Darth Vader 622bc5fb4c Squashed 'src/' changes from ac393756..d6a74675
d6a74675 Merge commit '4e80a54467a084df3b666c7d6fc56a4798fd3301'
4e80a544 Squashed 'phreeqcpp/' changes from 7c7fafd..c876219
0209fdf9 Merge commit 'b537589773f4819fe97ff8e5322bcd38c54b63f7'
b5375897 Squashed 'phreeqcpp/' changes from e317dd0..7c7fafd

git-subtree-dir: src
git-subtree-split: d6a74675d73985977ceac1601b57463c1ee8c331
2024-10-08 20:05:43 +00:00

882 lines
19 KiB
C++

#include <stdio.h>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include "Phreeqc.h"
#include "phqalloc.h"
/* debug
#define DEBUG_CL1
#define CHECK_ERRORS
*/
#if defined(PHREEQCI_GUI)
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#endif
int Phreeqc::
cl1(int k, int l, int m, int n,
int l_nklmd, int l_n2d,
LDBLE * q,
int *l_kode, LDBLE l_toler,
int *l_iter, LDBLE * l_x, LDBLE * l_res, LDBLE * l_error,
LDBLE * l_cu, int *l_iu, int *l_s, int check)
{
/* System generated locals */
union double_or_int
{
int ival;
LDBLE dval;
} *q2;
/* Local variables */
int nklm;
LDBLE xmin, xmax;
int iout = 0;
// static i runs faster on windows
int i, j;
LDBLE l_z;
int maxit, n1, n2;
LDBLE pivot;
int ia, ii, kk, nk, js;
int in = 0;
LDBLE sn;
int iphase, kforce;
LDBLE zu, zv;
LDBLE tpivot;
int klm, jmn, nkl, jpn;
LDBLE cuv;
long double sum;
int klm1;
int q_dim, cu_dim;
int kode_arg;
LDBLE check_toler;
#ifdef CHECK_ERRORS
char **col_name, **row_name;
int *row_back, *col_back;
#endif
/* THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX */
/* METHOD OF LINEAR PROGRAMMING TO CALCULATE AN L1 SOLUTION */
/* TO A K BY N SYSTEM OF LINEAR EQUATIONS */
/* AX=B */
/* SUBJECT TO L LINEAR EQUALITY CONSTRAINTS */
/* CX=D */
/* AND M LINEAR INEQUALITY CONSTRAINTS */
/* EX.LE.F. */
/* DESCRIPTION OF PARAMETERS */
/* K NUMBER OF ROWS OF THE MATRIX A (K.GE.1). */
/* L NUMBER OF ROWS OF THE MATRIX C (L.GE.0). */
/* M NUMBER OF ROWS OF THE MATRIX E (M.GE.0). */
/* N NUMBER OF COLUMNS OF THE MATRICES A,C,E (N.GE.1). */
/* KLMD SET TO AT LEAST K+L+M FOR ADJUSTABLE DIMENSIONS. */
/* KLM2D SET TO AT LEAST K+L+M+2 FOR ADJUSTABLE DIMENSIONS. */
/* NKLMD SET TO AT LEAST N+K+L+M FOR ADJUSTABLE DIMENSIONS. */
/* N2D SET TO AT LEAST N+2 FOR ADJUSTABLE DIMENSIONS */
/* Q TWO DIMENSIONAL REAL ARRAY WITH KLM2D ROWS AND */
/* AT LEAST N2D COLUMNS. */
/* ON ENTRY THE MATRICES A,C AND E, AND THE VECTORS */
/* B,D AND F MUST BE STORED IN THE FIRST K+L+M ROWS */
/* AND N+1 COLUMNS OF Q AS FOLLOWS */
/* A B */
/* Q = C D */
/* E F */
/* THESE VALUES ARE DESTROYED BY THE SUBROUTINE. */
/* KODE A CODE USED ON ENTRY TO, AND EXIT */
/* FROM, THE SUBROUTINE. */
/* ON ENTRY, THIS SHOULD NORMALLY BE SET TO 0. */
/* HOWEVER, IF CERTAIN NONNEGATIVITY CONSTRAINTS */
/* ARE TO BE INCLUDED IMPLICITLY, RATHER THAN */
/* EXPLICITLY IN THE CONSTRAINTS EX.LE.F, THEN KODE */
/* SHOULD BE SET TO 1, AND THE NONNEGATIVITY */
