iphreeqc/database/phreeqc_rates.dat
2025-09-10 22:44:27 +00:00

3166 lines
104 KiB
Plaintext
Raw Blame History

# phreeqc_rates.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on:
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1 H 1.008
H(0) H2 0 H
H(1) H+ -1 H
E e- 1 0 0
O H2O 0 O 16
O(0) O2 0 O
O(-2) H2O 0 0
Ca Ca+2 0 Ca 40.08
Mg Mg+2 0 Mg 24.312
Na Na+ 0 Na 22.9898
K K+ 0 K 39.102
Fe Fe+2 0 Fe 55.847
Fe(+2) Fe+2 0 Fe
Fe(+3) Fe+3 -2 Fe
Mn Mn+2 0 Mn 54.938
Mn(+2) Mn+2 0 Mn
Mn(+3) Mn+3 0 Mn
Al Al+3 0 Al 26.9815
Ba Ba+2 0 Ba 137.34
Sr Sr+2 0 Sr 87.62
Si H4SiO4 0 SiO2 28.0843
Cl Cl- 0 Cl 35.453
C CO3-2 2 HCO3 12.0111
C(+4) CO3-2 2 HCO3
C(-4) CH4 0 CH4
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
S SO4-2 0 SO4 32.064
S(6) SO4-2 0 SO4
S(-2) HS- 1 S
N NO3- 0 N 14.0067
N(+5) NO3- 0 N
N(+3) NO2- 0 N
N(0) N2 0 N
N(-3) NH4+ 0 N 14.0067
#Amm AmmH+ 0 AmmH 17.031
B H3BO3 0 B 10.81
P PO4-3 2 P 30.9738
F F- 0 F 18.9984
Li Li+ 0 Li 6.939
Br Br- 0 Br 79.904
Zn Zn+2 0 Zn 65.37
Cd Cd+2 0 Cd 112.4
Pb Pb+2 0 Pb 207.19
Cu Cu+2 0 Cu 63.546
Cu(+2) Cu+2 0 Cu
Cu(+1) Cu+1 0 Cu
# redox-uncoupled gases
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # O2 gas
Mtg Mtg 0 Mtg 16.032 # CH4 gas
Sg H2Sg 0 H2Sg 32.064 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
H+ = H+
-gamma 9 0
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4
-dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0
# Dw(25 C) dw_T a a2 visc a3 a_v_dif
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc
# a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion.
# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+)
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.)
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.)
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT.
e- = e-
H2O = H2O
-dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740.
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Li+ = Li+
-gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
-dw 1.03e-9 -14 4.03 0.8341 1.679
Na+ = Na+
-gamma 4 0.075
-gamma 4.08 0.082 # halite solubility
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
-dw 1.33e-9 75 3.627 0 0.7037
K+ = K+
-gamma 3.5 0.015
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
-viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028
-dw 1.96e-9 254 3.484 0 0.1964
Mg+2 = Mg+2
-gamma 5.5 0.2
-Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
-dw 0.705e-9 -4 5.569 0 1.047
Ca+2 = Ca+2
-gamma 5 0.165
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M
-dw 0.792e-9 34 5.411 0 1.046
Sr+2 = Sr+2
-gamma 5.26 0.121
-Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956
-viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762
-dw 0.794e-9 18 0.681 2.069 0.965 0.271
Ba+2 = Ba+2
-gamma 5 0
-gamma 4 0.153 # Barite solubility
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
-dw 0.848e-9 174 10.53 0 3
Fe+2 = Fe+2
-gamma 6 0
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
-dw 0.719e-9
Mn+2 = Mn+2
-gamma 6 0
-Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
-dw 0.688e-9
Al+3 = Al+3
-gamma 9 0
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353
-dw 0.559e-9
H4SiO4 = H4SiO4
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1
-dw 1.1e-9
Cl- = Cl-
-gamma 3.5 0.015
-gamma 3.63 0.017 # cf. pitzer.dat
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
-viscosity 0 0 0 0 0 0 1 # the reference solute
-dw 2.033e-9 216 3.16 0.2071 0.7432
CO3-2 = CO3-2
-gamma 5.4 0
-Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
SO4-2 = SO4-2
-gamma 5.0 -0.04
-Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl
-viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2
-dw 1.07e-9 -77.4 10.14 0.5 0.5549
NO3- = NO3-
-gamma 3 0
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
-viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381
-dw 1.9e-9 104 1.11
#AmmH+ = AmmH+
# -gamma 2.5 0
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898
# -dw 1.98e-9 203 1.47 2.644 6.81e-2
H3BO3 = H3BO3
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
-dw 1.1e-9
PO4-3 = PO4-3
-gamma 4 0
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
-dw 0.612e-9
F- = F-
-gamma 3.5 0
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
-dw 1.46e-9 -36 4.352
Br- = Br-
-gamma 3 0.045
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
-viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859
-dw 2.09e-9 208 3.5 0 0.5737
Zn+2 = Zn+2
-gamma 5 0
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
-dw 0.715e-9
Cd+2 = Cd+2
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
-dw 0.717e-9
Pb+2 = Pb+2
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
-dw 0.945e-9
Cu+2 = Cu+2
-gamma 6 0
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
-dw 0.733e-9
# redox-uncoupled gases
Hdg = Hdg # H2
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
Oxg = Oxg # O2
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
Mtg = Mtg # CH4
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44, 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
H2Sg = H2Sg # H2S
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
# aqueous species
H2O = OH- + H+
-gamma 3.5 0
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
-viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH
-dw 5.27e-9 478 0.8695
2 H2O = O2 + 4 H+ + 4 e-
-log_k -86.06; -delta_h 138.43 kcal
-analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9
2 H+ + 2 e- = H2
-log_k -3.15
-delta_h -1.759 kcal
-Vm 6.52 0.78 0.12 # supcrt
-dw 5.13e-9
H+ + Cl- = HCl
-log_k -0.5
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50<35>C
-gamma 0 0.4256
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
CO3-2 + H+ = HCO3-
-log_k 10.329; -delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
-dw 1.18e-9 -190 11.386
CO3-2 + 2 H+ = CO2 + H2O
-log_k 16.681
-delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
-viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
-log_k -1.8
-analytical_expression 8.68 -0.0103 -2190
-Vm 14.58 1.84 4.14 -2.46 -3.2
-viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
-log_k 41.071
-delta_h -61.039 kcal
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 1.85e-9
SO4-2 + H+ = HSO4-
-log_k 1.988; -delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
-dw 1.22e-9 1000 15 2.861
HS- = S-2 + H+
-log_k -12.918
-delta_h 12.1 kcal
-gamma 5 0
-dw 0.731e-9
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
-log_k 33.65
-delta_h -60.14 kcal
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
-dw 1.73e-9
HS- + H+ = H2S
-log_k 6.994; -delta_h -5.3 kcal
-analytical -11.17 0.02386 3279
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
-dw 2.1e-9
2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
H2Sg = HSg- + H+
-log_k -6.994; -delta_h 5.3 kcal
-analytical_expression 11.17 -0.02386 -3279
-gamma 3.5 0
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
-dw 1.73e-9
2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
-dw 2.1e-9
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.57
-delta_h -43.76 kcal
-gamma 3 0
-Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt
-dw 1.91e-9
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
-log_k 207.08
-delta_h -312.13 kcal
-Vm 7 # Pray et al., 1952, IEC 44 1146
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
-log_k 119.077
-delta_h -187.055 kcal
-gamma 2.5 0
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
-viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898
-dw 1.98e-9 203 1.47 2.644 6.81e-2
#AmmH+ = Amm + H+
NH4+ = NH3 + H+
-log_k -9.252
-delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-Vm 6.69 2.8 3.58 -2.88 1.43
-viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769
-dw 2.28e-9
#AmmH+ + SO4-2 = AmmHSO4-
NH4+ + SO4-2 = NH4SO4-
-gamma 3.64 -4.75e-2
-log_k 1.276; -delta_h -3.24 kcal
-Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289
-viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61
-dw 1.56e-9 498 25 0.5 0.684
H3BO3 = H2BO3- + H+
-log_k -9.24
-delta_h 3.224 kcal
H3BO3 + F- = BF(OH)3-
-log_k -0.4
-delta_h 1.85 kcal
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
-log_k 7.63
-delta_h 1.618 kcal
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
-log_k 13.67
-delta_h -1.614 kcal
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
-log_k 20.28
-delta_h -1.846 kcal
PO4-3 + H+ = HPO4-2
-log_k 12.346
-delta_h -3.53 kcal
-gamma 5 0
-dw 0.69e-9
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
PO4-3 + 2 H+ = H2PO4-
-log_k 19.553
-delta_h -4.52 kcal
-gamma 5.4 0
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
-dw 0.846e-9
PO4-3 + 3 H+ = H3PO4
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
delta_h -10.1 kJ
-Vm 7.47 12.4 6.29 -3.29 0
H+ + F- = HF
-log_k 3.18
-delta_h 3.18 kcal
-analytic -2.033 0.012645 429.01
-Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt
H+ + 2 F- = HF2-
-log_k 3.76
-delta_h 4.55 kcal
-Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt
Ca+2 + H2O = CaOH+ + H+
-log_k -12.78
Ca+2 + CO3-2 = CaCO3
-log_k 3.224; -delta_h 3.545 kcal
-analytic -1228.732 -0.29944 35512.75 485.818
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
-Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt
Ca+2 + CO3-2 + H+ = CaHCO3+
-log_k 10.91; -delta_h 4.38 kcal
-analytic -6.009 3.377e-2 2044
-gamma 6 0
-Vm 3.19 .01 5.75 -2.78 .308 5.4
-dw 5.06e-10
Ca+2 + SO4-2 = CaSO4
-gamma 0 4.45e-2
-log_k 2.14; -delta_h 24.4
-analytical_expression 1.478 8.29e-3 -538.2
-vm 2.7 2 2 -3.7
-dw 4.71e-9
Ca+2 + HSO4- = CaHSO4+
-log_k 1.08
Ca+2 + PO4-3 = CaPO4-
-log_k 6.459
-delta_h 3.1 kcal
-gamma 5.4 0
Ca+2 + HPO4-2 = CaHPO4
-log_k 2.739
-delta_h 3.3 kcal
Ca+2 + H2PO4- = CaH2PO4+
-log_k 1.408
-delta_h 3.4 kcal
-gamma 5.4 0
# Ca+2 + F- = CaF+
# -log_k 0.94
# -delta_h 4.120 kcal
# -gamma 5.5 0.0
# -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt
Mg+2 + H2O = MgOH+ + H+
-log_k -11.44
-delta_h 15.952 kcal
-gamma 6.5 0
Mg+2 + CO3-2 = MgCO3
-log_k 2.98
-delta_h 2.713 kcal
-analytic 0.991 0.00667
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt
-dw 4.21e-10
Mg+2 + H+ + CO3-2 = MgHCO3+
-log_k 11.399
-delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-gamma 4 0
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
-dw 4.78e-10
Mg+2 + SO4-2 = MgSO4
-gamma 0 0.20
-log_k 2.42; -delta_h 19.0
-analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm 11.92 -27.758 29.752 -10.302 -0.1
-viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796
-dw 4.45e-10
SO4-2 + MgSO4 = Mg(SO4)2-2
-gamma 7 0.047
-log_k 0.52; -delta_h -13.6
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
-Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2
-viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3
-dw 1.11e-9 -500 3.5 0.5 0.731
Mg+2 + PO4-3 = MgPO4-
-log_k 6.589
-delta_h 3.1 kcal
-gamma 5.4 0
Mg+2 + HPO4-2 = MgHPO4
-log_k 2.87
-delta_h 3.3 kcal
Mg+2 + H2PO4- = MgH2PO4+
-log_k 1.513
-delta_h 3.4 kcal
-gamma 5.4 0
Mg+2 + F- = MgF+
-log_k 1.82
-delta_h 3.2 kcal
-gamma 4.5 0
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
# Na+ + OH- = NaOH
# -log_k -14.7 # remove this complex
Na+ + HCO3- = NaHCO3
-log_k -0.06; -delta_h 21 kJ
-gamma 0 0.2
-Vm 7.95 0 0 0 0.609
-viscosity -4e-2 -2.717 1.67e-5
-dw 6.73e-10
Na+ + SO4-2 = NaSO4-
-gamma 3.5 0.1072
-log_k 0.94; -delta_h 8.23
-analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC
-Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476
-viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387
-dw 4e-10 -200 3.5 0.5 0.5
2 Na+ + SO4-2 = Na2SO4
-gamma 0 8.85e-2
-log_k -2.37; -delta_h 82
-analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl
-Vm 9.405 -15.5 25 8.4 0.25
-viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175
-dw 0.8e-9
Na+ + HPO4-2 = NaHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
Na+ + F- = NaF
-log_k -0.24
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt
K+ + HCO3- = KHCO3
-log_k -0.35; -delta_h 12 kJ
-gamma 0 9.4e-3
-Vm 9.48 0 0 0 -0.542
-viscosity 0.7 -1.289 9e-2
K+ + SO4-2 = KSO4-
-gamma 5.4 0.19
-log_k 1.18; -delta_h 3
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
-Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497
-viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195
-dw 1.22e-9 100 25 0.5 2.5
K+ + HPO4-2 = KHPO4-
-log_k 0.29
-gamma 5.4 0
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
Fe+2 + H2O = FeOH+ + H+
-log_k -9.5
-delta_h 13.2 kcal
-gamma 5 0
Fe+2 + 3 H2O = Fe(OH)3- + 3 H+
-log_k -31
-delta_h 30.3 kcal
-gamma 5 0
Fe+2 + Cl- = FeCl+
-log_k 0.14
Fe+2 + CO3-2 = FeCO3
-log_k 4.38
Fe+2 + HCO3- = FeHCO3+
-log_k 2
Fe+2 + SO4-2 = FeSO4
-log_k 2.25; -delta_h 3.23 kcal
-Vm 5.8 6.5 3.7 -3 -0.09
Fe+2 + HSO4- = FeHSO4+
-log_k 1.08
Fe+2 + 2 HS- = Fe(HS)2
-log_k 8.95
Fe+2 + 3 HS- = Fe(HS)3-
-log_k 10.987
Fe+2 + HPO4-2 = FeHPO4
-log_k 3.6
Fe+2 + H2PO4- = FeH2PO4+
-log_k 2.7
-gamma 5.4 0
Fe+2 + F- = FeF+
-log_k 1
Fe+2 = Fe+3 + e-
-log_k -13.02
-delta_h 9.68 kcal
-gamma 9 0
Fe+3 + H2O = FeOH+2 + H+
-log_k -2.19
-delta_h 10.4 kcal
-gamma 5 0
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
-log_k -5.67
-delta_h 17.1 kcal
-gamma 5.4 0
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
-log_k -12.56
-delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
-log_k -21.6
-delta_h 31.9 kcal
-gamma 5.4 0
Fe+2 + 2 H2O = Fe(OH)2 + 2 H+
-log_k -20.57
-delta_h 28.565 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
-log_k -2.95
-delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
-log_k -6.3
-delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2
-log_k 1.48
-delta_h 5.6 kcal
-gamma 5 0
Fe+3 + 2 Cl- = FeCl2+
-log_k 2.13
-gamma 5 0
Fe+3 + 3 Cl- = FeCl3
-log_k 1.13
Fe+3 + SO4-2 = FeSO4+
-log_k 4.04
-delta_h 3.91 kcal
-gamma 5 0
Fe+3 + HSO4- = FeHSO4+2
-log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2-
-log_k 5.38
-delta_h 4.6 kcal
Fe+3 + HPO4-2 = FeHPO4+
-log_k 5.43
-delta_h 5.76 kcal
-gamma 5 0
Fe+3 + H2PO4- = FeH2PO4+2
-log_k 5.43
-gamma 5.4 0
Fe+3 + F- = FeF+2
-log_k 6.2
-delta_h 2.7 kcal
-gamma 5 0
Fe+3 + 2 F- = FeF2+
-log_k 10.8
-delta_h 4.8 kcal
-gamma 5 0
Fe+3 + 3 F- = FeF3
-log_k 14
-delta_h 5.4 kcal
Mn+2 + H2O = MnOH+ + H+
-log_k -10.59
-delta_h 14.4 kcal
-gamma 5 0
Mn+2 + 3 H2O = Mn(OH)3- + 3 H+
-log_k -34.8
-gamma 5 0
Mn+2 + Cl- = MnCl+
-log_k 0.61
-gamma 5 0
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
Mn+2 + 2 Cl- = MnCl2
-log_k 0.25
-Vm 1e-5 0 144
Mn+2 + 3 Cl- = MnCl3-
-log_k -0.31
-gamma 5 0
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
Mn+2 + CO3-2 = MnCO3
-log_k 4.9
Mn+2 + HCO3- = MnHCO3+
-log_k 1.95
-gamma 5 0
Mn+2 + SO4-2 = MnSO4
-gamma 0 -0.098
-log_k 1.408; -delta_h 21.55
-Vm 1.88 6.5 10 -3 0.1
Mn+2 + 2 NO3- = Mn(NO3)2
-log_k 0.6
-delta_h -0.396 kcal
-Vm 6.16 0 29.4 0 0.9
Mn+2 + F- = MnF+
-log_k 0.84
-gamma 5 0
Mn+2 = Mn+3 + e-
-log_k -25.51
