mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-15 16:18:22 +01:00
d6a74675 Merge commit '4e80a54467a084df3b666c7d6fc56a4798fd3301' 4e80a544 Squashed 'phreeqcpp/' changes from 7c7fafd..c876219 0209fdf9 Merge commit 'b537589773f4819fe97ff8e5322bcd38c54b63f7' b5375897 Squashed 'phreeqcpp/' changes from e317dd0..7c7fafd git-subtree-dir: src git-subtree-split: d6a74675d73985977ceac1601b57463c1ee8c331
882 lines
19 KiB
C++
882 lines
19 KiB
C++
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
#include "Phreeqc.h"
|
|
#include "phqalloc.h"
|
|
|
|
/* debug
|
|
#define DEBUG_CL1
|
|
#define CHECK_ERRORS
|
|
*/
|
|
|
|
#if defined(PHREEQCI_GUI)
|
|
#ifdef _DEBUG
|
|
#define new DEBUG_NEW
|
|
#undef THIS_FILE
|
|
static char THIS_FILE[] = __FILE__;
|
|
#endif
|
|
#endif
|
|
|
|
int Phreeqc::
|
|
cl1(int k, int l, int m, int n,
|
|
int l_nklmd, int l_n2d,
|
|
LDBLE * q,
|
|
int *l_kode, LDBLE l_toler,
|
|
int *l_iter, LDBLE * l_x, LDBLE * l_res, LDBLE * l_error,
|
|
LDBLE * l_cu, int *l_iu, int *l_s, int check)
|
|
{
|
|
/* System generated locals */
|
|
union double_or_int
|
|
{
|
|
int ival;
|
|
LDBLE dval;
|
|
} *q2;
|
|
|
|
/* Local variables */
|
|
int nklm;
|
|
LDBLE xmin, xmax;
|
|
int iout = 0;
|
|
// static i runs faster on windows
|
|
int i, j;
|
|
LDBLE l_z;
|
|
int maxit, n1, n2;
|
|
LDBLE pivot;
|
|
int ia, ii, kk, nk, js;
|
|
int in = 0;
|
|
LDBLE sn;
|
|
int iphase, kforce;
|
|
LDBLE zu, zv;
|
|
LDBLE tpivot;
|
|
int klm, jmn, nkl, jpn;
|
|
LDBLE cuv;
|
|
long double sum;
|
|
int klm1;
|
|
int q_dim, cu_dim;
|
|
int kode_arg;
|
|
LDBLE check_toler;
|
|
#ifdef CHECK_ERRORS
|
|
char **col_name, **row_name;
|
|
int *row_back, *col_back;
|
|
#endif
|
|
/* THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX */
|
|
/* METHOD OF LINEAR PROGRAMMING TO CALCULATE AN L1 SOLUTION */
|
|
/* TO A K BY N SYSTEM OF LINEAR EQUATIONS */
|
|
/* AX=B */
|
|
/* SUBJECT TO L LINEAR EQUALITY CONSTRAINTS */
|
|
/* CX=D */
|
|
/* AND M LINEAR INEQUALITY CONSTRAINTS */
|
|
/* EX.LE.F. */
|
|
/* DESCRIPTION OF PARAMETERS */
|
|
/* K NUMBER OF ROWS OF THE MATRIX A (K.GE.1). */
|
|
/* L NUMBER OF ROWS OF THE MATRIX C (L.GE.0). */
|
|
/* M NUMBER OF ROWS OF THE MATRIX E (M.GE.0). */
|
|
/* N NUMBER OF COLUMNS OF THE MATRICES A,C,E (N.GE.1). */
|
|
/* KLMD SET TO AT LEAST K+L+M FOR ADJUSTABLE DIMENSIONS. */
|
|
/* KLM2D SET TO AT LEAST K+L+M+2 FOR ADJUSTABLE DIMENSIONS. */
|
|
/* NKLMD SET TO AT LEAST N+K+L+M FOR ADJUSTABLE DIMENSIONS. */
|
|
/* N2D SET TO AT LEAST N+2 FOR ADJUSTABLE DIMENSIONS */
|
|
/* Q TWO DIMENSIONAL REAL ARRAY WITH KLM2D ROWS AND */
|
|
/* AT LEAST N2D COLUMNS. */
|
|