/* CONSTRAINTS INCLUDED IN THE ARRAYS X AND */
/* RES (SEE BELOW). */
/* ON EXIT, KODE HAS ONE OF THE */
/* FOLLOWING VALUES */
/* 0- OPTIMAL SOLUTION FOUND, */
/* 1- NO FEASIBLE SOLUTION TO THE */
/* CONSTRAINTS, */
/* 2- CALCULATIONS TERMINATED */
/* PREMATURELY DUE TO ROUNDING ERRORS, */
/* 3- MAXIMUM NUMBER OF ITERATIONS REACHED. */
/* TOLER A SMALL POSITIVE TOLERANCE. EMPIRICAL */
/* EVIDENCE SUGGESTS TOLER = 10**(-D*2/3), */
/* WHERE D REPRESENTS THE NUMBER OF DECIMAL */
/* DIGITS OF ACCURACY AVAILABLE. ESSENTIALLY, */
/* THE SUBROUTINE CANNOT DISTINGUISH BETWEEN ZERO */
/* AND ANY QUANTITY WHOSE MAGNITUDE DOES NOT EXCEED */
/* TOLER. IN PARTICULAR, IT WILL NOT PIVOT ON ANY */
/* NUMBER WHOSE MAGNITUDE DOES NOT EXCEED TOLER. */
/* ITER ON ENTRY ITER MUST CONTAIN AN UPPER BOUND ON */
/* THE MAXIMUM NUMBER OF ITERATIONS ALLOWED. */
/* A SUGGESTED VALUE IS 10*(K+L+M). ON EXIT ITER */
/* GIVES THE NUMBER OF SIMPLEX ITERATIONS. */
/* X ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST N2D. */
/* ON EXIT THIS ARRAY CONTAINS A */
/* SOLUTION TO THE L1 PROBLEM. IF KODE=1 */
/* ON ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE */
/* SIMPLE NONNEGATIVITY CONSTRAINTS ON THE */
/* VARIABLES. THE VALUES -1, 0, OR 1 */
/* FOR X(J) INDICATE THAT THE J-TH VARIABLE */
/* IS RESTRICTED TO BE .LE.0, UNRESTRICTED, */
/* OR .GE.0 RESPECTIVELY. */
/* RES ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST KLMD. */
/* ON EXIT THIS CONTAINS THE RESIDUALS B-AX */
/* IN THE FIRST K COMPONENTS, D-CX IN THE */
/* NEXT L COMPONENTS (THESE WILL BE =0),AND */
/* F-EX IN THE NEXT M COMPONENTS. IF KODE=1 ON */
/* ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE SIMPLE */
/* NONNEGATIVITY CONSTRAINTS ON THE RESIDUALS */
/* B-AX. THE VALUES -1, 0, OR 1 FOR RES(I) */
/* INDICATE THAT THE I-TH RESIDUAL (1.LE.I.LE.K) IS */
/* RESTRICTED TO BE .LE.0, UNRESTRICTED, OR .GE.0 */
/* RESPECTIVELY. */
/* ERROR ON EXIT, THIS GIVES THE MINIMUM SUM OF */
/* ABSOLUTE VALUES OF THE RESIDUALS. */
/* CU A TWO DIMENSIONAL REAL ARRAY WITH TWO ROWS AND */
/* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
/* IU A TWO DIMENSIONAL INTEGER ARRAY WITH TWO ROWS AND */
/* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
/* S INTEGER ARRAY OF SIZE AT LEAST KLMD, USED FOR */
/* WORKSPACE. */
/* real(kind=8) DBLE */
/* REAL */
/* INITIALIZATION. */
zv = 0;
kode_arg = *l_kode;
cl1_space(check, l_n2d, k + l + m, l_nklmd);
/* Parameter adjustments */
q_dim = l_n2d;
q2 = (union double_or_int *) q;
cu_dim = l_nklmd;
/* Function Body */
maxit = *l_iter;
n1 = n + 1;
n2 = n + 2;
nk = n + k;
nkl = nk + l;
klm = k + l + m;
klm1 = klm + 1;
nklm = n + klm;
kforce = 1;
*l_iter = 0;
js = 0;
ia = -1;
/* SET UP LABELS IN Q. */
for (j = 0; j < n; ++j)
{
q2[klm1 * q_dim + j].ival = j + 1;
}
/* L10: */
for (i = 0; i < klm; ++i)
{
q2[i * q_dim + n1].ival = n + i + 1;
if (q2[i * q_dim + n].dval < 0.)
