F-
|
||
-log_k -10.6
|
||
-delta_h 4.69 kcal
|
||
-analytic 66.348 0 -4298.2 -25.271
|
||
-Vm 15.7
|
||
SiO2(a)
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -2.71
|
||
-delta_h 3.34 kcal
|
||
-analytic -0.26 0 -731
|
||
Chalcedony
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.55
|
||
-delta_h 4.72 kcal
|
||
-analytic -0.09 0 -1032
|
||
-Vm 23.1
|
||
Quartz
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.98
|
||
-delta_h 5.99 kcal
|
||
-analytic 0.41 0 -1309
|
||
-Vm 22.67
|
||
Gibbsite
|
||
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
||
-log_k 8.11
|
||
-delta_h -22.8 kcal
|
||
-Vm 32.22
|
||
Al(OH)3(a)
|
||
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
||
-log_k 10.8
|
||
-delta_h -26.5 kcal
|
||
Kaolinite
|
||
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
|
||
-log_k 7.435
|
||
-delta_h -35.3 kcal
|
||
-Vm 99.35
|
||
Albite
|
||
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
|
||
-log_k -18.002
|
||
-delta_h 25.896 kcal
|
||
-Vm 101.31
|
||
Anorthite
|
||
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
|
||
-log_k -19.714
|
||
-delta_h 11.58 kcal
|
||
-Vm 105.05
|
||
K-feldspar
|
||
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
|
||
-log_k -20.573
|
||
-delta_h 30.82 kcal
|
||
-Vm 108.15
|
||
K-mica
|
||
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
|
||
-log_k 12.703
|
||
-delta_h -59.376 kcal
|
||
Chlorite(14A)
|
||
Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O
|
||
-log_k 68.38
|
||
-delta_h -151.494 kcal
|
||
Ca-Montmorillonite
|
||
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
|
||
-log_k -45.027
|
||
-delta_h 58.373 kcal
|
||
-Vm 156.16
|
||
Talc
|
||
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
|
||
-log_k 21.399
|
||
-delta_h -46.352 kcal
|
||
-Vm 68.34
|
||
Illite
|
||
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+
|
||
-log_k -40.267
|
||
-delta_h 54.684 kcal
|
||
-Vm 141.48
|
||
Chrysotile
|
||
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
|
||
-log_k 32.2
|
||
-delta_h -46.8 kcal
|
||
-analytic 13.248 0 10217.1 -6.1894
|
||
-Vm 106.5808 # 277.11/2.60
|
||
Sepiolite
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
|
||
-log_k 15.76
|
||
-delta_h -10.7 kcal
|
||
-Vm 143.765
|
||
Sepiolite(d)
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
|
||
-log_k 18.66
|
||
Hematite
|
||
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
|
||
-log_k -4.008
|
||
-delta_h -30.845 kcal
|
||
-Vm 30.39
|
||
Goethite
|
||
FeOOH + 3 H+ = Fe+3 + 2 H2O
|
||
-log_k -1
|
||
-delta_h -14.48 kcal
|
||
-Vm 20.84
|
||
Fe(OH)3(a)
|
||
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
|
||
-log_k 4.891
|
||
Pyrite
|
||
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
|
||
-log_k -18.479
|
||
-delta_h 11.3 kcal
|
||
-Vm 23.48
|
||
FeS(ppt)
|
||
FeS + H+ = Fe+2 + HS-
|
||
-log_k -3.915
|
||
Mackinawite
|
||
FeS + H+ = Fe+2 + HS-
|
||
-log_k -4.648
|
||
-Vm 20.45
|
||
Sulfur
|
||
S + 2 H+ + 2 e- = H2S
|
||
-log_k 4.882
|
||
-delta_h -9.5 kcal
|
||
Vivianite
|
||
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
|
||
-log_k -36
|
||
Pyrolusite # H2O added for surface calc's
|
||
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
|
||
-log_k 41.38
|
||
-delta_h -65.11 kcal
|
||
Hausmannite
|
||
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
|
||
-log_k 61.03
|
||
-delta_h -100.64 kcal
|
||
Manganite
|
||
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
|
||
-log_k 25.34
|
||
Pyrochroite
|
||
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
|
||
-log_k 15.2
|
||
Halite
|
||
NaCl = Cl- + Na+
|
||
log_k 1.57
|
||
-delta_h 1.37
|
||
#-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
|
||
-Vm 27.1
|
||
Sylvite
|
||
KCl = K+ + Cl-
|
||
log_k 0.9
|
||
-delta_h 8.5
|
||
# -analytic 3.984 0.0 -919.55
|
||
Vm 37.5
|
||
# Gases...
|
||
CO2(g)
|
||
CO2 = CO2
|
||
-log_k -1.468
|
||
-delta_h -4.776 kcal
|
||
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
|
||
-T_c 304.2 # critical T, K
|
||
-P_c 72.86 # critical P, atm
|
||
-Omega 0.225 # acentric factor
|
||
H2O(g)
|
||
H2O = H2O
|
||
-log_k 1.506; delta_h -44.03 kJ
|
||
-T_c 647.3; -P_c 217.6; -Omega 0.344
|
||
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
|
||
O2(g)
|
||
O2 = O2
|
||
-log_k -2.8983
|
||
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
|
||
-T_c 154.6; -P_c 49.8; -Omega 0.021
|
||
H2(g)
|
||
H2 = H2
|
||
-log_k -3.105
|
||
-delta_h -4.184 kJ
|
||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||
-T_c 33.2; -P_c 12.8; -Omega -0.225
|
||
N2(g)
|
||
N2 = N2
|
||
-log_k -3.1864
|
||
-analytic -58.453 1.818e-3 3199 17.909 -27460
|
||
-T_c 126.2; -P_c 33.5; -Omega 0.039
|
||
H2S(g)
|
||
H2S = H+ + HS-
|
||
log_k -7.93
|
||
-delta_h 9.1
|
||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||
-T_c 373.2; -P_c 88.2; -Omega 0.1
|
||
CH4(g)
|
||
CH4 = CH4
|
||
-log_k -2.8
|
||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
|
||
-T_c 190.6; -P_c 45.4; -Omega 0.008
|
||
#Amm(g)
|
||
# Amm = Amm
|
||
NH3(g)
|
||
NH3 = NH3
|
||
-log_k 1.7966
|
||
-analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192
|
||
-T_c 405.6; -P_c 111.3; -Omega 0.25
|
||
# redox-uncoupled gases
|
||
Oxg(g)
|
||
Oxg = Oxg
|
||
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
|
||
-T_c 154.6; -P_c 49.8; -Omega 0.021
|
||
Hdg(g)
|
||
Hdg = Hdg
|
||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||
-T_c 33.2; -P_c 12.8; -Omega -0.225
|
||
Ntg(g)
|
||
Ntg = Ntg
|
||
-analytic -58.453 1.818e-3 3199 17.909 -27460
|
||
T_c 126.2; -P_c 33.5; -Omega 0.039
|
||
Mtg(g)
|
||
Mtg = Mtg
|
||
-log_k -2.8
|
||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
|
||
-T_c 190.6; -P_c 45.4; -Omega 0.008
|
||
H2Sg(g)
|
||
H2Sg = H+ + HSg-
|
||
log_k -7.93
|
||
-delta_h 9.1
|
||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||
-T_c 373.2; -P_c 88.2; -Omega 0.1
|
||
Melanterite
|
||
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
|
||
-log_k -2.209
|
||
-delta_h 4.91 kcal
|
||
-analytic 1.447 -0.004153 0 0 -214949
|
||
Alunite
|
||
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O
|
||
-log_k -1.4
|
||
-delta_h -50.25 kcal
|
||
Jarosite-K
|
||
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
|
||
-log_k -9.21
|
||
-delta_h -31.28 kcal
|
||
Zn(OH)2(e)