/* ON ENTRY THE MATRICES A,C AND E, AND THE VECTORS */
|
|
/* B,D AND F MUST BE STORED IN THE FIRST K+L+M ROWS */
|
|
/* AND N+1 COLUMNS OF Q AS FOLLOWS */
|
|
/* A B */
|
|
/* Q = C D */
|
|
/* E F */
|
|
/* THESE VALUES ARE DESTROYED BY THE SUBROUTINE. */
|
|
/* KODE A CODE USED ON ENTRY TO, AND EXIT */
|
|
/* FROM, THE SUBROUTINE. */
|
|
/* ON ENTRY, THIS SHOULD NORMALLY BE SET TO 0. */
|
|
/* HOWEVER, IF CERTAIN NONNEGATIVITY CONSTRAINTS */
|
|
/* ARE TO BE INCLUDED IMPLICITLY, RATHER THAN */
|
|
/* EXPLICITLY IN THE CONSTRAINTS EX.LE.F, THEN KODE */
|
|
/* SHOULD BE SET TO 1, AND THE NONNEGATIVITY */
|
|
/* CONSTRAINTS INCLUDED IN THE ARRAYS X AND */
|
|
/* RES (SEE BELOW). */
|
|
/* ON EXIT, KODE HAS ONE OF THE */
|
|
/* FOLLOWING VALUES */
|
|
/* 0- OPTIMAL SOLUTION FOUND, */
|
|
/* 1- NO FEASIBLE SOLUTION TO THE */
|
|
/* CONSTRAINTS, */
|
|
/* 2- CALCULATIONS TERMINATED */
|
|
/* PREMATURELY DUE TO ROUNDING ERRORS, */
|
|
/* 3- MAXIMUM NUMBER OF ITERATIONS REACHED. */
|
|
/* TOLER A SMALL POSITIVE TOLERANCE. EMPIRICAL */
|
|
/* EVIDENCE SUGGESTS TOLER = 10**(-D*2/3), */
|
|
/* WHERE D REPRESENTS THE NUMBER OF DECIMAL */
|
|
/* DIGITS OF ACCURACY AVAILABLE. ESSENTIALLY, */
|
|
/* THE SUBROUTINE CANNOT DISTINGUISH BETWEEN ZERO */
|
|
/* AND ANY QUANTITY WHOSE MAGNITUDE DOES NOT EXCEED */
|
|
/* TOLER. IN PARTICULAR, IT WILL NOT PIVOT ON ANY */
|
|
/* NUMBER WHOSE MAGNITUDE DOES NOT EXCEED TOLER. */
|
|
/* ITER ON ENTRY ITER MUST CONTAIN AN UPPER BOUND ON */
|
|
/* THE MAXIMUM NUMBER OF ITERATIONS ALLOWED. */
|
|
/* A SUGGESTED VALUE IS 10*(K+L+M). ON EXIT ITER */
|
|
/* GIVES THE NUMBER OF SIMPLEX ITERATIONS. */
|
|
/* X ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST N2D. */
|
|
/* ON EXIT THIS ARRAY CONTAINS A */
|
|
/* SOLUTION TO THE L1 PROBLEM. IF KODE=1 */
|
|
/* ON ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE */
|
|
/* SIMPLE NONNEGATIVITY CONSTRAINTS ON THE */
|
|
/* VARIABLES. THE VALUES -1, 0, OR 1 */
|
|
/* FOR X(J) INDICATE THAT THE J-TH VARIABLE */
|
|
/* IS RESTRICTED TO BE .LE.0, UNRESTRICTED, */
|
|
/* OR .GE.0 RESPECTIVELY. */
|
|
/* RES ONE DIMENSIONAL REAL ARRAY OF SIZE AT LEAST KLMD. */
|
|
/* ON EXIT THIS CONTAINS THE RESIDUALS B-AX */
|
|
/* IN THE FIRST K COMPONENTS, D-CX IN THE */
|
|
/* NEXT L COMPONENTS (THESE WILL BE =0),AND */
|
|
/* F-EX IN THE NEXT M COMPONENTS. IF KODE=1 ON */
|
|
/* ENTRY, THIS ARRAY IS ALSO USED TO INCLUDE SIMPLE */
|
|
/* NONNEGATIVITY CONSTRAINTS ON THE RESIDUALS */
|
|
/* B-AX. THE VALUES -1, 0, OR 1 FOR RES(I) */
|
|
/* INDICATE THAT THE I-TH RESIDUAL (1.LE.I.LE.K) IS */
|
|
/* RESTRICTED TO BE .LE.0, UNRESTRICTED, OR .GE.0 */