{
for (j = 0; j < n1; ++j)
{
q2[i * q_dim + j].dval = -q2[i * q_dim + j].dval;
}
q2[i * q_dim + n1].ival = -q2[i * q_dim + n1].ival;
/* L20: */
}
}
/* L30: */
/* SET UP PHASE 1 COSTS. */
iphase = 2;
#ifdef DEBUG_CL1
output_msg(sformatf( "Set up phase 1 costs\n"));
#endif
/* Zero first row of cu and iu */
memset(&l_cu[0], 0, (size_t)nklm * sizeof(LDBLE));
memset(&l_iu[0], 0, (size_t)nklm * sizeof(int));
/* L40: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L40\n"));
#endif
if (l != 0)
{
for (j = nk; j < nkl; ++j)
{
l_cu[j] = 1.;
l_iu[j] = 1;
}
/* L50: */
iphase = 1;
}
/* Copy first row of cu and iu to second row */
memcpy((void *) &(l_cu[cu_dim]), (void *) &(l_cu[0]),
(size_t) nklm * sizeof(LDBLE));
memcpy((void *) &(l_iu[cu_dim]), (void *) &(l_iu[0]),
(size_t) nklm * sizeof(int));
/* L60: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L60\n"));
#endif
if (m != 0)
{
for (j = nkl; j < nklm; ++j)
{
l_cu[cu_dim + j] = 1.;
l_iu[cu_dim + j] = 1;
jmn = j - n;
if (q2[jmn * q_dim + n1].ival < 0)
{
iphase = 1;
}
}
/* L70: */
}
/* L80: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L80\n"));
#endif
if (*l_kode != 0)
{
for (j = 0; j < n; ++j)
{
if (l_x[j] < 0.)
{
/* L90: */
l_cu[j] = 1.;
l_iu[j] = 1;
}
else if (l_x[j] > 0.)
{
l_cu[cu_dim + j] = 1.;
l_iu[cu_dim + j] = 1;
}
}
/* L110: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L110\n"));
#endif
for (j = 0; j < k; ++j)
{
jpn = j + n;
if (l_res[j] < 0.)
{
/* L120: */
l_cu[jpn] = 1.;
l_iu[jpn] = 1;
if (q2[j * q_dim + n1].ival > 0)
{
iphase = 1;
}
}
else if (l_res[j] > 0.)
{
/* L130: */
l_cu[cu_dim + jpn] = 1.;
l_iu[cu_dim + jpn] = 1;
if (q2[j * q_dim + n1].ival < 0)
{
iphase = 1;
}
}
}
/* L140: */
}
/* L150: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L150\n"));
#endif
if (iphase == 2)
{
goto L500;
}
/* COMPUTE THE MARGINAL COSTS. */
L160:
#ifdef DEBUG_CL1
output_msg(sformatf( "L160\n"));
#endif
for (j = js; j < n1; ++j)
{
sum = 0.;
for (i = 0; i < klm; ++i)
{
ii = q2[i * q_dim + n1].ival;
if (ii < 0)
{
l_z = l_cu[cu_dim - ii - 1];
}
else
{
l_z = l_cu[ii - 1];
}
sum += (long double) q2[i * q_dim + j].dval * (long double) l_z;
}
q2[klm * q_dim + j].dval = (double)sum;
}
for (j = js; j < n; ++j)
{
ii = q2[klm1 * q_dim + j].ival;
if (ii < 0)
{
l_z = l_cu[cu_dim - ii - 1];
}
else
{
l_z = l_cu[ii - 1];
}
q2[klm * q_dim + j].dval -= l_z;
}
/* DETERMINE THE VECTOR TO ENTER THE BASIS. */
L240:
#ifdef DEBUG_CL1
output_msg(sformatf( "L240, xmax %e\n", xmax));
#endif
xmax = 0.;
if (js >= n)
{
goto L490; /* test for optimality */
}
for (j = js; j < n; ++j)
{
zu = q2[klm * q_dim + j].dval;
ii = q2[klm1 * q_dim + j].ival;
if (ii > 0)
{
zv = -zu - l_cu[ii - 1] - l_cu[cu_dim + ii - 1];
}
else
{
ii = -ii;
zv = zu;
zu = -zu - l_cu[ii - 1] - l_cu[cu_dim + ii - 1];
}
/* L260 */
if (kforce == 1 && ii > n)
{
continue;
}
if (l_iu[ii - 1] != 1 && zu > xmax)
{
xmax = zu;
in = j;
}
/* L270 */
if (l_iu[cu_dim + ii - 1] != 1 && zv > xmax)
{
xmax = zv;
in = j;
}
}
/* L280 */