-delta_h 25.8 kcal
-gamma 9 0
Al+3 + H2O = AlOH+2 + H+
-log_k -5
-delta_h 11.49 kcal
-analytic -38.253 0 -656.27 14.327
-gamma 5.4 0
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
-log_k -10.1
-delta_h 26.9 kcal
-gamma 5.4 0
-analytic 88.5 0 -9391.6 -27.121
Al+3 + 3 H2O = Al(OH)3 + 3 H+
-log_k -16.9
-delta_h 39.89 kcal
-analytic 226.374 0 -18247.8 -73.597
Al+3 + 4 H2O = Al(OH)4- + 4 H+
-log_k -22.7
-delta_h 42.3 kcal
-analytic 51.578 0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
-gamma 4.5 0
Al+3 + 2 SO4-2 = Al(SO4)2-
-log_k 5
-delta_h 3.11 kcal
-gamma 4.5 0
Al+3 + HSO4- = AlHSO4+2
-log_k 0.46
Al+3 + F- = AlF+2
-log_k 7
-delta_h 1.06 kcal
-gamma 5.4 0
Al+3 + 2 F- = AlF2+
-log_k 12.7
-delta_h 1.98 kcal
-gamma 5.4 0
Al+3 + 3 F- = AlF3
-log_k 16.8
-delta_h 2.16 kcal
Al+3 + 4 F- = AlF4-
-log_k 19.4
-delta_h 2.2 kcal
-gamma 4.5 0
# Al+3 + 5 F- = AlF5-2
# log_k 20.6
# delta_h 1.840 kcal
# Al+3 + 6 F- = AlF6-3
# log_k 20.6
# delta_h -1.670 kcal
H4SiO4 = H3SiO4- + H+
-log_k -9.83
-delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
-gamma 4 0
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1
H4SiO4 = H2SiO4-2 + 2 H+
-log_k -23
-delta_h 17.6 kcal
-analytic -294.0184 -0.07265 11204.49 108.18466 -1119669
-gamma 5.4 0
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
-log_k 30.18
-delta_h -16.26 kcal
-gamma 5 0
-Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt
Ba+2 + H2O = BaOH+ + H+
-log_k -13.47
-gamma 5 0
Ba+2 + CO3-2 = BaCO3
-log_k 2.71
-delta_h 3.55 kcal
-analytic 0.113 0.008721
-Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt
Ba+2 + HCO3- = BaHCO3+
-log_k 0.982
-delta_h 5.56 kcal
-analytic -3.0938 0.013669
Ba+2 + SO4-2 = BaSO4
-log_k 3.457; -delta_h 26.15
-vm -6.25 24.66 -4.38 10.97 0.5
Sr+2 + H2O = SrOH+ + H+
-log_k -13.29
-gamma 5 0
Sr+2 + CO3-2 + H+ = SrHCO3+
-log_k 11.509
-delta_h 2.489 kcal
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
-gamma 5.4 0
Sr+2 + CO3-2 = SrCO3
-log_k 2.81
-delta_h 5.22 kcal
-analytic -1.019 0.012826
-Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt
Sr+2 + SO4-2 = SrSO4
-log_k 2.29
-delta_h 2.08 kcal
-Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility
Li+ + SO4-2 = LiSO4-
-log_k 0.64
-gamma 5 0
Cu+2 + e- = Cu+
-log_k 2.72
-delta_h 1.65 kcal
-gamma 2.5 0
Cu+ + 2 Cl- = CuCl2-
-log_k 5.5
-delta_h -0.42 kcal
-gamma 4 0
Cu+ + 3 Cl- = CuCl3-2
-log_k 5.7
-delta_h 0.26 kcal
-gamma 5 0
Cu+2 + CO3-2 = CuCO3
-log_k 6.73
Cu+2 + 2 CO3-2 = Cu(CO3)2-2
-log_k 9.83
Cu+2 + HCO3- = CuHCO3+
-log_k 2.7
Cu+2 + Cl- = CuCl+
-log_k 0.43
-delta_h 8.65 kcal
-gamma 4 0
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
Cu+2 + 2 Cl- = CuCl2
-log_k 0.16
-delta_h 10.56 kcal
-Vm 26.8 0 -136
Cu+2 + 3 Cl- = CuCl3-
-log_k -2.29
-delta_h 13.69 kcal
-gamma 4 0
Cu+2 + 4 Cl- = CuCl4-2
-log_k -4.59
-delta_h 17.78 kcal
-gamma 5 0
Cu+2 + F- = CuF+
-log_k 1.26
-delta_h 1.62 kcal
Cu+2 + H2O = CuOH+ + H+
-log_k -8
-gamma 4 0
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
-log_k -13.68
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
-log_k -26.9
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
-log_k -39.6
2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+
-log_k -10.359
-delta_h 17.539 kcal
-analytical 2.497 0 -3833
Cu+2 + SO4-2 = CuSO4
-log_k 2.31
-delta_h 1.22 kcal
-Vm 5.21 0 -14.6
Cu+2 + 3 HS- = Cu(HS)3-
-log_k 25.9
Zn+2 + H2O = ZnOH+ + H+
-log_k -8.96
-delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
-log_k -16.9
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
-log_k -28.4
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
-log_k -41.2
Zn+2 + Cl- = ZnCl+
-log_k 0.43
-delta_h 7.79 kcal
-gamma 4 0
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
Zn+2 + 2 Cl- = ZnCl2
-log_k 0.45
-delta_h 8.5 kcal
-Vm -10.1 4.57 241 -2.97 -1e-3
Zn+2 + 3 Cl- = ZnCl3-
-log_k 0.5
-delta_h 9.56 kcal
-gamma 4 0
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
Zn+2 + 4 Cl- = ZnCl4-2
-log_k 0.2
-delta_h 10.96 kcal
-gamma 5 0
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
Zn+2 + H2O + Cl- = ZnOHCl + H+
-log_k -7.48
Zn+2 + 2 HS- = Zn(HS)2
-log_k 14.94
Zn+2 + 3 HS- = Zn(HS)3-
-log_k 16.1
Zn+2 + CO3-2 = ZnCO3
-log_k 5.3
Zn+2 + 2 CO3-2 = Zn(CO3)2-2
-log_k 9.63
Zn+2 + HCO3- = ZnHCO3+
-log_k 2.1
Zn+2 + SO4-2 = ZnSO4
-gamma 0 0.1
-log_k 2.26; -delta_h 16.15
-Vm 0.409 6.5 2 -3 0
Zn+2 + 2 SO4-2 = Zn(SO4)2-2
-gamma 0.59 0.1
-log_k 1.15; -delta_h 17.52
-Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256
Zn+2 + Br- = ZnBr+
-log_k -0.58
Zn+2 + 2 Br- = ZnBr2
-log_k -0.98
Zn+2 + F- = ZnF+
-log_k 1.15
-delta_h 2.22 kcal
Cd+2 + H2O = CdOH+ + H+
-log_k -10.08
-delta_h 13.1 kcal
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
-log_k -20.35
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
-log_k -33.3
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
-log_k -47.35
2 Cd+2 + H2O = Cd2OH+3 + H+
-log_k -9.39
-delta_h 10.9 kcal
Cd+2 + H2O + Cl- = CdOHCl + H+
-log_k -7.404
-delta_h 4.355 kcal
Cd+2 + NO3- = CdNO3+
-log_k 0.4
-delta_h -5.2 kcal
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
Cd+2 + Cl- = CdCl+
-log_k 1.98
-delta_h 0.59 kcal
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
Cd+2 + 2 Cl- = CdCl2
-log_k 2.6
-delta_h 1.24 kcal
-Vm 5.53
Cd+2 + 3 Cl- = CdCl3-
-log_k 2.4
-delta_h 3.9 kcal
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
Cd+2 + CO3-2 = CdCO3
-log_k 2.9
Cd+2 + 2 CO3-2 = Cd(CO3)2-2
-log_k 6.4
Cd+2 + HCO3- = CdHCO3+
-log_k 1.5
Cd+2 + SO4-2 = CdSO4
-gamma 0 0.1
-log_k 1.016; -delta_h 6.84
-Vm 2.11 6.5 10 -3 0.1
Cd+2 + 2 SO4-2 = Cd(SO4)2-2
-gamma 5.201 -0.1
-log_k 2.688; -delta_h 0.19
-Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5
Cd+2 + Br- = CdBr+
-log_k 2.17
-delta_h -0.81 kcal
Cd+2 + 2 Br- = CdBr2
-log_k 2.9
Cd+2 + F- = CdF+
-log_k 1.1
Cd+2 + 2 F- = CdF2
-log_k 1.5
Cd+2 + HS- = CdHS+
-log_k 10.17
Cd+2 + 2 HS- = Cd(HS)2
-log_k 16.53
Cd+2 + 3 HS- = Cd(HS)3-
-log_k 18.71
Cd+2 + 4 HS- = Cd(HS)4-2
-log_k 20.9
Pb+2 + H2O = PbOH+ + H+
-log_k -7.71
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
-log_k -17.12
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
-log_k -28.06
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
-log_k -39.7
2 Pb+2 + H2O = Pb2OH+3 + H+
-log_k -6.36
Pb+2 + Cl- = PbCl+
-log_k 1.6
-delta_h 4.38 kcal
-Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt
Pb+2 + 2 Cl- = PbCl2
-log_k 1.8
-delta_h 1.08 kcal
-Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt
Pb+2 + 3 Cl- = PbCl3-
-log_k 1.7
-delta_h 2.17 kcal
-Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt
Pb+2 + 4 Cl- = PbCl4-2
-log_k 1.38
-delta_h 3.53 kcal
-Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt
Pb+2 + CO3-2 = PbCO3
-log_k 7.24
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
-log_k 10.64
Pb+2 + HCO3- = PbHCO3+
-log_k 2.9
Pb+2 + SO4-2 = PbSO4
-log_k 2.75
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
-log_k 3.47
Pb+2 + 2 HS- = Pb(HS)2
-log_k 15.27
Pb+2 + 3 HS- = Pb(HS)3-
-log_k 16.57
3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+
-log_k -23.88
-delta_h 26.5 kcal
Pb+2 + NO3- = PbNO3+
-log_k 1.17
Pb+2 + Br- = PbBr+
-log_k 1.77
-delta_h 2.88 kcal
Pb+2 + 2 Br- = PbBr2
-log_k 1.44
Pb+2 + F- = PbF+
-log_k 1.25
Pb+2 + 2 F- = PbF2
-log_k 2.56
Pb+2 + 3 F- = PbF3-
-log_k 3.42
Pb+2 + 4 F- = PbF4-2
-log_k 3.1
PHASES
Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic 17.118 -0.046528 -3496 # 0 - 250<35>C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