|
||
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
|
||
-log_k 11.5
|
||
Smithsonite
|
||
ZnCO3 = Zn+2 + CO3-2
|
||
-log_k -10
|
||
-delta_h -4.36 kcal
|
||
Sphalerite
|
||
ZnS + H+ = Zn+2 + HS-
|
||
-log_k -11.618
|
||
-delta_h 8.25 kcal
|
||
Willemite 289
|
||
Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4
|
||
-log_k 15.33
|
||
-delta_h -33.37 kcal
|
||
Cd(OH)2
|
||
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
|
||
-log_k 13.65
|
||
Otavite 315
|
||
CdCO3 = Cd+2 + CO3-2
|
||
-log_k -12.1
|
||
-delta_h -0.019 kcal
|
||
CdSiO3 328
|
||
CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4
|
||
-log_k 9.06
|
||
-delta_h -16.63 kcal
|
||
CdSO4 329
|
||
CdSO4 = Cd+2 + SO4-2
|
||
-log_k -0.1
|
||
-delta_h -14.74 kcal
|
||
Cerussite 365
|
||
PbCO3 = Pb+2 + CO3-2
|
||
-log_k -13.13
|
||
-delta_h 4.86 kcal
|
||
Anglesite 384
|
||
PbSO4 = Pb+2 + SO4-2
|
||
-log_k -7.79
|
||
-delta_h 2.15 kcal
|
||
Pb(OH)2 389
|
||
Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O
|
||
-log_k 8.15
|
||
-delta_h -13.99 kcal
|
||
|
||
EXCHANGE_MASTER_SPECIES
|
||
X X-
|
||
EXCHANGE_SPECIES
|
||
X- = X-
|
||
-log_k 0
|
||
|
||
Na+ + X- = NaX
|
||
-log_k 0
|
||
-gamma 4.08 0.082
|
||
|
||
K+ + X- = KX
|
||
-log_k 0.7
|
||
-gamma 3.5 0.015
|
||
-delta_h -4.3 # Jardine & Sparks, 1984
|
||
|
||
Li+ + X- = LiX
|
||
-log_k -0.08
|
||
-gamma 6 0
|
||
-delta_h 1.4 # Merriam & Thomas, 1956
|
||
|
||
# !!!!!
|
||
# H+ + X- = HX
|
||
# -log_k 1.0
|
||
# -gamma 9.0 0
|
||
|
||
# AmmH+ + X- = AmmHX
|
||
NH4+ + X- = NH4X
|
||
-log_k 0.6
|
||
-gamma 2.5 0
|
||
-delta_h -2.4 # Laudelout et al., 1968
|
||
|
||
Ca+2 + 2 X- = CaX2
|
||
-log_k 0.8
|
||
-gamma 5 0.165
|
||
-delta_h 7.2 # Van Bladel & Gheyl, 1980
|
||
|
||
Mg+2 + 2 X- = MgX2
|
||
-log_k 0.6
|
||
-gamma 5.5 0.2
|
||
-delta_h 7.4 # Laudelout et al., 1968
|
||
|
||
Sr+2 + 2 X- = SrX2
|
||
-log_k 0.91
|
||
-gamma 5.26 0.121
|
||
-delta_h 5.5 # Laudelout et al., 1968
|
||
|
||
Ba+2 + 2 X- = BaX2
|
||
-log_k 0.91
|
||
-gamma 4 0.153
|
||
-delta_h 4.5 # Laudelout et al., 1968
|
||
|
||
Mn+2 + 2 X- = MnX2
|
||
-log_k 0.52
|
||
-gamma 6 0
|
||
|
||
Fe+2 + 2 X- = FeX2
|
||
-log_k 0.44
|
||
-gamma 6 0
|
||
|
||
Cu+2 + 2 X- = CuX2
|
||
-log_k 0.6
|
||
-gamma 6 0
|
||
|
||
Zn+2 + 2 X- = ZnX2
|
||
-log_k 0.8
|
||
-gamma 5 0
|
||
|
||
Cd+2 + 2 X- = CdX2
|
||
-log_k 0.8
|
||
-gamma 0 0
|
||
|
||
Pb+2 + 2 X- = PbX2
|
||
-log_k 1.05
|
||
-gamma 0 0
|
||
|
||
Al+3 + 3 X- = AlX3
|
||
-log_k 0.41
|
||
-gamma 9 0
|
||
|
||
AlOH+2 + 2 X- = AlOHX2
|
||
-log_k 0.89
|
||
-gamma 0 0
|
||
|
||
SURFACE_MASTER_SPECIES
|
||
Hfo_s Hfo_sOH
|
||
Hfo_w Hfo_wOH
|
||
SURFACE_SPECIES
|
||
# All surface data from
|
||
# Dzombak and Morel, 1990
|
||
#
|
||
#
|
||
# Acid-base data from table 5.7
|
||
#
|
||
# strong binding site--Hfo_s,
|
||
|
||
Hfo_sOH = Hfo_sOH
|
||
-log_k 0
|
||
|
||
Hfo_sOH + H+ = Hfo_sOH2+
|
||
-log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_sOH = Hfo_sO- + H+
|
||
-log_k -8.93 # = -pKa2,int
|
||
|
||
# weak binding site--Hfo_w
|
||
|
||
Hfo_wOH = Hfo_wOH
|
||
-log_k 0
|
||
|
||
Hfo_wOH + H+ = Hfo_wOH2+
|
||
-log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_wOH = Hfo_wO- + H+
|
||
-log_k -8.93 # = -pKa2,int
|
||
###############################################
|
||
# CATIONS #
|
||
###############################################
|
||
#
|
||
# Cations from table 10.1 or 10.5
|
||
#
|
||
# Calcium
|
||
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
|
||
-log_k 4.97
|
||
|
||
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
|
||
-log_k -5.85
|
||
# Strontium
|
||
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
|
||
-log_k 5.01
|
||
|
||
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
|
||
-log_k -6.58
|
||
|
||
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+
|
||
-log_k -17.6
|
||
# Barium
|
||
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
|
||
-log_k 5.46
|
||
|
||
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
||
-log_k -7.2 # table 10.5
|
||
#
|
||
# Cations from table 10.2
|
||
#
|
||
# Cadmium
|
||
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
|
||
-log_k 0.47
|
||
|
||
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
|
||
-log_k -2.91
|
||
# Zinc
|
||
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
|
||
-log_k 0.99
|
||
|
||
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
|
||
-log_k -1.99
|
||
# Copper
|
||
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
|
||
-log_k 2.89
|
||
|
||
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
|
||
-log_k 0.6 # table 10.5
|
||
# Lead
|
||
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
|
||
-log_k 4.65
|
||
|
||
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
|
||
-log_k 0.3 # table 10.5
|
||
#
|
||
# Derived constants table 10.5
|
||
#
|
||
# Magnesium
|
||
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
|
||
-log_k -4.6
|
||
# Manganese
|
||
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
||
-log_k -0.4 # table 10.5
|
||
|
||
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
||
-log_k -3.5 # table 10.5
|
||
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
|
||
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||
-log_k -0.95
|
||
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
||
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||
-log_k -2.98
|
||
|
||
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+
|
||
-log_k -11.55
|
||
###############################################
|
||
# ANIONS #
|
||
###############################################
|
||
#
|
||
# Anions from table 10.6
|
||
#
|
||
# Phosphate
|
||
Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O
|
||
-log_k 31.29
|
||
|
||
Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O
|
||
-log_k 25.39
|
||
|
||
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
|
||
-log_k 17.72
|
||
#
|
||
# Anions from table 10.7
|
||
#
|
||
# Borate
|
||
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
|
||
-log_k 0.62
|
||
#
|
||
# Anions from table 10.8
|
||
#
|
||
# Sulfate
|
||
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
|
||
-log_k 7.78
|
||
|
||
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
|
||
-log_k 0.79
|
||
#
|
||
# Derived constants table 10.10
|
||
#
|
||
Hfo_wOH + F- + H+ = Hfo_wF + H2O
|
||
-log_k 8.7
|
||
|
||
Hfo_wOH + F- = Hfo_wOHF-
|
||
-log_k 1.6
|
||
#
|
||
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
|
||
#
|
||
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
|
||
-log_k 12.56
|
||
|
||
Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O
|
||
-log_k 20.62
|
||
#
|
||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||
#
|
||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22
|
||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69
|
||
|
||
MEAN_GAMMAS
|
||
CaCl2 Ca+2 1 Cl- 2
|
||
CaSO4 Ca+2 1 SO4-2 1
|
||
CaCO3 Ca+2 1 CO3-2 1
|
||
Ca(OH)2 Ca+2 1 OH- 2
|
||
MgCl2 Mg+2 1 Cl- 2
|
||
MgSO4 Mg+2 1 SO4-2 1
|
||
MgCO3 Mg+2 1 CO3-2 1
|
||
Mg(OH)2 Mg+2 1 OH- 2
|
||
NaCl Na+ 1 Cl- 1
|
||
Na2SO4 Na+ 2 SO4-2 1
|
||
NaHCO3 Na+ 1 HCO3- 1
|
||
Na2CO3 Na+ 2 CO3-2 1
|
||
NaOH Na+ 1 OH- 1
|
||
KCl K+ 1 Cl- 1
|
||
K2SO4 K+ 2 SO4-2 1
|
||
HCO3 K+ 1 HCO3- 1
|
||
K2CO3 K+ 2 CO3-2 1
|
||
KOH K+ 1 OH- 1
|
||
HCl H+ 1 Cl- 1
|
||
H2SO4 H+ 2 SO4-2 1
|
||