|
|
/* RESPECTIVELY. */
|
|
/* ERROR ON EXIT, THIS GIVES THE MINIMUM SUM OF */
|
|
/* ABSOLUTE VALUES OF THE RESIDUALS. */
|
|
/* CU A TWO DIMENSIONAL REAL ARRAY WITH TWO ROWS AND */
|
|
/* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
|
|
/* IU A TWO DIMENSIONAL INTEGER ARRAY WITH TWO ROWS AND */
|
|
/* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */
|
|
/* S INTEGER ARRAY OF SIZE AT LEAST KLMD, USED FOR */
|
|
/* WORKSPACE. */
|
|
/* real(kind=8) DBLE */
|
|
/* REAL */
|
|
|
|
/* INITIALIZATION. */
|
|
|
|
zv = 0;
|
|
kode_arg = *l_kode;
|
|
cl1_space(check, l_n2d, k + l + m, l_nklmd);
|
|
|
|
/* Parameter adjustments */
|
|
q_dim = l_n2d;
|
|
q2 = (union double_or_int *) q;
|
|
cu_dim = l_nklmd;
|
|
|
|
/* Function Body */
|
|
maxit = *l_iter;
|
|
n1 = n + 1;
|
|
n2 = n + 2;
|
|
nk = n + k;
|
|
nkl = nk + l;
|
|
klm = k + l + m;
|
|
klm1 = klm + 1;
|
|
nklm = n + klm;
|
|
kforce = 1;
|
|
*l_iter = 0;
|
|
js = 0;
|
|
ia = -1;
|
|
|
|
/* SET UP LABELS IN Q. */
|
|
for (j = 0; j < n; ++j)
|
|
{
|
|
q2[klm1 * q_dim + j].ival = j + 1;
|
|
}
|
|
/* L10: */
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
q2[i * q_dim + n1].ival = n + i + 1;
|
|
if (q2[i * q_dim + n].dval < 0.)
|
|
{
|
|
for (j = 0; j < n1; ++j)
|
|
{
|
|
q2[i * q_dim + j].dval = -q2[i * q_dim + j].dval;
|
|
}
|
|
q2[i * q_dim + n1].ival = -q2[i * q_dim + n1].ival;
|
|
/* L20: */
|
|
}
|
|
}
|
|
/* L30: */
|
|
/* SET UP PHASE 1 COSTS. */
|
|
iphase = 2;
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "Set up phase 1 costs\n"));
|
|
#endif
|
|
/* Zero first row of cu and iu */
|
|
memset(&l_cu[0], 0, (size_t)nklm * sizeof(LDBLE));
|
|
memset(&l_iu[0], 0, (size_t)nklm * sizeof(int));
|
|
/* L40: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L40\n"));
|
|
#endif
|
|
if (l != 0)
|
|
{
|
|
for (j = nk; j < nkl; ++j)
|
|
{
|
|
l_cu[j] = 1.;
|
|
l_iu[j] = 1;
|
|
}
|
|
/* L50: */
|
|
iphase = 1;
|
|
}
|
|
|
|
/* Copy first row of cu and iu to second row */
|
|
memcpy((void *) &(l_cu[cu_dim]), (void *) &(l_cu[0]),
|
|
(size_t) nklm * sizeof(LDBLE));
|
|
memcpy((void *) &(l_iu[cu_dim]), (void *) &(l_iu[0]),
|
|
(size_t) nklm * sizeof(int));
|
|
|
|
/* L60: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L60\n"));
|
|
#endif
|
|
if (m != 0)
|
|
{
|
|
for (j = nkl; j < nklm; ++j)
|
|
{
|
|
l_cu[cu_dim + j] = 1.;
|
|
l_iu[cu_dim + j] = 1;
|
|
jmn = j - n;
|
|
if (q2[jmn * q_dim + n1].ival < 0)
|
|
{
|
|
iphase = 1;
|
|
}
|
|
}
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L80\n"));
|
|
#endif
|
|
if (*l_kode != 0)
|
|
{
|
|
for (j = 0; j < n; ++j)
|
|
{
|
|
if (l_x[j] < 0.)