#ifdef DEBUG_CL1
output_msg(sformatf( "L280 xmax %e, toler %e\n", xmax, l_toler));
#endif
if (xmax <= l_toler)
{
#ifdef DEBUG_CL1
output_msg(sformatf( "xmax before optimality test %e\n", xmax));
#endif
goto L490; /* test for optimality */
}
if (q2[klm * q_dim + in].dval != xmax)
{
for (i = 0; i < klm1; ++i)
{
q2[i * q_dim + in].dval = -q2[i * q_dim + in].dval;
}
q2[klm1 * q_dim + in].ival = -q2[klm1 * q_dim + in].ival;
/* L290: */
q2[klm * q_dim + in].dval = xmax;
}
/* DETERMINE THE VECTOR TO LEAVE THE BASIS. */
if (iphase != 1 && ia != -1)
{
xmax = 0.;
/* find maximum absolute value in column "in" */
for (i = 0; i <= ia; ++i)
{
l_z = fabs(q2[i * q_dim + in].dval);
if (l_z > xmax)
{
xmax = l_z;
iout = i;
}
}
/* L310: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L310, xmax %e\n", xmax));
#endif
/* switch row ia with row iout, use memcpy */
if (xmax > l_toler)
{
if (ia != iout)
{
memcpy((void *) &(scratch[0]), (void *) &(q2[ia * q_dim]),
(size_t) n2 * sizeof(LDBLE));
memcpy((void *) &(q2[ia * q_dim]), (void *) &(q2[iout * q_dim]),
(size_t) n2 * sizeof(LDBLE));
memcpy((void *) &(q2[iout * q_dim]), (void *) &(scratch[0]),
(size_t) n2 * sizeof(LDBLE));
}
/* L320: */
/* set pivot to row ia, column in */
iout = ia;
--ia;
pivot = q2[iout * q_dim + in].dval;
goto L420; /* Gauss Jordan */
}
}
/* L330: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L330, xmax %e\n", xmax));
#endif
kk = -1;
/* divide column n1 by positive value in column "in" greater than toler */
for (i = 0; i < klm; ++i)
{
l_z = q2[i * q_dim + in].dval;
if (l_z > l_toler)
{
++kk;
l_res[kk] = q2[i * q_dim + n].dval / l_z;
l_s[kk] = i;
}
}
/* L340: */
#ifdef DEBUG_CL1
if (kk < 0)
{
output_msg(sformatf( "kode = 2 in loop 340.\n"));
}
#endif
L350:
#ifdef DEBUG_CL1
output_msg(sformatf( "L350, xmax %e\n", xmax));
#endif
if (kk < 0)
{
/* no positive value found in L340 or bypass intermediate vertices */
*l_kode = 2;
goto L590;
}
/* L360: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L360, xmax %e\n", xmax));
#endif
/* find minimum residual */
xmin = l_res[0];
iout = l_s[0];
j = 0;
if (kk != 0)
{
for (i = 1; i <= kk; ++i)
{
if (l_res[i] < xmin)
{
j = i;
xmin = l_res[i];
iout = l_s[i];
}
}
/* L370: */
/* put kk in position j */
l_res[j] = l_res[kk];
l_s[j] = l_s[kk];
}
/* L380: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L380 iout %d, xmin %e, xmax %e\n", iout,
xmin, xmax));
#endif
--kk;
pivot = q2[iout * q_dim + in].dval;
ii = q2[iout * q_dim + n1].ival;
if (iphase != 1)
{
if (ii < 0)
{
/* L390: */
if (l_iu[-ii - 1] == 1)
{
goto L420;
}
}
else
{
if (l_iu[cu_dim + ii - 1] == 1)
{
goto L420;
}
}
}
/* L400: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L400\n"));
#endif
ii = abs(ii);
cuv = l_cu[ii - 1] + l_cu[cu_dim + ii - 1];
if (q2[klm * q_dim + in].dval - pivot * cuv > l_toler)
{
/* BYPASS INTERMEDIATE VERTICES. */
for (j = js; j < n1; ++j)
{
l_z = q2[iout * q_dim + j].dval;
q2[klm * q_dim + j].dval -= l_z * cuv;
q2[iout * q_dim + j].dval = -l_z;