HBr H+ 1 Br- 1
|
||
|
||
RATES
|
||
|
||
###########
|
||
#Quartz
|
||
###########
|
||
#
|
||
#######
|
||
# Example of quartz kinetic rates block:
|
||
# KINETICS
|
||
# Quartz
|
||
# -m0 158.8 # 90 % Qu
|
||
# -parms 0.146 1.5
|
||
# -step 3.1536e8 in 10
|
||
# -tol 1e-12
|
||
|
||
Quartz
|
||
-start
|
||
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
|
||
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
|
||
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
|
||
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
|
||
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
|
||
|
||
10 dif_temp = 1/TK - 1/298
|
||
20 pk_w = 13.7 + 4700.4 * dif_temp
|
||
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
|
||
# Integrate...
|
||
50 SAVE moles * TIME
|
||
-end
|
||
|
||
###########
|
||
#K-feldspar
|
||
###########
|
||
#
|
||
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
||
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
||
# vol. 31, p. 485-541.
|
||
#
|
||
# As described in:
|
||
# Appelo and Postma, 2005, Geochemistry, groundwater
|
||
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
||
# p. 162-163 and 395-399.
|
||
#
|
||
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
|
||
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
|
||
# GFW Kspar 0.278 kg/mol
|
||
#
|
||
# Moles of Kspar per liter pore space calculation:
|
||
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
||
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
|
||
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
|
||
#
|
||
# Specific area calculation:
|
||
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
|
||
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
|
||
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
|
||
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
||
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
|
||
#
|
||
#
|
||
# Example of KINETICS data block for K-feldspar rate:
|
||
# KINETICS 1
|
||
# K-feldspar
|
||
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
|
||
# -m 2.18 # Moles per L pore space
|
||
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
|
||
# -time 1.5 year in 40
|
||
|
||
K-feldspar
|
||
-start
|
||
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
||
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
|
||
3 REM PARM(2) = Adjusts lab rate to field rate
|
||
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
||
5 REM K-Feldspar parameters
|
||
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
|
||
20 RESTORE 10
|
||
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
||
40 DATA 3500, 2000, 2500, 2000
|
||
50 RESTORE 40
|
||
60 READ e_H, e_H2O, e_OH, e_CO2
|
||
70 pk_CO2 = 13
|
||
80 n_CO2 = 0.6
|
||
100 REM Generic rate follows
|
||
110 dif_temp = 1/TK - 1/281
|
||
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||
130 REM rate by H+
|
||
140 pk_H = pk_H + e_H * dif_temp
|
||
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
||
160 REM rate by hydrolysis
|
||
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
||
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
||
190 REM rate by OH-
|
||
200 pk_OH = pk_OH + e_OH * dif_temp
|
||
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
||
220 REM rate by CO2
|
||
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
||
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
||
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
||
260 area = PARM(1) * M0 *(M/M0)^0.67
|
||
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
|
||
280 moles = rate * TIME
|
||
290 SAVE moles
|
||
-end
|
||
|
||
|
||
###########
|
||
#Albite
|
||
###########
|
||
#
|
||
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
||
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
||
# vol. 31, p. 485-541.
|
||
#
|
||
# As described in:
|
||
# Appelo and Postma, 2005, Geochemistry, groundwater
|
||
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
||
# p. 162-163 and 395-399.
|
||
#
|
||
# Example of KINETICS data block for Albite rate:
|
||
# KINETICS 1
|
||
# Albite
|
||
# -m0 0.46 # 2% Albite, 0.1 mm cubes
|
||
# -m 0.46 # Moles per L pore space
|
||
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
|
||
# -time 1.5 year in 40
|
||
#
|
||
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
|
||
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
|
||
# GFW Albite 0.262 kg/mol
|
||
#
|
||
# Moles of Albite per liter pore space calculation:
|
||
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
||
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
|
||
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
|
||
#
|
||
# Specific area calculation:
|
||
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
|
||
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
|
||
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
|
||
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
||
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
|
||
|
||
Albite
|
||
-start
|
||
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
||
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
|
||
3 REM PARM(2) = Adjusts lab rate to field rate
|
||
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
||
5 REM Albite parameters
|
||
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
|
||
20 RESTORE 10
|
||
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
||
40 DATA 3500, 2000, 2500, 2000
|
||
50 RESTORE 40
|
||
60 READ e_H, e_H2O, e_OH, e_CO2
|
||
70 pk_CO2 = 13
|
||
80 n_CO2 = 0.6
|
||
100 REM Generic rate follows
|
||
110 dif_temp = 1/TK - 1/281
|
||
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||
130 REM rate by H+
|
||
140 pk_H = pk_H + e_H * dif_temp
|
||
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
||
160 REM rate by hydrolysis
|
||
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
||
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
||
190 REM rate by OH-
|
||
200 pk_OH = pk_OH + e_OH * dif_temp
|
||
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
||
220 REM rate by CO2
|
||
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
||
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
||
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
||
260 area = PARM(1) * M0 *(M/M0)^0.67
|
||
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
|
||
280 moles = rate * TIME
|
||
290 SAVE moles
|
||
-end
|
||
|
||
########
|
||
#Calcite
|
||
########
|
||
# Example of KINETICS data block for calcite rate,
|
||
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257
|
||
# KINETICS 1
|
||
# Calcite
|
||
# -tol 1e-8
|
||
# -m0 3.e-3
|
||
# -m 3.e-3
|
||
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
|
||
# -time 1 day
|
||
|
||
Calcite
|
||
-start
|
||
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
|
||
2 REM PARM(2) = exponent for M/M0
|
||
|
||
10 si_cc = SI("Calcite")
|
||
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
|
||
30 k1 = 10^(0.198 - 444 / TK )
|
||
40 k2 = 10^(2.84 - 2177 /TK )
|
||
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK)
|
||
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK )
|
||
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
|
||
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
|
||
120 rate = rate * (1 - 10^(2/3*si_cc))