|
|
{
|
|
/* L90: */
|
|
l_cu[j] = 1.;
|
|
l_iu[j] = 1;
|
|
}
|
|
else if (l_x[j] > 0.)
|
|
{
|
|
l_cu[cu_dim + j] = 1.;
|
|
l_iu[cu_dim + j] = 1;
|
|
}
|
|
}
|
|
/* L110: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L110\n"));
|
|
#endif
|
|
for (j = 0; j < k; ++j)
|
|
{
|
|
jpn = j + n;
|
|
if (l_res[j] < 0.)
|
|
{
|
|
/* L120: */
|
|
l_cu[jpn] = 1.;
|
|
l_iu[jpn] = 1;
|
|
if (q2[j * q_dim + n1].ival > 0)
|
|
{
|
|
iphase = 1;
|
|
}
|
|
}
|
|
else if (l_res[j] > 0.)
|
|
{
|
|
/* L130: */
|
|
l_cu[cu_dim + jpn] = 1.;
|
|
l_iu[cu_dim + jpn] = 1;
|
|
if (q2[j * q_dim + n1].ival < 0)
|
|
{
|
|
iphase = 1;
|
|
}
|
|
}
|
|
}
|
|
/* L140: */
|
|
}
|
|
/* L150: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L150\n"));
|
|
#endif
|
|
if (iphase == 2)
|
|
{
|
|
goto L500;
|
|
}
|
|
/* COMPUTE THE MARGINAL COSTS. */
|
|
L160:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L160\n"));
|
|
#endif
|
|
for (j = js; j < n1; ++j)
|
|
{
|
|
sum = 0.;
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
ii = q2[i * q_dim + n1].ival;
|
|
if (ii < 0)
|
|
{
|
|
l_z = l_cu[cu_dim - ii - 1];
|
|
}
|
|
else
|
|
{
|
|
l_z = l_cu[ii - 1];
|
|
}
|
|
sum += (long double) q2[i * q_dim + j].dval * (long double) l_z;
|
|
}
|
|
q2[klm * q_dim + j].dval = (double)sum;
|
|
}
|
|
for (j = js; j < n; ++j)
|
|
{
|
|
ii = q2[klm1 * q_dim + j].ival;
|
|
if (ii < 0)
|
|
{
|
|
l_z = l_cu[cu_dim - ii - 1];
|
|
}
|
|
else
|
|
{
|
|
l_z = l_cu[ii - 1];
|
|
}
|
|
q2[klm * q_dim + j].dval -= l_z;
|
|
}
|
|
/* DETERMINE THE VECTOR TO ENTER THE BASIS. */
|
|
L240:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L240, xmax %e\n", xmax));
|
|
#endif
|
|
xmax = 0.;
|
|
if (js >= n)
|
|
{
|
|
goto L490; /* test for optimality */
|
|
}
|
|
for (j = js; j < n; ++j)
|
|
{
|
|
zu = q2[klm * q_dim + j].dval;
|
|
ii = q2[klm1 * q_dim + j].ival;
|
|
if (ii > 0)
|
|
{
|
|
zv = -zu - l_cu[ii - 1] - l_cu[cu_dim + ii - 1];
|
|
}
|
|
else
|
|
{
|
|
ii = -ii;
|
|
zv = zu;
|
|
zu = -zu - l_cu[ii - 1] - l_cu[cu_dim + ii - 1];
|
|
}
|
|
/* L260 */
|
|
if (kforce == 1 && ii > n)
|
|
{
|
|
continue;
|
|
}
|
|
if (l_iu[ii - 1] != 1 && zu > xmax)
|
|
{
|
|
xmax = zu;
|
|
in = j;
|
|
}
|
|
/* L270 */
|
|
if (l_iu[cu_dim + ii - 1] != 1 && zv > xmax)
|
|
{
|
|
xmax = zv;
|
|
in = j;
|
|
}
|
|
}
|
|
/* L280 */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L280 xmax %e, toler %e\n", xmax, l_toler));
|
|
#endif
|
|
if (xmax <= l_toler)
|
|
{
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "xmax before optimality test %e\n", xmax));
|
|
#endif
|
|
goto L490; /* test for optimality */
|
|
}
|
|
if (q2[klm * q_dim + in].dval != xmax)
|
|
{
|
|
for (i = 0; i < klm1; ++i)