-log_k -8.336
-delta_h -2.589 kcal
-analytic -171.9773 -0.077993 2903.293 71.595
-Vm 34.04
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25<32>C: Hemingway and Robie, 1994; 50<35>175<37>C: B<>n<EFBFBD>zeth et al., 2018, GCA 224, 262-275
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
-log_k -10.89
-delta_h -2.48 kcal
-Vm 29.2
Rhodochrosite
MnCO3 = Mn+2 + CO3-2
-log_k -11.13
-delta_h -1.43 kcal
-Vm 31.1
Strontianite
SrCO3 = Sr+2 + CO3-2
-log_k -9.271
-delta_h -0.4 kcal
-analytic 155.0305 0 -7239.594 -56.58638
-Vm 39.69
Witherite
BaCO3 = Ba+2 + CO3-2
-log_k -8.562
-delta_h 0.703 kcal
-analytic 607.642 0.121098 -20011.25 -236.4948
-Vm 46
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
-log_k -4.55; -delta_h -6.70
-analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62
-Vm 73.9
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.25; -delta_h -22.4
-analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323
-Vm 46.1 # 136.14 / 2.95
Celestite
SrSO4 = Sr+2 + SO4-2
-log_k -6.63
-delta_h -4.037 kcal
-analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464
-Vm 46.4
Barite
BaSO4 = Ba+2 + SO4-2
-log_k -9.89; -delta_h 11.82
-analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960
-Vm 52.9
Arcanite
K2SO4 = SO4-2 + 2 K+
log_k -1.776; -delta_h 5 kcal
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
-Vm 65.5
Mirabilite
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
-log_k -0.706; -delta_h 124
-analytical_expression -53.037 0.1242 4562 # ref. 3
Vm 216
Thenardite
Na2SO4 = 2 Na+ + SO4-2
-log_k 0.65; -delta_h -23.1
-analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3
Vm 52.9
Epsomite
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
log_k -1.74; -delta_h 10.57 kJ
-analytical_expression -3.59 6.21e-3
Vm 147
Hexahydrite
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
log_k -1.57; -delta_h 2.35 kJ
-analytical_expression -1.978 1.38e-3
Vm 132
Kieserite
MgSO4:H2O = Mg+2 + SO4-2 + H2O
log_k -1.16; -delta_h 9.22 kJ
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
Vm 53.8
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
-log_k -3.421
-delta_h -36.155 kcal
-Vm 128.9
Fluorite
CaF2 = Ca+2 + 2 F-
-log_k -10.6
-delta_h 4.69 kcal
-analytic 66.348 0 -4298.2 -25.271
-Vm 15.7
SiO2(a)
SiO2 + 2 H2O = H4SiO4
-log_k -2.71
-delta_h 3.34 kcal
-analytic -0.26 0 -731
Chalcedony
SiO2 + 2 H2O = H4SiO4
-log_k -3.55
-delta_h 4.72 kcal
-analytic -0.09 0 -1032
-Vm 23.1
Quartz
SiO2 + 2 H2O = H4SiO4
-log_k -3.98
-delta_h 5.99 kcal
-analytic 0.41 0 -1309
-Vm 22.67
Gibbsite
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 8.11
-delta_h -22.8 kcal
-Vm 32.22
Al(OH)3(a)
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
-log_k 10.8
-delta_h -26.5 kcal
Kaolinite
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
-log_k 7.435
-delta_h -35.3 kcal
-Vm 99.35
Albite
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
-log_k -18.002
-delta_h 25.896 kcal
-Vm 101.31
Anorthite
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
-log_k -19.714
-delta_h 11.58 kcal
-Vm 105.05
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
-log_k -20.573
-delta_h 30.82 kcal
-Vm 108.15
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
-log_k 12.703
-delta_h -59.376 kcal
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O
-log_k 68.38
-delta_h -151.494 kcal
Ca-Montmorillonite
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
-log_k -45.027
-delta_h 58.373 kcal
-Vm 156.16
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
-log_k 21.399
-delta_h -46.352 kcal
-Vm 68.34
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+
-log_k -40.267
-delta_h 54.684 kcal
-Vm 141.48
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
-log_k 32.2
-delta_h -46.8 kcal
-analytic 13.248 0 10217.1 -6.1894
-Vm 106.5808 # 277.11/2.60
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
-log_k 15.76
-delta_h -10.7 kcal
-Vm 143.765
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
-log_k 18.66
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
-log_k -4.008
-delta_h -30.845 kcal
-Vm 30.39
Goethite
FeOOH + 3 H+ = Fe+3 + 2 H2O
-log_k -1
-delta_h -14.48 kcal
-Vm 20.84
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
-log_k 4.891
Pyrite
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
-log_k -18.479
-delta_h 11.3 kcal
-Vm 23.48
FeS(ppt)
FeS + H+ = Fe+2 + HS-
-log_k -3.915
Mackinawite
FeS + H+ = Fe+2 + HS-
-log_k -4.648
-Vm 20.45
Sulfur
S + 2 H+ + 2 e- = H2S
-log_k 4.882
-delta_h -9.5 kcal
Vivianite
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
-log_k -36
Pyrolusite # H2O added for surface calc's
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
-log_k 41.38
-delta_h -65.11 kcal
Hausmannite
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
-log_k 61.03
-delta_h -100.64 kcal
Manganite
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
-log_k 25.34
Pyrochroite
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
-log_k 15.2
Halite
NaCl = Cl- + Na+
log_k 1.57
-delta_h 1.37
#-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
-Vm 27.1
Sylvite
KCl = K+ + Cl-
log_k 0.9
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
-delta_h -4.776 kcal
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
-T_c 304.2 # critical T, K
-P_c 72.86 # critical P, atm
-Omega 0.225 # acentric factor
H2O(g)
H2O = H2O
-log_k 1.506; delta_h -44.03 kJ
-T_c 647.3; -P_c 217.6; -Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
O2(g)
O2 = O2
-log_k -2.8983
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
-T_c 154.6; -P_c 49.8; -Omega 0.021
H2(g)
H2 = H2
-log_k -3.105
-delta_h -4.184 kJ
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2; -P_c 12.8; -Omega -0.225
N2(g)
N2 = N2
-log_k -3.1864
-analytic -58.453 1.818e-3 3199 17.909 -27460
-T_c 126.2; -P_c 33.5; -Omega 0.039
H2S(g)
H2S = H+ + HS-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.2; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6; -P_c 45.4; -Omega 0.008
#Amm(g)
# Amm = Amm
NH3(g)
NH3 = NH3
-log_k 1.7966
-analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192
-T_c 405.6; -P_c 111.3; -Omega 0.25
# redox-uncoupled gases
Oxg(g)
Oxg = Oxg
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
-T_c 154.6; -P_c 49.8; -Omega 0.021
Hdg(g)
Hdg = Hdg
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
-T_c 33.2; -P_c 12.8; -Omega -0.225
Ntg(g)
Ntg = Ntg
-analytic -58.453 1.818e-3 3199 17.909 -27460
T_c 126.2; -P_c 33.5; -Omega 0.039
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
-T_c 190.6; -P_c 45.4; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.2; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
-log_k -2.209
-delta_h 4.91 kcal
-analytic 1.447 -0.004153 0 0 -214949
Alunite
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O
-log_k -1.4
-delta_h -50.25 kcal
Jarosite-K
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
-log_k -9.21
-delta_h -31.28 kcal
Zn(OH)2(e)
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
-log_k 11.5
Smithsonite
ZnCO3 = Zn+2 + CO3-2
-log_k -10
-delta_h -4.36 kcal
Sphalerite
ZnS + H+ = Zn+2 + HS-
-log_k -11.618
-delta_h 8.25 kcal
Willemite 289
Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4
-log_k 15.33
-delta_h -33.37 kcal
Cd(OH)2
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
-log_k 13.65
Otavite 315
CdCO3 = Cd+2 + CO3-2
-log_k -12.1
-delta_h -0.019 kcal
CdSiO3 328
CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4
-log_k 9.06
-delta_h -16.63 kcal
CdSO4 329
CdSO4 = Cd+2 + SO4-2
-log_k -0.1
-delta_h -14.74 kcal
Cerussite 365
PbCO3 = Pb+2 + CO3-2
-log_k -13.13
-delta_h 4.86 kcal
Anglesite 384
PbSO4 = Pb+2 + SO4-2
-log_k -7.79
-delta_h 2.15 kcal
Pb(OH)2 389
Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O
-log_k 8.15
-delta_h -13.99 kcal
GAS_BINARY_PARAMETERS
H2O(g) CO2(g) 0.19
H2O(g) H2S(g) 0.19
H2O(g) H2Sg(g) 0.19
H2O(g) CH4(g) 0.49
H2O(g) Mtg(g) 0.49
H2O(g) Methane(g) 0.49
H2O(g) N2(g) 0.49
H2O(g) Ntg(g) 0.49
H2O(g) Ethane(g) 0.49
H2O(g) Propane(g) 0.55
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
-log_k 0
Na+ + X- = NaX
-log_k 0
-gamma 4.08 0.082
K+ + X- = KX
-log_k 0.7
-gamma 3.5 0.015
-delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
-log_k -0.08
-gamma 6 0
-delta_h 1.4 # Merriam & Thomas, 1956
# !!!!!
# H+ + X- = HX
# -log_k 1.0
# -gamma 9.0 0
# AmmH+ + X- = AmmHX
NH4+ + X- = NH4X
-log_k 0.6
-gamma 2.5 0
-delta_h -2.4 # Laudelout et al., 1968
Ca+2 + 2 X- = CaX2
-log_k 0.8
-gamma 5 0.165
-delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2 X- = MgX2
-log_k 0.6
-gamma 5.5 0.2
-delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2 X- = SrX2
-log_k 0.91
-gamma 5.26 0.121
-delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2 X- = BaX2
-log_k 0.91
-gamma 4 0.153
-delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2 X- = MnX2
-log_k 0.52
-gamma 6 0
Fe+2 + 2 X- = FeX2
-log_k 0.44
-gamma 6 0
Cu+2 + 2 X- = CuX2
-log_k 0.6
-gamma 6 0
Zn+2 + 2 X- = ZnX2
-log_k 0.8
-gamma 5 0
Cd+2 + 2 X- = CdX2
-log_k 0.8
-gamma 0 0
Pb+2 + 2 X- = PbX2
-log_k 1.05
-gamma 0 0
Al+3 + 3 X- = AlX3
-log_k 0.41
-gamma 9 0
AlOH+2 + 2 X- = AlOHX2
-log_k 0.89
-gamma 0 0
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
-log_k 0
Hfo_sOH + H+ = Hfo_sOH2+
-log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
-log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
-log_k 0
Hfo_wOH + H+ = Hfo_wOH2+
-log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
-log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
-log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
-log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
-log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
-log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+
-log_k -17.6
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
-log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
-log_k -7.2 # table 10.5
#
# Cations from table 10.2
#
# Cadmium
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
-log_k 0.47
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
-log_k -2.91
# Zinc
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
-log_k 0.99
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
-log_k -1.99
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
-log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
-log_k 0.6 # table 10.5
# Lead
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
-log_k 4.65
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
-log_k 0.3 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
-log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
-log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
-log_k -3.5 # table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
-log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
-log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+
-log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
# Phosphate
Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O
-log_k 31.29
Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O
-log_k 25.39
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
-log_k 17.72
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
-log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
-log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
-log_k 0.79
#
# Derived constants table 10.10
#
Hfo_wOH + F- + H+ = Hfo_wF + H2O
-log_k 8.7
Hfo_wOH + F- = Hfo_wOHF-
-log_k 1.6
#
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
#
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
-log_k 12.56
Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69
MEAN_GAMMAS
CaCl2 Ca+2 1 Cl- 2
CaSO4 Ca+2 1 SO4-2 1
CaCO3 Ca+2 1 CO3-2 1
Ca(OH)2 Ca+2 1 OH- 2
MgCl2 Mg+2 1 Cl- 2
MgSO4 Mg+2 1 SO4-2 1
MgCO3 Mg+2 1 CO3-2 1
Mg(OH)2 Mg+2 1 OH- 2
NaCl Na+ 1 Cl- 1
Na2SO4 Na+ 2 SO4-2 1
NaHCO3 Na+ 1 HCO3- 1
Na2CO3 Na+ 2 CO3-2 1
NaOH Na+ 1 OH- 1
KCl K+ 1 Cl- 1
K2SO4 K+ 2 SO4-2 1
HCO3 K+ 1 HCO3- 1
K2CO3 K+ 2 CO3-2 1
KOH K+ 1 OH- 1
HCl H+ 1 Cl- 1
H2SO4 H+ 2 SO4-2 1
HBr H+ 1 Br- 1
RATES
###########
#Quartz
###########
#
#######
# Example of quartz kinetic rates block:
# KINETICS
# Quartz
# -m0 158.8 # 90 % Qu
# -parms 0.146 1.5
# -step 3.1536e8 in 10
# -tol 1e-12
Quartz
-start
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
10 dif_temp = 1/TK - 1/298
20 pk_w = 13.7 + 4700.4 * dif_temp
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
# Integrate...
50 SAVE moles * TIME
-end
###########
#K-feldspar
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
# GFW Kspar 0.278 kg/mol
#
# Moles of Kspar per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
#
#
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
# -m 2.18 # Moles per L pore space
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
K-feldspar
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM K-Feldspar parameters
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
280 moles = rate * TIME
290 SAVE moles
-end
###########
#Albite
###########
#
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
# vol. 31, p. 485-541.
#
# As described in:
# Appelo and Postma, 2005, Geochemistry, groundwater
# and pollution, 2nd Edition: A.A. Balkema Publishers,
# p. 162-163 and 395-399.
#
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.46 # 2% Albite, 0.1 mm cubes
# -m 0.46 # Moles per L pore space
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
# -time 1.5 year in 40
#
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
# GFW Albite 0.262 kg/mol
#
# Moles of Albite per liter pore space calculation:
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
#
# Specific area calculation:
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
Albite
-start
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
5 REM Albite parameters
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk_CO2 = 13
80 n_CO2 = 0.6
100 REM Generic rate follows
110 dif_temp = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk_H = pk_H + e_H * dif_temp
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk_OH = pk_OH + e_OH * dif_temp
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
260 area = PARM(1) * M0 *(M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
280 moles = rate * TIME
290 SAVE moles
-end
########
#Calcite
########
# Example of KINETICS data block for calcite rate,
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
# -time 1 day
Calcite
-start
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
2 REM PARM(2) = exponent for M/M0
10 si_cc = SI("Calcite")
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
30 k1 = 10^(0.198 - 444 / TK )
40 k2 = 10^(2.84 - 2177 /TK )
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK)
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK )
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
120 rate = rate * (1 - 10^(2/3*si_cc))