|
||
130 moles = rate * 0.001 * TIME # convert from mmol to mol
|
||
200 SAVE moles
|
||
-end
|
||
|
||
#######
|
||
#Pyrite
|
||
#######
|
||
#
|
||
# Williamson, M.A. and Rimstidt, J.D., 1994,
|
||
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
|
||
# rate equation is mol m^-2 s^-1.
|
||
#
|
||
# Example of KINETICS data block for pyrite rate:
|
||
# KINETICS 1
|
||
# Pyrite
|
||
# -tol 1e-8
|
||
# -m0 5.e-4
|
||
# -m 5.e-4
|
||
# -parms 0.3 0.67 .5 -0.11
|
||
# -time 1 day in 10
|
||
Pyrite
|
||
-start
|
||
1 REM Williamson and Rimstidt, 1994
|
||
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
|
||
3 REM PARM(2) = exp for (M/M0)
|
||
4 REM PARM(3) = exp for O2
|
||
5 REM PARM(4) = exp for H+
|
||
|
||
10 REM Dissolution in presence of DO
|
||
20 if (M <= 0) THEN GOTO 200
|
||
30 if (SI("Pyrite") >= 0) THEN GOTO 200
|
||
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
|
||
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
|
||
60 moles = 10^(log_area + log_rate) * TIME
|
||
200 SAVE moles
|
||
-end
|
||
|
||
##########
|
||
#Organic_C
|
||
##########
|
||
#
|
||
# Example of KINETICS data block for SOC (sediment organic carbon):
|
||
# KINETICS 1
|
||
# Organic_C
|
||
# -formula C
|
||
# -tol 1e-8
|
||
# -m 5e-3 # SOC in mol
|
||
# -time 30 year in 15
|
||
Organic_C
|
||
-start
|
||
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
|
||
2 REM Electron acceptors: O2, NO3, and SO4
|
||
|
||
10 if (M <= 0) THEN GOTO 200
|
||
20 mO2 = MOL("O2")
|
||
30 mNO3 = TOT("N(5)")
|
||
40 mSO4 = TOT("S(6)")
|
||
50 k_O2 = 1.57e-9 # 1/sec
|
||
60 k_NO3 = 1.67e-11 # 1/sec
|
||
70 k_SO4 = 1.e-13 # 1/sec
|
||
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
|
||
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
|
||
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
|
||
110 moles = rate * M * (M/M0) * TIME
|
||
200 SAVE moles
|
||
-end
|
||
|
||
###########
|
||
#Pyrolusite
|
||
###########
|
||
#
|
||
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
|
||
# Rate equation given as mol L^-1 s^-1
|
||
#
|
||
# Example of KINETICS data block for Pyrolusite
|
||
# KINETICS 1-12
|
||
# Pyrolusite
|
||
# -tol 1.e-7
|
||
# -m0 0.1
|
||
# -m 0.1
|
||
# -time 0.5 day in 10
|
||
Pyrolusite
|
||
-start
|
||
10 if (M <= 0) THEN GOTO 200
|
||
20 sr_pl = SR("Pyrolusite")
|
||
30 if (sr_pl > 1) THEN GOTO 100
|
||
40 REM sr_pl <= 1, undersaturated
|
||
50 Fe_t = TOT("Fe(2)")
|
||
60 if Fe_t < 1e-8 then goto 200
|
||
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
|
||
80 GOTO 200
|
||
100 REM sr_pl > 1, supersaturated
|
||
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
|
||
200 SAVE moles * SOLN_VOL
|
||
-end
|
||
|
||
#
|
||
# Additional definition of PHASES, RATE parameters, and RATES examples
|
||
#
|
||
# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
|
||
#
|
||
# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
|
||
#
|
||
# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632.
|
||
|
||
#
|
||
# Example RATES definitions and input files with KINETICS show the application in
|
||
# Albite_PK # Palandri and Kharaka
|
||
# Albite_Svd # Sverdrup
|
||
# Albite_Hermanska
|
||
# Calcite_PK # Palandri and Kharaka
|
||
# Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216.
|
||
# Quartz_PK # Palandri and Kharaka
|
||
# Quartz_Svd # Sverdrup
|
||
# Quartz_Hermanska #
|
||
# Quartz_Rimstidt_Barnes
|
||
# Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer
|
||
#
|
||
PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals
|
||
# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat,
|
||
# tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html
|
||
|
||
Actinolite # Hornblende, Ferroactinolite
|
||
Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4
|
||
log_k 7.128
|
||
delta_h -181.662 #kJ/mol #19bla/lac
|
||
-analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7
|
||
|
||
Almandine # (alpha)
|
||
Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4
|
||
log_k 42.18
|
||
delta_h -458.683 #kJ/mol #95rob/hem
|
||
-analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7
|
||
|
||
Analcime
|
||
Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4
|
||
log_k 6.654
|
||
delta_h -98 #kJ/mol #04neu/hov
|
||
-analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6
|
||
|
||
Andalusite
|
||
Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O
|
||
log_k 16.206
|
||
delta_h -244.61 #kJ/mol #Internal calculation
|
||
-analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6
|
||
|
||
Andesine # defined for elemental release
|
||
Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4-
|
||
|
||
Andradite
|
||
Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4
|
||
log_k 33.787
|
||
delta_h -327.864 #kJ/mol #Internal calculation
|
||
-analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6
|
||
|
||
Anglesite
|
||
PbSO4 = Pb+2 + SO4-2
|
||
log_k -7.848
|
||
delta_h 11.55 #kJ/mol #89cox/wag
|
||
-analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6
|
||
|
||
Annite
|
||
KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4
|
||
log_k 32.771
|
||
delta_h -306.153 #kJ/mol #92cir/nav
|
||
-analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6
|
||
|
||
Anorthite
|
||
Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4
|
||
log_k 24.235
|
||
delta_h -303.522 #kJ/mol #95rob/hem
|
||
-analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6
|
||
|
||
Anthophyllite
|
||
Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4
|
||
log_k 73.783
|
||
delta_h -583.247 #kJ/mol #95rob/hem
|
||
-analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7
|
||
|
||
Antigorite
|
||
Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O
|
||
log_k 500.08
|
||
delta_h -3743.421 #kJ/mol #98hol/pow
|
||
-analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8
|
||
|
||
# As2S3 # Orpiment # no As in phreeqc.dat
|
||
# As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+
|
||
# log_k -65.110
|
||
# delta_h 334.975 #kJ/mol #Internal calculation
|
||
# -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6
|
||
|
||
Augite # Pyroxene(CaAl)
|
||
CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O
|
||
log_k 36.234
|
||
delta_h -370.792 #kJ/mol #Internal calculation
|
||
-analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6
|
||
|
||
Biotite # defined for elemental release
|
||
KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4
|
||
|
||
Bronzite # defined for elemental release
|
||
Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4
|
||
|
||
Brucite
|
||
Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O
|
||
log_k 17.112
|
||
delta_h -114.518 #kJ/mol #08bla
|
||
-analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5
|
||
|
||
Bytownite # defined for elemental release
|
||
Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4-
|
||
|
||
Chabazite
|
||
Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O
|
||
log_k 11.541
|
||
delta_h -200.464 #kJ/mol #08bla
|
||
-analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6
|
||
|
||
Chamosite(Daphnite)
|
||
Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O
|
||
log_k 47.603
|
||
delta_h -497.518 #kJ/mol #01vid/par
|
||
-analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7
|
||
|
||
Chrysotile
|
||
Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O
|
||
log_k 33.182
|
||
delta_h -244.552 #kJ/mol #04eva
|
||
-analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6
|
||
|
||
Clinochlore
|
||
Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O
|
||
log_k 61.706
|
||
delta_h -593.773 #kJ/mol #05vid/par
|
||
-analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7
|
||
|
||
Clinoptilolite(Ca)
|
||
Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4
|
||
log_k -2.085
|
||
delta_h -58.407 #kJ/mol #09bla
|
||
-analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6
|
||
|
||
Clinoptilolite(K)
|
||
K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4
|
||
log_k -1.142
|
||
delta_h -49.035 #kJ/mol #09bla
|
||
-analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6
|
||
|
||
Clinoptilolite(Na)
|
||
Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4
|
||
log_k -0.113
|
||
delta_h -50.769 #kJ/mol #09bla
|
||
-analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6
|
||
|
||
Cordierite
|
||
Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4
|
||
log_k 49.433
|
||
delta_h -648.745 #kJ/mol #95rob/hem
|
||
-analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7
|
||
|
||
Cristobalite # (alpha)
|
||
SiO2 + 2 H2O = H4SiO4
|
||
log_k -3.158
|
||
delta_h 18.829 #kJ/mol #04fab/sax
|
||
-analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6
|
||
|
||
# Cristobalite(beta)
|
||
# SiO2 + 2H2O = 1H4SiO4
|
||
# log_k -3.096
|
||
# #delta_h 0 #kJ/mol
|
||
# -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6
|
||
|
||
Dawsonite
|
||
NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O
|
||
log_k 4.327
|
||
delta_h -76.33 #kJ/mol #76fer/stu
|
||
-analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6
|
||
|
||
Diaspore
|
||
AlO(OH) + 3 H+ = Al+3 + 2 H2O
|
||
log_k 6.866
|
||
delta_h -108.76 #kJ/mol #95rob/hem
|
||
-analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6
|
||
|
||
Diopside
|
||
CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4
|
||
log_k 21.743
|
||
delta_h -153.574 #kJ/mol #Internal calculation
|
||
-analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6
|
||
|
||
Dolomite(disordered)
|
||
CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2
|
||
log_k 4.299
|
||
delta_h -73.162 #kJ/mol #78hel/del,92ajoh
|
||
-analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6