|
|
{
|
|
q2[i * q_dim + in].dval = -q2[i * q_dim + in].dval;
|
|
}
|
|
q2[klm1 * q_dim + in].ival = -q2[klm1 * q_dim + in].ival;
|
|
/* L290: */
|
|
q2[klm * q_dim + in].dval = xmax;
|
|
}
|
|
/* DETERMINE THE VECTOR TO LEAVE THE BASIS. */
|
|
if (iphase != 1 && ia != -1)
|
|
{
|
|
xmax = 0.;
|
|
/* find maximum absolute value in column "in" */
|
|
for (i = 0; i <= ia; ++i)
|
|
{
|
|
l_z = fabs(q2[i * q_dim + in].dval);
|
|
if (l_z > xmax)
|
|
{
|
|
xmax = l_z;
|
|
iout = i;
|
|
}
|
|
}
|
|
/* L310: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L310, xmax %e\n", xmax));
|
|
#endif
|
|
/* switch row ia with row iout, use memcpy */
|
|
if (xmax > l_toler)
|
|
{
|
|
if (ia != iout)
|
|
{
|
|
memcpy((void *) &(scratch[0]), (void *) &(q2[ia * q_dim]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
memcpy((void *) &(q2[ia * q_dim]), (void *) &(q2[iout * q_dim]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
memcpy((void *) &(q2[iout * q_dim]), (void *) &(scratch[0]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
}
|
|
/* L320: */
|
|
/* set pivot to row ia, column in */
|
|
iout = ia;
|
|
--ia;
|
|
pivot = q2[iout * q_dim + in].dval;
|
|
goto L420; /* Gauss Jordan */
|
|
}
|
|
}
|
|
/* L330: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L330, xmax %e\n", xmax));
|
|
#endif
|
|
kk = -1;
|
|
/* divide column n1 by positive value in column "in" greater than toler */
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
l_z = q2[i * q_dim + in].dval;
|
|
if (l_z > l_toler)
|
|
{
|
|
++kk;
|
|
l_res[kk] = q2[i * q_dim + n].dval / l_z;
|
|
l_s[kk] = i;
|
|
}
|
|
}
|
|
/* L340: */
|
|
#ifdef DEBUG_CL1
|
|
if (kk < 0)
|
|
{
|
|
output_msg(sformatf( "kode = 2 in loop 340.\n"));
|
|
}
|
|
#endif
|
|
L350:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L350, xmax %e\n", xmax));
|
|
#endif
|
|
if (kk < 0)
|
|
{
|
|
/* no positive value found in L340 or bypass intermediate vertices */
|
|
*l_kode = 2;
|
|
goto L590;
|
|
}
|
|
/* L360: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L360, xmax %e\n", xmax));
|
|
#endif
|
|
/* find minimum residual */
|
|
xmin = l_res[0];
|
|
iout = l_s[0];
|
|
j = 0;
|
|
if (kk != 0)
|
|
{
|
|
for (i = 1; i <= kk; ++i)
|
|
{
|
|
if (l_res[i] < xmin)
|
|
{
|
|
j = i;
|
|
xmin = l_res[i];
|
|
iout = l_s[i];
|
|
}
|
|
}
|
|
/* L370: */
|
|
/* put kk in position j */
|
|
l_res[j] = l_res[kk];
|
|
l_s[j] = l_s[kk];
|
|
}
|
|
/* L380: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L380 iout %d, xmin %e, xmax %e\n", iout,
|
|
xmin, xmax));
|
|
#endif
|
|
--kk;
|
|
pivot = q2[iout * q_dim + in].dval;
|
|
ii = q2[iout * q_dim + n1].ival;
|
|
if (iphase != 1)
|
|
{
|
|