130 moles = rate * 0.001 * TIME # convert from mmol to mol
200 SAVE moles
-end
#######
#Pyrite
#######
#
# Williamson, M.A. and Rimstidt, J.D., 1994,
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
# rate equation is mol m^-2 s^-1.
#
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms 0.3 0.67 .5 -0.11
# -time 1 day in 10
Pyrite
-start
1 REM Williamson and Rimstidt, 1994
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
3 REM PARM(2) = exp for (M/M0)
4 REM PARM(3) = exp for O2
5 REM PARM(4) = exp for H+
10 REM Dissolution in presence of DO
20 if (M <= 0) THEN GOTO 200
30 if (SI("Pyrite") >= 0) THEN GOTO 200
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
60 moles = 10^(log_area + log_rate) * TIME
200 SAVE moles
-end
##########
#Organic_C
##########
#
# Example of KINETICS data block for SOC (sediment organic carbon):
# KINETICS 1
# Organic_C
# -formula C
# -tol 1e-8
# -m 5e-3 # SOC in mol
# -time 30 year in 15
Organic_C
-start
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
2 REM Electron acceptors: O2, NO3, and SO4
10 if (M <= 0) THEN GOTO 200
20 mO2 = MOL("O2")
30 mNO3 = TOT("N(5)")
40 mSO4 = TOT("S(6)")
50 k_O2 = 1.57e-9 # 1/sec
60 k_NO3 = 1.67e-11 # 1/sec
70 k_SO4 = 1.e-13 # 1/sec
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
110 moles = rate * M * (M/M0) * TIME
200 SAVE moles
-end
###########
#Pyrolusite
###########
#
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
# Rate equation given as mol L^-1 s^-1
#
# Example of KINETICS data block for Pyrolusite
# KINETICS 1-12
# Pyrolusite
# -tol 1.e-7
# -m0 0.1
# -m 0.1
# -time 0.5 day in 10
Pyrolusite
-start
10 if (M <= 0) THEN GOTO 200
20 sr_pl = SR("Pyrolusite")
30 if (sr_pl > 1) THEN GOTO 100
40 REM sr_pl <= 1, undersaturated
50 Fe_t = TOT("Fe(2)")
60 if Fe_t < 1e-8 then goto 200
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
80 GOTO 200
100 REM sr_pl > 1, supersaturated
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
200 SAVE moles * SOLN_VOL
-end
#
# Additional definition of PHASES, RATE parameters, and RATES examples
#
# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
#
# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
#
# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632.
#
# Example RATES definitions and input files with KINETICS show the application in
# Albite_PK # Palandri and Kharaka
# Albite_Svd # Sverdrup
# Albite_Hermanska
# Calcite_PK # Palandri and Kharaka
# Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216.
# Quartz_PK # Palandri and Kharaka
# Quartz_Svd # Sverdrup
# Quartz_Hermanska #
# Quartz_Rimstidt_Barnes
# Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer
#
PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals
# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat,
# tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html
Actinolite # Hornblende, Ferroactinolite
Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4
log_k 7.128
delta_h -181.662 #kJ/mol #19bla/lac
-analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7
Almandine # (alpha)
Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4
log_k 42.18
delta_h -458.683 #kJ/mol #95rob/hem
-analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7
Analcime
Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4
log_k 6.654
delta_h -98 #kJ/mol #04neu/hov
-analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6
Andalusite
Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O
log_k 16.206
delta_h -244.61 #kJ/mol #Internal calculation
-analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6
Andesine # defined for elemental release
Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4-
Andradite
Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4
log_k 33.787
delta_h -327.864 #kJ/mol #Internal calculation
-analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6
Anglesite
PbSO4 = Pb+2 + SO4-2
log_k -7.848
delta_h 11.55 #kJ/mol #89cox/wag
-analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6
Annite
KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4
log_k 32.771
delta_h -306.153 #kJ/mol #92cir/nav
-analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6
Anorthite
Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4
log_k 24.235
delta_h -303.522 #kJ/mol #95rob/hem
-analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6
Anthophyllite
Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4
log_k 73.783
delta_h -583.247 #kJ/mol #95rob/hem
-analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7
Antigorite
Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O
log_k 500.08
delta_h -3743.421 #kJ/mol #98hol/pow
-analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8
# As2S3 # Orpiment # no As in phreeqc.dat
# As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+
# log_k -65.110
# delta_h 334.975 #kJ/mol #Internal calculation
# -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6
Augite # Pyroxene(CaAl)
CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O
log_k 36.234
delta_h -370.792 #kJ/mol #Internal calculation
-analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6
Biotite # defined for elemental release
KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4
Bronzite # defined for elemental release
Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4
Brucite
Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O
log_k 17.112
delta_h -114.518 #kJ/mol #08bla
-analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5
Bytownite # defined for elemental release
Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4-
Chabazite
Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O
log_k 11.541
delta_h -200.464 #kJ/mol #08bla
-analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6
Chamosite(Daphnite)
Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O
log_k 47.603
delta_h -497.518 #kJ/mol #01vid/par
-analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O
log_k 33.182
delta_h -244.552 #kJ/mol #04eva
-analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6
Clinochlore
Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O
log_k 61.706
delta_h -593.773 #kJ/mol #05vid/par
-analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7
Clinoptilolite(Ca)
Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4
log_k -2.085
delta_h -58.407 #kJ/mol #09bla
-analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6
Clinoptilolite(K)
K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4
log_k -1.142
delta_h -49.035 #kJ/mol #09bla
-analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6
Clinoptilolite(Na)
Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4
log_k -0.113
delta_h -50.769 #kJ/mol #09bla
-analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6
Cordierite
Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4
log_k 49.433
delta_h -648.745 #kJ/mol #95rob/hem
-analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7
Cristobalite # (alpha)
SiO2 + 2 H2O = H4SiO4
log_k -3.158
delta_h 18.829 #kJ/mol #04fab/sax
-analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6
# Cristobalite(beta)
# SiO2 + 2H2O = 1H4SiO4
# log_k -3.096
# #delta_h 0 #kJ/mol
# -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6
Dawsonite
NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O
log_k 4.327
delta_h -76.33 #kJ/mol #76fer/stu
-analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6
Diaspore
AlO(OH) + 3 H+ = Al+3 + 2 H2O
log_k 6.866
delta_h -108.76 #kJ/mol #95rob/hem
-analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6
Diopside
CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4
log_k 21.743
delta_h -153.574 #kJ/mol #Internal calculation
-analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6
Dolomite(disordered)
CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2
log_k 4.299
delta_h -73.162 #kJ/mol #78hel/del,92ajoh
-analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6
Edenite # (alpha)
Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4
log_k 81.946
delta_h -679.296 #kJ/mol #97got
-analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7
Enstatite # (alpha)
MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4
log_k 11.844
delta_h -93.265 #kJ/mol #78hel/del
-analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6
Epidote
Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O
log_k 32.23
delta_h -411.613 #kJ/mol #04got
-analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7
Fayalite
Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4
log_k 19.03
delta_h -157.157 #kJ/mol #Internal calculation
-analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6
Ferroactinolite # = Ferrotremolite
(Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4
log_k 53.699
delta_h -412.225 #kJ/mol #Internal calculation
-analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7
Fluorapatite # (Natur)
Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4-
log_k -0.91
delta_h -115.601 #kJ/mol #Internal calculation
-analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7
Forsterite
Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4
log_k 28.609
delta_h -217.115 #kJ/mol #Internal calculation
-analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6
Glauconite
(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2
log_k 1.873
delta_h -120.903 #kJ/mol #15bla/vie
-analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6
Glaucophane
Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4
log_k 37.026
delta_h -378.727 #kJ/mol #95rob/hem
-analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7
Grossular
Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4
log_k 49.372
delta_h -442.383 #kJ/mol #95rob/hem
-analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7
# Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite
Heulandite(Ca)
Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4
log_k 2.457
delta_h -139.108 #kJ/mol #09bla
-analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7
# Ilmenite # Ti not in phreeqc.dat
# FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4
# log_k 1.816
# delta_h -87.445 #kJ/mol #Internal calculation
# -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6
Heulandite(Na)
Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4
log_k 2.797
delta_h -126.775 #kJ/mol #09bla
-analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7
Jadeite
NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4
log_k 7.561
delta_h -95.502 #kJ/mol #95rob/hem
-analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6
Kyanite
Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O
log_k 15.936
delta_h -240.322 #kJ/mol #Internal calculation
-analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6
Labradorite # defined for elemental release
Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4-
Larnite(alpha)
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
log_k 39.044
delta_h -238.161 #kJ/mol #95rob/hem
-analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6
Larnite(beta)
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
log_k 39.322
#delta_h 0 #kJ/mol
-analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6
Larnite(gamma)
Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4
log_k 41.444
#delta_h 0 #kJ/mol
-analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6
Laumontite
Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4
log_k 11.695
delta_h -204.244 #kJ/mol #96kis/nav
-analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6
Leonhardtite
MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O
log_k -0.886
delta_h -24.03 #kJ/mol #74nau/ryz
-analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6
Leucite # minteq.dat
KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+
log_k 6.423
delta_h -22.085 kcal
Lizardite
Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O
log_k 33.093
delta_h -242.552 #kJ/mol #04eva
-analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6
Magnetite
Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O
log_k 10.362
delta_h -215.594 #kJ/mol #90hem
-analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6
Microcline
K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4
log_k 0.015
delta_h -49.203 #kJ/mol #95rob/hem
-analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6
Montmorillonite(HcCa)
Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4
log_k 6.903
delta_h -154.564 #kJ/mol #15bla/vie
-analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6
Montmorillonite(HcK)
K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4
log_k 4.449
delta_h -119.628 #kJ/mol #15bla/vie
-analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6
Montmorillonite(HcMg)
Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4
log_k 5.996
delta_h -156.964 #kJ/mol #15bla/vie
-analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6
Montmorillonite(HcNa)
Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4
log_k 5.472
delta_h -135.658 #kJ/mol #15bla/vie
-analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6
Montmorillonite(MgCa)
Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4
log_k 4.222
delta_h -146.668 #kJ/mol #15bla/vie
-analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6
Montmorillonite(MgK)
K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4
log_k 2.83
delta_h -126.865 #kJ/mol #15bla/vie
-analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6
Montmorillonite(MgMg)
Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4
log_k 3.708
delta_h -148.028 #kJ/mol #15bla/vie
-analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6
Montmorillonite(MgNa)
Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4
log_k 3.411
delta_h -135.953 #kJ/mol #15bla/vie
-analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6
MordeniteB # (Ca)
Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4
log_k -2.898
delta_h -56.278 #kJ/mol #09bla
-analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6
MordeniteJ
Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4
log_k -4.16
delta_h -29.442 #kJ/mol #92joh/tas
-analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6
Muscovite # (ordered)
KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4
log_k 11.353
delta_h -253.923 #kJ/mol #06bla/pia
-analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6
Natrolite
Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4
log_k 19.326
delta_h -215.463 #kJ/mol #83joh/flo
-analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6
Nepheline
Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4
log_k 14.077
delta_h -144.506 #kJ/mol #Internal calculation
-analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6
Oligoclase # defined for elemental release
Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4-
Palygorskite # defined for elemental release
Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4
Paragonite
NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4
log_k 16.804
delta_h -294.623 #kJ/mol #96rou/hov
-analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6
Pargasite # Hornblende
Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4
log_k 104.557
delta_h -940.614 #kJ/mol #Internal calculation
-analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7
Phlogopite
KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4
log_k 41.098
delta_h -353.123 #kJ/mol #92cir/nav
-analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6
Prehnite
Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4
log_k 32.596
delta_h -339.617 #kJ/mol #98cha/kru
-analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6
Pyrophyllite
Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4
log_k -0.418
delta_h -128.924 #kJ/mol #95rob/hem
-analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6
Pyrrhotite(Hx) # Pyrrhotite
FeS + H+ = Fe+2 + HS-
log_k -3.679
delta_h -10.009 #kJ/mol #05wal/pel
-analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6
Pyrrhotite(Mc) # Pyrrhotite
FeS + H+ = Fe+2 + HS-
log_k -3.679
delta_h -10.009 #kJ/mol #05wal/pel
-analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6
Rhyolite # a mixture of minerals, defined for elemental release...
Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4
Riebeckite
Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3
log_k 9.199
delta_h -197.377 #kJ/mol #98hol/pow
-analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7
Saponite(Ca)
Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4
log_k 29.355
delta_h -262.766 #kJ/mol #15bla/vie
-analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6
Saponite(FeCa)
Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4
log_k 26.569
delta_h -250.636 #kJ/mol #15bla/vie
-analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6
Saponite(FeK)
K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4
log_k 25.398
delta_h -232.093 #kJ/mol #15bla/vie
-analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6
Saponite(FeMg)
Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4
log_k 26.022
delta_h -251.806 #kJ/mol #15bla/vie
-analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6
Saponite(FeNa)
Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4
log_k 25.896
delta_h -240.711 #kJ/mol #15bla/vie
-analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6
Saponite(K)
K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4
log_k 27.43
delta_h -239.483 #kJ/mol #15bla/vie
-analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6
Saponite(Mg)
Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4
log_k 28.81
delta_h -263.946 #kJ/mol #15bla/vie
-analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6
Saponite(Na)
Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4
log_k 27.971
delta_h -248.219 #kJ/mol #15bla/vie
-analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6
Saponite(SapCa)
(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2
log_k 31.473
delta_h -277.172 #kJ/mol #13gai/bla
-analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6
Scolecite
CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O
log_k 16.647
delta_h -233.213 #kJ/mol #83joh/flo
-analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6
Smectite # (MX80)
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2
log_k 5.278
delta_h -175.308 #kJ/mol #12gai/bla
-analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6
Smectite(MX80:3.989H2O)
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O
log_k 1.774
delta_h -148.524 #kJ/mol #12gai/bla
-analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6
Smectite(MX80:5.189H2O)
Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O
log_k 1.435
delta_h -140.43 #kJ/mol #12gai/bla
-analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6
Spodumene # from core10.dat
LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4
log_k 6.9972
delta_h -89.1817
-analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5
-Vm 58.37
Staurolite
Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O
log_k 216.34
delta_h -1956.484 #kJ/mol #87woo/gar
-analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7
Stilbite
NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4
log_k 23.044
delta_h -403.823 #kJ/mol #01fri/neu
-analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7
Thomsonite # defined for elemental release
Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O
Tourmaline # defined for elemental release
NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4
Tremolite
(Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4
log_k 67.281
delta_h -502.247 #kJ/mol #95rob/hem
-analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7
# Uraninite
# UO2 + 4 H+ = U+4 + 2 H2O
# log_k -3.490
# delta_h -18.630 kcal
Wollastonite
CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4
log_k 14.047
delta_h -85.986 #kJ/mol #78hel/del,92ajoh
-analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6
Zoisite
Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O
log_k 43.848
delta_h -485.113 #kJ/mol #01sme/fra
-analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7
RATE_PARAMETERS_PK
# Acid Neutral Base
# log K E n(H+) log K E log K E n(OH-)
# ================================================================
Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4
#
SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6
Cristobalite -30 0 0 -12.31 65 -30 0 0
#
Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1
Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13
Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0
Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0
Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0
Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0
#
K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15
#
Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18
Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2
#
Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23
Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0
Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35
Grossular -5.1 85 1 -10.7 103.8 -30 0 0
Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0
Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0
Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3
Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556
Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0
#
Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25
Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0
#
augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26
bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0
diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0
enstatite -9.02 80 0.6 -12.72 80 -30 0 0
jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0
spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0
wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0
#
anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27
glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0
hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0
riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0
tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0
#
biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28
glauconite -4.8 85 0.7 -9.1 85 -30 0 0
muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22
muscovite -30 0 0 -13 22 -30 0 0
paragonite -30 0 0 -13 22 -30 0 0
phlogopite -30 0 0 -12.4 29 -30 0 0
pyrophyllite -30 0 0 -12.4 29 -30 0 0
#
kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29
montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2.
smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4.
#
lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30
chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23
chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0
talc -30 0 0 -12 42 -30 0 0
prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2
#
goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31
hematite -9.39 66.2 1 -14.6 66.2 -30 0 0
magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0
ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0
uraninite -30 0 0 -7.98 32 -30 0 0
#
brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32
gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784
diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503
#
anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34
anhydrite -30 0 0 -3.19 14.3 -30 0 0
gypsum -30 0 0 -2.79 0 -30 0 0
barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0
celestite -5.66 23.8 0.109 -30 0 -30 0 0
#
hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36
fluorapatite -3.73 250 0.613 -8 250 -30 0 0
#
halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37
fluorite -7.14 73 1 -13.79 73 -30 0 0
#
# Acid Neutral P_CO2
# log K E n(H+) log K E log K E n(P_CO2) Table
# ================================================================================
calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2)
dawsonite -30 0 0 -7 62.8 -30 0 0 33
dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33
dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33
magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33
#
# Acid and Fe+3 Neutral and O2 Base
# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table
# =========================================================================================
pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2
pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35
pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35
As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35
RATE_PARAMETERS_SVD
# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5
# H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula
# =================================================================================================================================================================================================================================================================================================
Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8
Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2
RATE_PARAMETERS_HERMANSKA
# Acid mechanism Neutral mechanism Basic mechanism
# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula
# ================================================================================================================================
# Amphiboles
Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0
Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0
Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2
Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2
# Feldspars
Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3
Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3
Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3
Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3
K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline
Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3
Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3
# Glass
Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6
# Mica # Also valid for
Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite
Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2
# Olivines
Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2
Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2
Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2
# Pyroxenes
Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0
Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0
Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0
Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0
# SiO2 polymorphs
Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite
SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4
# 2023, Table 1 Also valid for
Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular
Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline
Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2
Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0
Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite
Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite
Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite
Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite
Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite
Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0
Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6
Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0
Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76
Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1
Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite
Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite
Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6
Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075
Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7
Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite
Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0
Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0
Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15
# # Example input files with RATES for KINETICS calculations
# #
# # compare Albite kinetics using rates from the compilations
# # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html
# # =========================================================
#
# RATES
# Albite_PK # Palandri and Kharaka, 2004
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_PK("Albite")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# KINETICS 1