|
||
|
||
Edenite # (alpha)
|
||
Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4
|
||
log_k 81.946
|
||
delta_h -679.296 #kJ/mol #97got
|
||
-analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7
|
||
|
||
Enstatite # (alpha)
|
||
MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4
|
||
log_k 11.844
|
||
delta_h -93.265 #kJ/mol #78hel/del
|
||
-analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6
|
||
|
||
Epidote
|
||
Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O
|
||
log_k 32.23
|
||
delta_h -411.613 #kJ/mol #04got
|
||
-analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7
|
||
|
||
Fayalite
|
||
Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4
|
||
log_k 19.03
|
||
delta_h -157.157 #kJ/mol #Internal calculation
|
||
-analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6
|
||
|
||
Ferroactinolite # = Ferrotremolite
|
||
(Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4
|
||
log_k 53.699
|
||
delta_h -412.225 #kJ/mol #Internal calculation
|
||
-analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7
|
||
|
||
Fluorapatite # (Natur)
|
||
Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4-
|
||
log_k -0.91
|
||
delta_h -115.601 #kJ/mol #Internal calculation
|
||
-analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7
|
||
|
||
Forsterite
|
||
Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4
|
||
log_k 28.609
|
||
delta_h -217.115 #kJ/mol #Internal calculation
|
||
-analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6
|
||
|
||
Glauconite
|
||
(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2
|
||
log_k 1.873
|
||
delta_h -120.903 #kJ/mol #15bla/vie
|
||
-analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6
|
||
|
||
Glaucophane
|
||
Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4
|
||
log_k 37.026
|
||
delta_h -378.727 #kJ/mol #95rob/hem
|
||
-analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7
|
||
|
||
Grossular
|
||
Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4
|
||
log_k 49.372
|
||
delta_h -442.383 #kJ/mol #95rob/hem
|
||
-analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7
|
||
# Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite
|
||
|
||
Heulandite(Ca)
|
||
Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4
|
||
log_k 2.457
|
||
delta_h -139.108 #kJ/mol #09bla
|
||
-analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7
|
||
|
||
# Ilmenite # Ti not in phreeqc.dat
|
||
# FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4
|
||
# log_k 1.816
|
||
# delta_h -87.445 #kJ/mol #Internal calculation
|
||
# -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6
|
||
|
||
Heulandite(Na)
|
||
Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4
|
||
log_k 2.797
|
||
delta_h -126.775 #kJ/mol #09bla
|
||
-analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7
|
||
|
||
Jadeite
|
||
NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4
|
||
log_k 7.561
|
||
delta_h -95.502 #kJ/mol #95rob/hem
|
||
-analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6
|
||
|
||
Kyanite
|
||
Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O
|
||
log_k 15.936
|
||
delta_h -240.322 #kJ/mol #Internal calculation
|
||
-analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6
|
||
|
||
Labradorite # defined for elemental release
|
||
Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4-
|
||
|
||
Larnite(alpha)
|
||
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
|
||
log_k 39.044
|
||
delta_h -238.161 #kJ/mol #95rob/hem
|
||
-analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6
|
||
|
||
Larnite(beta)
|
||
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
|
||
log_k 39.322
|
||
#delta_h 0 #kJ/mol
|
||
-analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6
|
||
|
||
Larnite(gamma)
|
||
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
|
||
log_k 41.444
|
||
#delta_h 0 #kJ/mol
|
||
-analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6
|
||
|
||
Laumontite
|
||
Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4
|
||
log_k 11.695
|
||
delta_h -204.244 #kJ/mol #96kis/nav
|
||
-analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6
|
||
|
||
Leonhardtite
|
||
MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O
|
||
log_k -0.886
|
||
delta_h -24.03 #kJ/mol #74nau/ryz
|
||
-analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6
|
||
|
||
Leucite # minteq.dat
|
||
KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+
|
||
log_k 6.423
|
||
delta_h -22.085 kcal
|
||
|
||
Lizardite
|
||
Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O
|
||
log_k 33.093
|
||
delta_h -242.552 #kJ/mol #04eva
|
||
-analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6
|
||
|
||
Magnetite
|
||
Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O
|
||
log_k 10.362
|
||
delta_h -215.594 #kJ/mol #90hem
|
||
-analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6
|
||
|
||
Microcline
|
||
K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4
|
||
log_k 0.015
|
||
delta_h -49.203 #kJ/mol #95rob/hem
|
||
-analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6
|
||
|
||
Montmorillonite(HcCa)
|
||
Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4
|
||
log_k 6.903
|
||
delta_h -154.564 #kJ/mol #15bla/vie
|
||
-analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6
|
||
|
||
Montmorillonite(HcK)
|
||
K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4
|
||
log_k 4.449
|
||
delta_h -119.628 #kJ/mol #15bla/vie
|
||
-analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6
|
||
|
||
Montmorillonite(HcMg)
|
||
Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4
|
||
log_k 5.996
|
||
delta_h -156.964 #kJ/mol #15bla/vie
|
||
-analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6
|
||
|
||
Montmorillonite(HcNa)
|
||
Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4
|
||
log_k 5.472
|
||
delta_h -135.658 #kJ/mol #15bla/vie
|
||
-analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6
|
||
|
||
Montmorillonite(MgCa)
|
||
Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4
|
||
log_k 4.222
|
||
delta_h -146.668 #kJ/mol #15bla/vie
|
||
-analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6
|
||
|
||
Montmorillonite(MgK)
|
||
K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4
|
||
log_k 2.83
|
||
delta_h -126.865 #kJ/mol #15bla/vie
|
||
-analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6
|
||
|
||
Montmorillonite(MgMg)
|
||
Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4
|
||
log_k 3.708
|
||
delta_h -148.028 #kJ/mol #15bla/vie
|
||
-analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6
|
||
|
||
Montmorillonite(MgNa)
|
||
Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4
|
||
log_k 3.411
|
||
delta_h -135.953 #kJ/mol #15bla/vie
|
||
-analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6
|
||
|
||
MordeniteB # (Ca)
|
||
Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4
|
||
log_k -2.898
|
||
delta_h -56.278 #kJ/mol #09bla
|
||
-analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6
|
||
|
||
MordeniteJ
|
||
Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4
|
||
log_k -4.16
|
||
delta_h -29.442 #kJ/mol #92joh/tas
|
||
-analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6
|
||
|
||
Muscovite # (ordered)
|
||
KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4
|
||
log_k 11.353
|
||
delta_h -253.923 #kJ/mol #06bla/pia
|
||
-analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6
|
||
|
||
Natrolite
|
||
Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4
|
||
log_k 19.326
|
||
delta_h -215.463 #kJ/mol #83joh/flo
|
||
-analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6
|
||
|
||
Nepheline
|
||
Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4
|
||
log_k 14.077
|
||
delta_h -144.506 #kJ/mol #Internal calculation
|
||
-analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6
|
||
|
||
Oligoclase # defined for elemental release
|
||
Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4-
|
||
|
||
Palygorskite # defined for elemental release
|
||
Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4
|
||
|
||
Paragonite
|
||
NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4
|
||
log_k 16.804
|
||
delta_h -294.623 #kJ/mol #96rou/hov
|
||
-analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6
|
||
|
||
Pargasite # Hornblende
|
||
Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4
|
||
log_k 104.557
|
||
delta_h -940.614 #kJ/mol #Internal calculation
|
||
-analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7
|
||
|
||
Phlogopite
|
||
KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4
|
||
log_k 41.098
|
||
delta_h -353.123 #kJ/mol #92cir/nav
|
||
-analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6
|
||
|
||
Prehnite
|
||
Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4
|
||
log_k 32.596
|
||
delta_h -339.617 #kJ/mol #98cha/kru
|
||
-analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6
|
||
|
||
Pyrophyllite
|
||
Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4
|
||
log_k -0.418
|
||
delta_h -128.924 #kJ/mol #95rob/hem
|
||
-analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6
|
||
|
||
Pyrrhotite(Hx) # Pyrrhotite
|
||
FeS + H+ = Fe+2 + HS-
|
||
log_k -3.679
|
||
delta_h -10.009 #kJ/mol #05wal/pel
|
||
-analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6
|
||
|
||
Pyrrhotite(Mc) # Pyrrhotite
|
||
FeS + H+ = Fe+2 + HS-
|
||
log_k -3.679
|
||
delta_h -10.009 #kJ/mol #05wal/pel
|
||
-analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6
|
||
|
||
Rhyolite # a mixture of minerals, defined for elemental release...