if (ii < 0)
|
|
{
|
|
/* L390: */
|
|
if (l_iu[-ii - 1] == 1)
|
|
{
|
|
goto L420;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (l_iu[cu_dim + ii - 1] == 1)
|
|
{
|
|
goto L420;
|
|
}
|
|
}
|
|
}
|
|
/* L400: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L400\n"));
|
|
#endif
|
|
ii = abs(ii);
|
|
cuv = l_cu[ii - 1] + l_cu[cu_dim + ii - 1];
|
|
if (q2[klm * q_dim + in].dval - pivot * cuv > l_toler)
|
|
{
|
|
|
|
/* BYPASS INTERMEDIATE VERTICES. */
|
|
for (j = js; j < n1; ++j)
|
|
{
|
|
l_z = q2[iout * q_dim + j].dval;
|
|
q2[klm * q_dim + j].dval -= l_z * cuv;
|
|
q2[iout * q_dim + j].dval = -l_z;
|
|
}
|
|
/* L410: */
|
|
q2[iout * q_dim + n1].ival = -q2[iout * q_dim + n1].ival;
|
|
goto L350;
|
|
}
|
|
/* GAUSS-JORDAN ELIMINATION. */
|
|
L420:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "Gauss Jordon %d\n", *l_iter));
|
|
#endif
|
|
if (*l_iter >= maxit)
|
|
{
|
|
*l_kode = 3;
|
|
goto L590;
|
|
}
|
|
/* L430: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L430\n"));
|
|
#endif
|
|
++(*l_iter);
|
|
for (j = js; j < n1; ++j)
|
|
{
|
|
if (j != in)
|
|
{
|
|
q2[iout * q_dim + j].dval /= pivot;
|
|
}
|
|
}
|
|
/* L440: */
|
|
for (j = js; j < n1; ++j)
|
|
{
|
|
if (j != in)
|
|
{
|
|
l_z = -q2[iout * q_dim + j].dval;
|
|
for (i = 0; i < klm1; ++i)
|
|
{
|
|
if (i != iout)
|
|
{
|
|
q2[i * q_dim + j].dval += l_z * q2[i * q_dim + in].dval;
|
|
}
|
|
}
|
|
/* L450: */
|
|
}
|
|
}
|
|
/* L460: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L460\n"));
|
|
#endif
|
|
tpivot = -pivot;
|
|
for (i = 0; i < klm1; ++i)
|
|
{
|
|
if (i != iout)
|
|
{
|
|
q2[i * q_dim + in].dval /= tpivot;
|
|
}
|
|
}
|
|
/* L470: */
|
|
q2[iout * q_dim + in].dval = 1. / pivot;
|
|
ii = q2[iout * q_dim + n1].ival;
|
|
q2[iout * q_dim + n1].ival = q2[klm1 * q_dim + in].ival;
|
|
q2[klm1 * q_dim + in].ival = ii;
|
|
ii = abs(ii);
|
|
if (l_iu[ii - 1] == 0 || l_iu[cu_dim + ii - 1] == 0)
|
|
{
|
|
goto L240;
|
|
}
|
|
/* switch column */
|
|
for (i = 0; i < klm1; ++i)
|
|
{
|
|
l_z = q2[i * q_dim + in].dval;
|
|
q2[i * q_dim + in].dval = q2[i * q_dim + js].dval;
|
|
q2[i * q_dim + js].dval = l_z;
|
|
}
|
|
i = q2[klm1 * q_dim + in].ival;
|
|
q2[klm1 * q_dim + in].ival = q2[klm1 * q_dim + js].ival;
|
|
q2[klm1 * q_dim + js].ival = i;
|
|
/* L480: */
|
|
++js;
|
|
goto L240;
|
|
/* TEST FOR OPTIMALITY. */
|
|
L490:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L490\n"));
|
|
#endif
|
|
if (kforce == 0)
|
|
{
|
|
if (iphase == 1)
|
|
{
|
|
if (q2[klm * q_dim + n].dval <= l_toler)
|
|
{
|
|
goto L500;
|
|
}
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "q2[klm1-1, n1-1] > *toler. %e\n",
|
|
q2[(klm1 - 1) * q_dim + n1 - 1].dval));