}
/* L410: */
q2[iout * q_dim + n1].ival = -q2[iout * q_dim + n1].ival;
goto L350;
}
/* GAUSS-JORDAN ELIMINATION. */
L420:
#ifdef DEBUG_CL1
output_msg(sformatf( "Gauss Jordon %d\n", *l_iter));
#endif
if (*l_iter >= maxit)
{
*l_kode = 3;
goto L590;
}
/* L430: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L430\n"));
#endif
++(*l_iter);
for (j = js; j < n1; ++j)
{
if (j != in)
{
q2[iout * q_dim + j].dval /= pivot;
}
}
/* L440: */
for (j = js; j < n1; ++j)
{
if (j != in)
{
l_z = -q2[iout * q_dim + j].dval;
for (i = 0; i < klm1; ++i)
{
if (i != iout)
{
q2[i * q_dim + j].dval += l_z * q2[i * q_dim + in].dval;
}
}
/* L450: */
}
}
/* L460: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L460\n"));
#endif
tpivot = -pivot;
for (i = 0; i < klm1; ++i)
{
if (i != iout)
{
q2[i * q_dim + in].dval /= tpivot;
}
}
/* L470: */
q2[iout * q_dim + in].dval = 1. / pivot;
ii = q2[iout * q_dim + n1].ival;
q2[iout * q_dim + n1].ival = q2[klm1 * q_dim + in].ival;
q2[klm1 * q_dim + in].ival = ii;
ii = abs(ii);
if (l_iu[ii - 1] == 0 || l_iu[cu_dim + ii - 1] == 0)
{
goto L240;
}
/* switch column */
for (i = 0; i < klm1; ++i)
{
l_z = q2[i * q_dim + in].dval;
q2[i * q_dim + in].dval = q2[i * q_dim + js].dval;
q2[i * q_dim + js].dval = l_z;
}
i = q2[klm1 * q_dim + in].ival;
q2[klm1 * q_dim + in].ival = q2[klm1 * q_dim + js].ival;
q2[klm1 * q_dim + js].ival = i;
/* L480: */
++js;
goto L240;
/* TEST FOR OPTIMALITY. */
L490:
#ifdef DEBUG_CL1
output_msg(sformatf( "L490\n"));
#endif
if (kforce == 0)
{
if (iphase == 1)
{
if (q2[klm * q_dim + n].dval <= l_toler)
{
goto L500;
}
#ifdef DEBUG_CL1
output_msg(sformatf( "q2[klm1-1, n1-1] > *toler. %e\n",
q2[(klm1 - 1) * q_dim + n1 - 1].dval));
#endif
*l_kode = 1;
goto L590;
}
*l_kode = 0;
goto L590;
}
if (iphase != 1 || q2[klm * q_dim + n].dval > l_toler)
{
kforce = 0;
goto L240;
}
/* SET UP PHASE 2 COSTS. */
L500:
#ifdef DEBUG_CL1
output_msg(sformatf( "Set up phase 2 costs %d\n", *l_iter));
#endif
iphase = 2;
for (j = 0; j < nklm; ++j)
{
l_cu[j] = 0.;
}
/* L510: */
for (j = n; j < nk; ++j)
{
l_cu[j] = 1.;
}
memcpy((void *) &(l_cu[cu_dim]), (void *) &(l_cu[0]),
(size_t) nklm * sizeof(LDBLE));
/* L520: */
for (i = 0; i < klm; ++i)
{
ii = q2[i * q_dim + n1].ival;
if (ii <= 0)
{
if (l_iu[cu_dim - ii - 1] == 0)
{
continue;
}
l_cu[cu_dim - ii - 1] = 0.;
}
else
{
/* L530: */
if (l_iu[ii - 1] == 0)
{
continue;
}
l_cu[ii - 1] = 0.;
}
/* L540: */
++ia;
/* switch row */
if (ia != i)
{
memcpy((void *) &(scratch[0]), (void *) &(q2[ia * q_dim]),
(size_t) n2 * sizeof(LDBLE));
memcpy((void *) &(q2[ia * q_dim]), (void *) &(q2[i * q_dim]),
(size_t) n2 * sizeof(LDBLE));
memcpy((void *) &(q2[i * q_dim]), (void *) &(scratch[0]),
(size_t) n2 * sizeof(LDBLE));
}
/* L550: */
}
/* L560: */
goto L160;
/* PREPARE OUTPUT. */
L590:
#ifdef DEBUG_CL1
output_msg(sformatf( "L590\n"));
#endif
sum = 0.;
for (j = 0; j < n; ++j)
{
l_x[j] = 0.;
}
/* L600: */
for (i = 0; i < klm; ++i)
{
l_res[i] = 0.;
}
/* L610: */