|
||
Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4
|
||
|
||
Riebeckite
|
||
Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3
|
||
log_k 9.199
|
||
delta_h -197.377 #kJ/mol #98hol/pow
|
||
-analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7
|
||
|
||
Saponite(Ca)
|
||
Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4
|
||
log_k 29.355
|
||
delta_h -262.766 #kJ/mol #15bla/vie
|
||
-analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6
|
||
|
||
Saponite(FeCa)
|
||
Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4
|
||
log_k 26.569
|
||
delta_h -250.636 #kJ/mol #15bla/vie
|
||
-analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6
|
||
|
||
Saponite(FeK)
|
||
K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4
|
||
log_k 25.398
|
||
delta_h -232.093 #kJ/mol #15bla/vie
|
||
-analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6
|
||
|
||
Saponite(FeMg)
|
||
Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4
|
||
log_k 26.022
|
||
delta_h -251.806 #kJ/mol #15bla/vie
|
||
-analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6
|
||
|
||
Saponite(FeNa)
|
||
Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4
|
||
log_k 25.896
|
||
delta_h -240.711 #kJ/mol #15bla/vie
|
||
-analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6
|
||
|
||
Saponite(K)
|
||
K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4
|
||
log_k 27.43
|
||
delta_h -239.483 #kJ/mol #15bla/vie
|
||
-analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6
|
||
|
||
Saponite(Mg)
|
||
Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4
|
||
log_k 28.81
|
||
delta_h -263.946 #kJ/mol #15bla/vie
|
||
-analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6
|
||
|
||
Saponite(Na)
|
||
Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4
|
||
log_k 27.971
|
||
delta_h -248.219 #kJ/mol #15bla/vie
|
||
-analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6
|
||
|
||
Saponite(SapCa)
|
||
(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2
|
||
log_k 31.473
|
||
delta_h -277.172 #kJ/mol #13gai/bla
|
||
-analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6
|
||
|
||
Scolecite
|
||
CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O
|
||
log_k 16.647
|
||
delta_h -233.213 #kJ/mol #83joh/flo
|
||
-analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6
|
||
|
||
Smectite # (MX80)
|
||
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2
|
||
log_k 5.278
|
||
delta_h -175.308 #kJ/mol #12gai/bla
|
||
-analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6
|
||
|
||
Smectite(MX80:3.989H2O)
|
||
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O
|
||
log_k 1.774
|
||
delta_h -148.524 #kJ/mol #12gai/bla
|
||
-analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6
|
||
|
||
Smectite(MX80:5.189H2O)
|
||
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O
|
||
log_k 1.435
|
||
delta_h -140.43 #kJ/mol #12gai/bla
|
||
-analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6
|
||
|
||
Spodumene # from core10.dat
|
||
LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4
|
||
log_k 6.9972
|
||
delta_h -89.1817
|
||
-analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5
|
||
-Vm 58.37
|
||
|
||
Staurolite
|
||
Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O
|
||
log_k 216.34
|
||
delta_h -1956.484 #kJ/mol #87woo/gar
|
||
-analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7
|
||
|
||
Stilbite
|
||
NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4
|
||
log_k 23.044
|
||
delta_h -403.823 #kJ/mol #01fri/neu
|
||
-analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7
|
||
|
||
Thomsonite # defined for elemental release
|
||
Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O
|
||
|
||
Tourmaline # defined for elemental release
|
||
NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4
|
||
|
||
Tremolite
|
||
(Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4
|
||
log_k 67.281
|
||
delta_h -502.247 #kJ/mol #95rob/hem
|
||
-analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7
|
||
|
||
# Uraninite
|
||
# UO2 + 4 H+ = U+4 + 2 H2O
|
||
# log_k -3.490
|
||
# delta_h -18.630 kcal
|
||
|
||
Wollastonite
|
||
CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4
|
||
log_k 14.047
|
||
delta_h -85.986 #kJ/mol #78hel/del,92ajoh
|
||
-analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6
|
||
|
||
Zoisite
|
||
Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O
|
||
log_k 43.848
|
||
delta_h -485.113 #kJ/mol #01sme/fra
|
||
-analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7
|
||
|
||
RATE_PARAMETERS_PK
|
||
# Acid Neutral Base
|
||
# log K E n(H+) log K E log K E n(OH-)
|
||
# ================================================================
|
||
Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4
|
||
#
|
||
SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6
|
||
Cristobalite -30 0 0 -12.31 65 -30 0 0
|
||
#
|
||
Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1
|
||
Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13
|
||
Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0
|
||
Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0
|
||
Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0
|
||
Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0
|
||
#
|
||
K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15
|
||
#
|
||
Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18
|
||
Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2
|
||
#
|
||
Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23
|
||
Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0
|
||
Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35
|
||
Grossular -5.1 85 1 -10.7 103.8 -30 0 0
|
||
Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0
|
||
Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0
|
||
Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3
|
||
Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556
|
||
Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0
|
||
#
|
||
Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25
|
||
Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0
|
||
#
|
||
augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26
|
||
bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0
|
||
diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0
|
||
enstatite -9.02 80 0.6 -12.72 80 -30 0 0
|
||
jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0
|
||
spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0
|
||
wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0
|
||
#
|
||
anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27
|
||
glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0
|
||
hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0
|
||
riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0
|
||
tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0
|
||
#
|
||
biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28
|
||
glauconite -4.8 85 0.7 -9.1 85 -30 0 0
|
||
muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22
|
||
muscovite -30 0 0 -13 22 -30 0 0
|
||
paragonite -30 0 0 -13 22 -30 0 0
|
||
phlogopite -30 0 0 -12.4 29 -30 0 0
|
||
pyrophyllite -30 0 0 -12.4 29 -30 0 0
|
||
#
|
||
kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29
|
||
montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2.
|
||
smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4.