|
|
#endif
|
|
*l_kode = 1;
|
|
goto L590;
|
|
}
|
|
*l_kode = 0;
|
|
goto L590;
|
|
}
|
|
if (iphase != 1 || q2[klm * q_dim + n].dval > l_toler)
|
|
{
|
|
kforce = 0;
|
|
goto L240;
|
|
}
|
|
/* SET UP PHASE 2 COSTS. */
|
|
L500:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "Set up phase 2 costs %d\n", *l_iter));
|
|
#endif
|
|
iphase = 2;
|
|
for (j = 0; j < nklm; ++j)
|
|
{
|
|
l_cu[j] = 0.;
|
|
}
|
|
/* L510: */
|
|
for (j = n; j < nk; ++j)
|
|
{
|
|
l_cu[j] = 1.;
|
|
}
|
|
memcpy((void *) &(l_cu[cu_dim]), (void *) &(l_cu[0]),
|
|
(size_t) nklm * sizeof(LDBLE));
|
|
/* L520: */
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
ii = q2[i * q_dim + n1].ival;
|
|
if (ii <= 0)
|
|
{
|
|
if (l_iu[cu_dim - ii - 1] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
l_cu[cu_dim - ii - 1] = 0.;
|
|
}
|
|
else
|
|
{
|
|
/* L530: */
|
|
if (l_iu[ii - 1] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
l_cu[ii - 1] = 0.;
|
|
}
|
|
/* L540: */
|
|
++ia;
|
|
/* switch row */
|
|
if (ia != i)
|
|
{
|
|
memcpy((void *) &(scratch[0]), (void *) &(q2[ia * q_dim]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
memcpy((void *) &(q2[ia * q_dim]), (void *) &(q2[i * q_dim]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
memcpy((void *) &(q2[i * q_dim]), (void *) &(scratch[0]),
|
|
(size_t) n2 * sizeof(LDBLE));
|
|
}
|
|
/* L550: */
|
|
}
|
|
/* L560: */
|
|
goto L160;
|
|
|
|
|
|
/* PREPARE OUTPUT. */
|
|
L590:
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L590\n"));
|
|
#endif
|
|
sum = 0.;
|
|
for (j = 0; j < n; ++j)
|
|
{
|
|
l_x[j] = 0.;
|
|
}
|
|
/* L600: */
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
l_res[i] = 0.;
|
|
}
|
|
/* L610: */
|
|
for (i = 0; i < klm; ++i)
|
|
{
|
|
ii = q2[i * q_dim + n1].ival;
|
|
sn = 1.;
|
|
if (ii < 0)
|
|
{
|
|
ii = -ii;
|
|
sn = -1.;
|
|
}
|
|
if (ii <= n)
|
|
{
|
|
/* L620: */
|
|
l_x[ii - 1] = sn * q2[i * q_dim + n].dval;
|
|
}
|
|
else
|
|
{
|
|
/* L630: */
|
|
l_res[ii - n - 1] = sn * q2[i * q_dim + n].dval;
|
|
if (ii >= n1 && ii <= nk)
|
|
{
|
|
/* * DBLE(Q(I,N1)) */
|
|
sum += (long double) q2[i * q_dim + n].dval;
|
|
}
|
|
}
|
|
}
|
|
/* L640: */
|
|
#ifdef DEBUG_CL1
|
|
output_msg(sformatf( "L640\n"));
|
|
#endif
|
|
*l_error = (double)sum;
|
|
/*
|
|
* Check calculation
|
|
*/
|
|
if ((check == 1) && (*l_kode == 0))
|
|
{
|
|
check_toler = 10. * l_toler;
|
|
/*
|
|
* Check optimization constraints
|
|
*/
|
|
if (kode_arg == 1)
|
|
{
|
|
for (i = 0; i < k; ++i)
|
|
{
|
|
if (res_arg[i] < 0.0)
|
|
{
|
|
if (l_res[i] > check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: optimization constraint not satisfied row %d, res %s, constraint %f.\n",