for (i = 0; i < klm; ++i)
{
ii = q2[i * q_dim + n1].ival;
sn = 1.;
if (ii < 0)
{
ii = -ii;
sn = -1.;
}
if (ii <= n)
{
/* L620: */
l_x[ii - 1] = sn * q2[i * q_dim + n].dval;
}
else
{
/* L630: */
l_res[ii - n - 1] = sn * q2[i * q_dim + n].dval;
if (ii >= n1 && ii <= nk)
{
/* * DBLE(Q(I,N1)) */
sum += (long double) q2[i * q_dim + n].dval;
}
}
}
/* L640: */
#ifdef DEBUG_CL1
output_msg(sformatf( "L640\n"));
#endif
*l_error = (double)sum;
/*
* Check calculation
*/
if ((check == 1) && (*l_kode == 0))
{
check_toler = 10. * l_toler;
/*
* Check optimization constraints
*/
if (kode_arg == 1)
{
for (i = 0; i < k; ++i)
{
if (res_arg[i] < 0.0)
{
if (l_res[i] > check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: optimization constraint not satisfied row %d, res %s, constraint %f.\n",
row_name[row_back[i]], l_res[i], res_arg[i]));
#endif
*l_kode = 1;
}
}
else if (res_arg[i] > 0.0)
{
if (l_res[i] < -check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: optimization constraint not satisfied row %s, res %e, constraint %f.\n",
row_name[row_back[i]], l_res[i], res_arg[i]));
#endif
*l_kode = 1;
}
}
}
}
/*
* Check equalities
*/
for (i = k; i < k + l; ++i)
{
if (fabs(l_res[i]) > check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: equality constraint not satisfied row %s, res %e, tolerance %e.\n",
row_name[row_back[i]], l_res[i], check_toler));
#endif
*l_kode = 1;
}
}
/*
* Check inequalities
*/
for (i = k + l; i < k + l + m; ++i)
{
if (l_res[i] < -check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: inequality constraint not satisfied row %s, res %e, tolerance %e.\n",
row_name[row_back[i]], l_res[i], check_toler));
#endif
*l_kode = 1;
}
}
/*
* Check dissolution/precipitation constraints
*/
if (kode_arg == 1)
{
for (i = 0; i < n; ++i)
{
if (x_arg[i] < 0.0)
{
if (l_x[i] > check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: dis/pre constraint not satisfied column %s, x %e, constraint %f.\n",
col_name[col_back[i]], l_x[i], x_arg[i]));
#endif
*l_kode = 1;
}
}
else if (x_arg[i] > 0.0)
{
if (l_x[i] < -check_toler)
{
#ifdef CHECK_ERRORS
output_msg(sformatf(
"\tCL1: dis/pre constraint not satisfied column %s, x %e, constraint %f.\n",
col_name[col_back[i]], l_x[i], x_arg[i]));
#endif
*l_kode = 1;
}
}
}
}
if (*l_kode == 1)
{
output_msg(sformatf(
"\n\tCL1: Roundoff errors in optimization.\n\t Try using -multiple_precision in INVERSE_MODELING\n"));
}
}
return 0;
}
void Phreeqc::
cl1_space(int check, int l_n2d, int klm, int l_nklmd)
{
if (check == 1)
{
if ((size_t)l_n2d > x_arg.size())
{
x_arg.resize((size_t)l_n2d);
}
memset(&x_arg[0], 0, sizeof(double) * (size_t)l_n2d);
if ((size_t)klm > res_arg.size())
{
res_arg.resize((size_t)klm);
}
memset(&res_arg[0], 0, sizeof(double) * (size_t)klm);
}
if (l_nklmd > 0)
{
if ((size_t)l_nklmd > scratch.size())
{
scratch.resize(l_nklmd);
}
memset(&scratch[0], 0, sizeof(double) * (size_t)l_nklmd);
}
else if (scratch.size() == 0)
{
scratch.resize(1);
memset(&scratch[0], 0, sizeof(double));
}
}