|
||
#
|
||
lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30
|
||
chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23
|
||
chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0
|
||
talc -30 0 0 -12 42 -30 0 0
|
||
prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2
|
||
#
|
||
goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31
|
||
hematite -9.39 66.2 1 -14.6 66.2 -30 0 0
|
||
magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0
|
||
ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0
|
||
uraninite -30 0 0 -7.98 32 -30 0 0
|
||
#
|
||
brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32
|
||
gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784
|
||
diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503
|
||
#
|
||
anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34
|
||
anhydrite -30 0 0 -3.19 14.3 -30 0 0
|
||
gypsum -30 0 0 -2.79 0 -30 0 0
|
||
barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0
|
||
celestite -5.66 23.8 0.109 -30 0 -30 0 0
|
||
#
|
||
hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36
|
||
fluorapatite -3.73 250 0.613 -8 250 -30 0 0
|
||
#
|
||
halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37
|
||
fluorite -7.14 73 1 -13.79 73 -30 0 0
|
||
#
|
||
# Acid Neutral P_CO2
|
||
# log K E n(H+) log K E log K E n(P_CO2) Table
|
||
# ================================================================================
|
||
calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2)
|
||
dawsonite -30 0 0 -7 62.8 -30 0 0 33
|
||
dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33
|
||
dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33
|
||
magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33
|
||
#
|
||
# Acid and Fe+3 Neutral and O2 Base
|
||
# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table
|
||
# =========================================================================================
|
||
pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2
|
||
pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35
|
||
pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35
|
||
As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35
|
||
|
||
RATE_PARAMETERS_SVD
|
||
# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5
|
||
# H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula
|
||
# =================================================================================================================================================================================================================================================================================================
|
||
Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8
|
||
Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2
|
||
|
||
|
||
RATE_PARAMETERS_HERMANSKA
|
||
# Acid mechanism Neutral mechanism Basic mechanism
|
||
# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula
|
||
# ================================================================================================================================
|
||
# Amphiboles
|
||
Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0
|
||
Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
|
||
Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
|
||
Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
|
||
Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2
|
||
Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2
|
||
# Feldspars
|
||
Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3
|
||
Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3
|
||
Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3
|
||
Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3
|
||
K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline
|
||
Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3
|
||
Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3
|
||
# Glass
|
||
Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6
|
||
# Mica # Also valid for
|
||
Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite
|
||
Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2
|
||
# Olivines
|
||
Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2
|
||
Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2
|
||
Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2
|
||
# Pyroxenes
|
||
Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0
|
||
Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0
|
||
Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0
|
||
Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0
|
||
# SiO2 polymorphs
|
||
Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite
|
||
SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4
|
||
|
||
# 2023, Table 1 Also valid for
|
||
Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular
|
||
Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline
|
||
Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2
|
||
Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0
|
||
Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite
|
||
Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite
|
||
Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite
|
||
Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite
|
||
Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite
|
||
Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0
|
||
Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6
|
||
Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0
|
||
Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76
|
||
Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1
|
||
Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite
|
||
Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite
|
||
Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6
|
||
Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075
|
||
Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7
|
||
Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite
|
||
Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0
|
||
Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0
|
||
Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15
|
||
|
||
# # Example input files with RATES for KINETICS calculations
|
||
# #
|
||
# # compare Albite kinetics using rates from the compilations
|
||
# # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html
|
||
# # =========================================================
|
||
#
|
||
# RATES
|
||
# Albite_PK # Palandri and Kharaka, 2004
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_PK("Albite")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# KINETICS 1
|
||
# Albite_PK
|
||
# -formula NaAlSi3O8; -parms 0 1 1 0.67
|
||
# -m0 1; -time 1 # default
|
||
# END
|
||
|
||
# SOLUTION 1
|
||
# PHASES
|
||
# Fix_pH; H+ = H+
|
||
# LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant
|
||
# SELECTED_OUTPUT 1
|
||
# -file kinetic_rates_pH.inc
|
||
# -reset false
|
||
# USER_PUNCH 1 # write out the pH's to equilibrate...
|
||
# 10 FOR i = 0 to 14 STEP 0.5
|
||
# 20 punch EOL$ + 'USE solution 1'
|
||
# 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1'
|
||
# 40 punch EOL$ + ' LiBr'
|
||
# 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant
|
||
# 60 punch EOL$ + 'USE kinetics 1'
|
||
# 70 punch EOL$ + 'END'
|
||
# 80 NEXT i
|
||
# END
|
||
|
||
# PRINT; -reset false
|
||
# SELECTED_OUTPUT 1; -active false
|
||
# USER_GRAPH 1; -headings pH Palandri
|
||
# -axis_titles pH "log10(initial rate / (mol / m2 / s))"
|
||
# -axis_scale x_axis 0 14
|
||
# 10 graph_x -la("H+")
|
||
# 20 graph_sy log10(tot("Al"))
|
||
# INCLUDE$ kinetic_rates_pH.inc
|
||
# END
|
||
|
||
# RATES
|
||
# Albite_Svd # Sverdrup, 2019
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_SVD("Albite")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# KINETICS 1
|
||
# Albite_Svd
|
||
# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20
|
||
# USER_GRAPH 1; -headings pH Sverdup*20
|
||
# INCLUDE$ kinetic_rates_pH.inc
|
||
# END
|
||
|
||
# KINETICS 1
|
||
# Albite # from Sverdrup and Warfvinge, 1995
|
||
# -formula NaAlSi3O8; -parms 1 20 # roughness = 20
|
||
# USER_GRAPH 1; -headings pH Sverdup`95*20
|
||
# INCLUDE$ kinetic_rates_pH.inc
|
||
# END
|
||
|
||
# RATES
|
||
# Albite_Hermanska # 2022
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_HERMANSKA("Albite")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# KINETICS 1
|
||
# Albite_Hermanska
|
||
# -formula NaAlSi3O8; -parms 0 1 1 0.67
|
||
# USER_GRAPH 1; -headings pH Hermanska
|
||
# INCLUDE$ kinetic_rates_pH.inc
|
||
# END
|
||
|
||
# USE solution 1
|
||
# REACTION_TEMPERATURE 1; 25 25 in 21
|
||
# USER_GRAPH 1; -headings Albite_data
|
||
# 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3
|
||
# 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963<36>993.
|
||
# 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i
|
||
# 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i
|
||
# 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle
|
||
# END
|
||
|
||
# # compare rates for calcite dissolution
|
||
# # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978
|
||
# # at different initial CO2 concentrations.
|
||
# # =====================================
|
||
|
||
# USER_GRAPH 1; -active false
|
||
|
||
# RATES
|
||
# Calcite_PK # Palandri and Kharaka, 2004
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_PK("calcite")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# SOLUTION 1
|
||
# pH 7 charge; C(4) 1 CO2(g) -2.5
|
||
# KINETICS 1
|
||
# calcite_PK
|
||
# -formula CaCO3; -parms 0 1e-2 1 0.67
|
||
# -time 0.1 10*1 hour
|
||
# INCREMENTAL_REACTIONS true
|
||
# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5
|
||
# -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)"
|
||
# 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3
|
||
# END
|
||
|
||
# USE solution 1
|
||
# KINETICS 1
|
||
# Calcite
|
||
# -parms 1e2 0.67 # cm^2/mol calcite, exp factor
|
||
# -time 0.1 10*1 hour
|
||
# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst
|
||
# END
|
||
|
||
# SOLUTION 1
|
||
# pH 7 charge; C(4) 1 CO2(g) -1.5
|
||
# KINETICS 1
|
||
# calcite_PK
|
||
# -formula CaCO3
|
||
# -parms 0 1e-2 1 0.67
|
||
# -time 0.1 10*1 hour
|
||
# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5
|
||
# END
|
||
|
||
# USE solution 1
|
||
# KINETICS 1
|
||
# Calcite
|
||
# -parms 1e2 0.67
|
||
# -time 0.1 10*1 hour
|
||
# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst
|
||
# END
|
||
|
||
# # compare rates for quartz dissolution
|
||
# # and the effect of NaCl
|
||
# # =====================================
|
||
|
||
# USER_GRAPH 2; -active false
|
||
|
||
# RATES
|
||
# Quartz_PK # Palandri and Kharaka, 2004
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_PK("Quartz")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# SOLUTION 1
|
||
# pH 7 charge
|
||
# KINETICS 1
|
||
# Quartz_PK
|
||
# -formula SiO2
|
||
# -parms 0 6 1 0.67
|
||
# -time 0.1 10*1 year
|
||
# INCREMENTAL_REACTIONS true
|
||
# USER_GRAPH 3; -headings h Palandri
|
||
# -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)"
|
||
# 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3
|
||
# END
|
||
|
||
# RATES
|
||
# Quartz_Hermanska #
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_HERMANSKA("Quartz")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# USE solution 1
|
||
# KINETICS 1
|
||
# Quartz_Hermanska
|
||
# -formula SiO2
|
||
# -parms 0 6 1 0.67
|
||
# -time 0.1 10*1 year
|
||
# USER_GRAPH 3
|
||
# -headings H Hermanska
|
||
# END
|
||
|
||
# RATES
|
||
# Quartz_Svd # Sverdrup, 2019
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = RATE_SVD("Quartz")