|
|
row_name[row_back[i]], l_res[i], res_arg[i]));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
else if (res_arg[i] > 0.0)
|
|
{
|
|
if (l_res[i] < -check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: optimization constraint not satisfied row %s, res %e, constraint %f.\n",
|
|
row_name[row_back[i]], l_res[i], res_arg[i]));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Check equalities
|
|
*/
|
|
for (i = k; i < k + l; ++i)
|
|
{
|
|
if (fabs(l_res[i]) > check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: equality constraint not satisfied row %s, res %e, tolerance %e.\n",
|
|
row_name[row_back[i]], l_res[i], check_toler));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Check inequalities
|
|
*/
|
|
for (i = k + l; i < k + l + m; ++i)
|
|
{
|
|
if (l_res[i] < -check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: inequality constraint not satisfied row %s, res %e, tolerance %e.\n",
|
|
row_name[row_back[i]], l_res[i], check_toler));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Check dissolution/precipitation constraints
|
|
*/
|
|
if (kode_arg == 1)
|
|
{
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
if (x_arg[i] < 0.0)
|
|
{
|
|
if (l_x[i] > check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: dis/pre constraint not satisfied column %s, x %e, constraint %f.\n",
|
|
col_name[col_back[i]], l_x[i], x_arg[i]));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
else if (x_arg[i] > 0.0)
|
|
{
|
|
if (l_x[i] < -check_toler)
|
|
{
|
|
#ifdef CHECK_ERRORS
|
|
output_msg(sformatf(
|
|
"\tCL1: dis/pre constraint not satisfied column %s, x %e, constraint %f.\n",
|
|
col_name[col_back[i]], l_x[i], x_arg[i]));
|
|
#endif
|
|
*l_kode = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (*l_kode == 1)
|
|
{
|
|
output_msg(sformatf(
|
|
"\n\tCL1: Roundoff errors in optimization.\n\t Try using -multiple_precision in INVERSE_MODELING\n"));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Phreeqc::
|
|
cl1_space(int check, int l_n2d, int klm, int l_nklmd)
|
|
{
|
|
if (check == 1)
|
|
{
|
|
if ((size_t)l_n2d > x_arg.size())
|
|
{
|
|
x_arg.resize((size_t)l_n2d);
|
|
}
|
|
memset(&x_arg[0], 0, sizeof(double) * (size_t)l_n2d);
|
|
|
|
if ((size_t)klm > res_arg.size())
|
|
{
|
|
res_arg.resize((size_t)klm);
|
|
}
|
|
memset(&res_arg[0], 0, sizeof(double) * (size_t)klm);
|
|
}
|
|
if (l_nklmd > 0)
|
|
{
|
|
if ((size_t)l_nklmd > scratch.size())
|
|
{
|
|
scratch.resize(l_nklmd);
|
|
}
|
|
memset(&scratch[0], 0, sizeof(double) * (size_t)l_nklmd);
|
|
}
|
|
else if (scratch.size() == 0)
|
|
{
|
|
scratch.resize(1);
|
|
memset(&scratch[0], 0, sizeof(double));
|
|
}
|
|
}
|