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# USE solution 1
|
||
# KINETICS 1
|
||
# Quartz_Svd
|
||
# -formula SiO2
|
||
# -parms 0 6 1 0.67
|
||
# -time 0.1 10*1 year
|
||
# USER_GRAPH 3
|
||
# -headings H Sverdup
|
||
# END
|
||
|
||
# RATES
|
||
# Quartz_Rimstidt
|
||
# #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
|
||
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259
|
||
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# USE solution 1
|
||
# KINETICS 1
|
||
# Quartz_Rimstidt
|
||
# -formula SiO2
|
||
# -parms 0 6 1 0.67
|
||
# -time 0.1 10*1 year
|
||
# USER_GRAPH 3
|
||
# -headings H Rimstidt
|
||
# END
|
||
|
||
# SOLUTION 1
|
||
# pH 7 charge; Na 1; Cl 1
|
||
# KINETICS 1
|
||
# Quartz_Rimstidt
|
||
# -formula SiO2
|
||
# -parms 0 6 1 0.67
|
||
# -time 0.1 10*1 year
|
||
# USER_GRAPH 3
|
||
# -headings H Rimstidt_1.mM.NaCl
|
||
# END
|
||
|
||
# # Example input file for calculating kinetic dissolution of Montmorillonite,
|
||
# # a solid solution with exchangeable cations reacting fast;
|
||
# # their ratios are related to the changing solution composition,
|
||
# # and their amounts are connected to the kinetic reacting TOT layer.
|
||
# #
|
||
# # The affinity is related to a solid solution member, given by the fraction of the
|
||
# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula,
|
||
# # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1
|
||
# # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined.
|
||
# # It also shows how the default X exchanger can be invkoed.
|
||
# # # ==============================================================
|
||
|
||
# USER_GRAPH 3; -active false
|
||
|
||
# RATES
|
||
# Montmorillonite
|
||
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# # Gapon and Gaines-Tomas exchange formulas
|
||
# 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg"))
|
||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na
|
||
# 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na
|
||
|
||
# # # Gapon, with Ca as exchange species...
|
||
# # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg"))
|
||
# # # use SR("Montmorillonite(Mgca)")
|
||
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca
|
||
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca
|
||
|
||
# # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES
|
||
# # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5
|
||
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex
|
||
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex
|
||
|
||
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# 40 SAVE area * rate * affinity * TIME
|
||
# -end
|
||
|
||
# EXCHANGE_MASTER_SPECIES
|
||
# X_montm_mg X_montm_mg-0.34
|
||
# EXCHANGE_SPECIES
|
||
# # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES
|
||
# X_montm_mg-0.34 = X_montm_mg-0.34
|
||
# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 #
|
||
# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 #
|
||
# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 #
|
||
# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 #
|
||
|
||
# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX
|
||
# # # uncomment the following lines to see the effect...
|
||
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86
|
||
# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83
|
||
# # # also adapt the log_k`s of the solids...
|
||
# # PHASES
|
||
# # Montmorillonite(MgMg)
|
||
# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4
|
||
# # log_k 2.86
|
||
# # Montmorillonite(MgCa)
|
||
# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4
|
||
# # log_k 2.83
|
||
|
||
# # # The divalent cations can be defined with the Gaines-Thomas convention...
|
||
# # EXCHANGE_SPECIES
|
||
# # # undefine the previous set...
|
||
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10
|
||
# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10
|
||
# # # write the Gaines-Thomas formulas...
|
||
# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 #
|
||
# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 #
|
||
|
||
# # # The default exchanger X can be used, uncomment the following lines
|
||
# # # redefine f_Na in the rate...
|
||
# # RATES
|
||
# # Montmorillonite
|
||
# # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
|
||
# # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange
|
||
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na
|
||
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na
|
||
# # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
|
||
# # 40 SAVE area * rate * affinity * TIME
|
||
# # -end
|
||
# # # adapt log_k`s of the solids with default exchanger X:
|
||
# # PHASES
|
||
# # Montmorillonite(MgK)
|
||
# # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4
|
||
# # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305
|
||
# # Montmorillonite(MgMg)
|
||
# # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4
|
||
# # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62
|
||
# # Montmorillonite(MgCa)
|
||
# # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2
|
||
# # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55
|
||
# # # in EXCHANGE 1, comment X_montm_mg, uncomment X...
|
||
# END
|
||
|
||
# SOLUTION 1
|
||
# pH 7 charge
|
||
# Na 1e-5
|
||
# K 1e-5
|
||
# Mg 1e-5
|
||
# Ca 1e-5
|
||
# END
|
||
|
||
# # Give the solution composition for calculating the ininitial exchanger
|
||
# SOLUTION 99
|
||
# pH 7 charge
|
||
# EQUILIBRIUM_PHASES 1
|
||
# # solid solution of the end-members, SI = log10(fraction = 0.25)
|
||
# Montmorillonite(MgNa) -0.602 1e-2
|
||
# Montmorillonite(MgCa) -0.602 1e-2
|
||
# Montmorillonite(MgK) -0.602 1e-2
|
||
# Montmorillonite(MgMg) -0.602 1e-2
|
||
# Kaolinite 0 0
|
||
# SAVE solution 99
|
||
# END
|
||
|
||
# # # with Gapon only, initial exchanger can be defined explicitly
|
||
# EXCHANGE 1
|
||
# Na0.34X_montm_mg 1e-2
|
||
# Ca0.17X_montm_mg 1e-2
|
||
# K0.34X_montm_mg 1e-2
|
||
# Mg0.17X_montm_mg 1e-2
|
||
# END
|
||
|
||
# USE solution 1
|
||
# EQUILIBRIUM_PHASES 1
|
||
# Kaolinite 0 0
|
||
# # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1
|
||
# EXCHANGE 1
|
||
# X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1
|
||
# # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1
|
||
# KINETICS 1
|
||
# Montmorillonite
|
||
# -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1
|
||
# -m 4e-2
|
||
# -parms 0 2.5e5 1 0.67
|
||
# -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6
|
||
# -cvode true
|
||
# INCREMENTAL_REACTIONS true
|
||
# USER_GRAPH 4
|
||
# -headings time Na K Mg Ca mm_diss
|
||
# -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)"
|
||
# -axis_scale x_axis auto auto auto auto log
|
||
# -axis_scale y_axis auto auto auto auto log
|
||
# 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1)
|
||
# 10 GRAPH_X t
|
||
# 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24
|
||
# 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24
|
||
# 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca
|
||
# 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3
|
||
# END
|
||
# USE solution 99; REACTION
|
||
# USER_GRAPH 4; -connect_simulations false; -headings Solution_99
|
||
# 1 t = get(1)
|
||
# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red
|
||
# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green
|
||
# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue
|
||
# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange
|
||
|
||
# =============================================================================================
|
||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
|
||
#precipitated, indicates an initial precipitate that is less crystalline.
|
||
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
|
||
# =============================================================================================
|
||
# For the reaction aA + bB = cC + dD,
|
||
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
|
||
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
|
||
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
|
||
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
|
||
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
|
||
# hard-coded in calc_PR():
|
||
# kij CH4 CO2 H2S N2
|
||
# H2O 0.49 0.19 0.19 0.49
|
||
# =============================================================================================
|
||
# The molar volumes of solids are entered with
|
||
# -Vm vm cm3/mol
|
||
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
|
||
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
|
||
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
|
||
# --------------------
|
||
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
|
||
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
|
||
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
|
||
# The volume (cm3/mol) is
|
||
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
|
||
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
|
||
# + z^2 / 2 * Av * f(I^0.5)
|
||
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
|
||
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
|
||
# 41.84 transforms cal/bar/mol into cm3/mol.
|
||
# pb is pressure in bar.
|
||
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
|
||
# W is fitted on measured solution densities.
|
||
# z is charge of the solute species.
|
||
# Av is the Debye-H<>ckel limiting slope (DH_AV in PHREEQC basic).
|
||
# a0 is the ion-size parameter in the extended Debye-H<>ckel equation:
|
||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||
# a0 = -gamma x for cations, = 0 for anions.
|
||
# For details, consult ref. 1.
|
||
# =============================================================================================
|
||
# The viscosity is calculated with a (modified) Jones-Dole equation:
|
||
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
|
||
# Parameters are for calculating the B and D terms:
|
||
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
|
||
# # b0 b1 b2 d1 d2 d3 tan
|
||
# z_i is absolute charge number, m_i is molality of i
|
||
# B_i = b0 + b1 exp(-b2 * tc)
|
||
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
|
||
# D_i = d1 * exp(-d2 tc)
|
||
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 <20> m_i)^d3) / (2 + fI), fI is an ionic strength term.
|
||
# For details, consult ref. 4.
|
||
#
|
||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49<34>67.
|
||
# ref. 2: Procedures from ref. 1 using data compiled by Lalibert<72>, 2009, J. Chem. Eng. Data 54, 1725.
|
||
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
|
||
#
|
||
# =============================================================================================
|
||
# It remains the responsibility of the user to check the calculated results, for example with
|
||
# measured solubilities as a function of (P, T).
|