# Albite_PK
# -formula NaAlSi3O8; -parms 0 1 1 0.67
# -m0 1; -time 1 # default
# END
# SOLUTION 1
# PHASES
# Fix_pH; H+ = H+
# LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant
# SELECTED_OUTPUT 1
# -file kinetic_rates_pH.inc
# -reset false
# USER_PUNCH 1 # write out the pH's to equilibrate...
# 10 FOR i = 0 to 14 STEP 0.5
# 20 punch EOL$ + 'USE solution 1'
# 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1'
# 40 punch EOL$ + ' LiBr'
# 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant
# 60 punch EOL$ + 'USE kinetics 1'
# 70 punch EOL$ + 'END'
# 80 NEXT i
# END
# PRINT; -reset false
# SELECTED_OUTPUT 1; -active false
# USER_GRAPH 1; -headings pH Palandri
# -axis_titles pH "log10(initial rate / (mol / m2 / s))"
# -axis_scale x_axis 0 14
# 10 graph_x -la("H+")
# 20 graph_sy log10(tot("Al"))
# INCLUDE$ kinetic_rates_pH.inc
# END
# RATES
# Albite_Svd # Sverdrup, 2019
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_SVD("Albite")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# KINETICS 1
# Albite_Svd
# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20
# USER_GRAPH 1; -headings pH Sverdup*20
# INCLUDE$ kinetic_rates_pH.inc
# END
# KINETICS 1
# Albite # from Sverdrup and Warfvinge, 1995
# -formula NaAlSi3O8; -parms 1 20 # roughness = 20
# USER_GRAPH 1; -headings pH Sverdup`95*20
# INCLUDE$ kinetic_rates_pH.inc
# END
# RATES
# Albite_Hermanska # 2022
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_HERMANSKA("Albite")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# KINETICS 1
# Albite_Hermanska
# -formula NaAlSi3O8; -parms 0 1 1 0.67
# USER_GRAPH 1; -headings pH Hermanska
# INCLUDE$ kinetic_rates_pH.inc
# END
# USE solution 1
# REACTION_TEMPERATURE 1; 25 25 in 21
# USER_GRAPH 1; -headings Albite_data
# 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3
# 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963<36>993.
# 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i
# 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i
# 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle
# END
# # compare rates for calcite dissolution
# # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978
# # at different initial CO2 concentrations.
# # =====================================
# USER_GRAPH 1; -active false
# RATES
# Calcite_PK # Palandri and Kharaka, 2004
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_PK("calcite")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# SOLUTION 1
# pH 7 charge; C(4) 1 CO2(g) -2.5
# KINETICS 1
# calcite_PK
# -formula CaCO3; -parms 0 1e-2 1 0.67
# -time 0.1 10*1 hour
# INCREMENTAL_REACTIONS true
# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5
# -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)"
# 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3
# END
# USE solution 1
# KINETICS 1
# Calcite
# -parms 1e2 0.67 # cm^2/mol calcite, exp factor
# -time 0.1 10*1 hour
# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst
# END
# SOLUTION 1
# pH 7 charge; C(4) 1 CO2(g) -1.5
# KINETICS 1
# calcite_PK
# -formula CaCO3
# -parms 0 1e-2 1 0.67
# -time 0.1 10*1 hour
# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5
# END
# USE solution 1
# KINETICS 1
# Calcite
# -parms 1e2 0.67
# -time 0.1 10*1 hour
# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst
# END
# # compare rates for quartz dissolution
# # and the effect of NaCl
# # =====================================
# USER_GRAPH 2; -active false
# RATES
# Quartz_PK # Palandri and Kharaka, 2004
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_PK("Quartz")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# SOLUTION 1
# pH 7 charge
# KINETICS 1
# Quartz_PK
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# INCREMENTAL_REACTIONS true
# USER_GRAPH 3; -headings h Palandri
# -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)"
# 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3
# END
# RATES
# Quartz_Hermanska #
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_HERMANSKA("Quartz")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# USE solution 1
# KINETICS 1
# Quartz_Hermanska
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Hermanska
# END
# RATES
# Quartz_Svd # Sverdrup, 2019
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = RATE_SVD("Quartz")
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# USE solution 1
# KINETICS 1
# Quartz_Svd
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Sverdup
# END
# RATES
# Quartz_Rimstidt
# #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259
# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# USE solution 1
# KINETICS 1
# Quartz_Rimstidt
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Rimstidt
# END
# SOLUTION 1
# pH 7 charge; Na 1; Cl 1
# KINETICS 1
# Quartz_Rimstidt
# -formula SiO2
# -parms 0 6 1 0.67
# -time 0.1 10*1 year
# USER_GRAPH 3
# -headings H Rimstidt_1.mM.NaCl
# END
# # Example input file for calculating kinetic dissolution of Montmorillonite,
# # a solid solution with exchangeable cations reacting fast;
# # their ratios are related to the changing solution composition,
# # and their amounts are connected to the kinetic reacting TOT layer.
# #
# # The affinity is related to a solid solution member, given by the fraction of the
# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula,
# # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1
# # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined.
# # It also shows how the default X exchanger can be invkoed.
# # # ==============================================================
# USER_GRAPH 3; -active false
# RATES
# Montmorillonite
# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# # Gapon and Gaines-Tomas exchange formulas
# 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg"))
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na
# 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na
# # # Gapon, with Ca as exchange species...
# # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg"))
# # # use SR("Montmorillonite(Mgca)")
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca
# # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES
# # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex
# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# 40 SAVE area * rate * affinity * TIME
# -end
# EXCHANGE_MASTER_SPECIES
# X_montm_mg X_montm_mg-0.34
# EXCHANGE_SPECIES
# # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES
# X_montm_mg-0.34 = X_montm_mg-0.34
# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 #
# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 #
# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 #
# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 #
# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX
# # # uncomment the following lines to see the effect...
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86
# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83
# # # also adapt the log_k`s of the solids...
# # PHASES
# # Montmorillonite(MgMg)
# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4
# # log_k 2.86
# # Montmorillonite(MgCa)
# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4
# # log_k 2.83
# # # The divalent cations can be defined with the Gaines-Thomas convention...
# # EXCHANGE_SPECIES
# # # undefine the previous set...
# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10
# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10
# # # write the Gaines-Thomas formulas...
# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 #
# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 #
# # # The default exchanger X can be used, uncomment the following lines
# # # redefine f_Na in the rate...
# # RATES
# # Montmorillonite
# # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent
# # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange
# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na
# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na
# # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0
# # 40 SAVE area * rate * affinity * TIME
# # -end
# # # adapt log_k`s of the solids with default exchanger X:
# # PHASES
# # Montmorillonite(MgK)
# # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4
# # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305
# # Montmorillonite(MgMg)
# # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4
# # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62
# # Montmorillonite(MgCa)
# # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2
# # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55
# # # in EXCHANGE 1, comment X_montm_mg, uncomment X...
# END
# SOLUTION 1
# pH 7 charge
# Na 1e-5
# K 1e-5
# Mg 1e-5
# Ca 1e-5
# END
# # Give the solution composition for calculating the ininitial exchanger
# SOLUTION 99
# pH 7 charge
# EQUILIBRIUM_PHASES 1
# # solid solution of the end-members, SI = log10(fraction = 0.25)
# Montmorillonite(MgNa) -0.602 1e-2
# Montmorillonite(MgCa) -0.602 1e-2
# Montmorillonite(MgK) -0.602 1e-2
# Montmorillonite(MgMg) -0.602 1e-2
# Kaolinite 0 0
# SAVE solution 99
# END
# # # with Gapon only, initial exchanger can be defined explicitly
# EXCHANGE 1
# Na0.34X_montm_mg 1e-2
# Ca0.17X_montm_mg 1e-2
# K0.34X_montm_mg 1e-2
# Mg0.17X_montm_mg 1e-2
# END
# USE solution 1
# EQUILIBRIUM_PHASES 1
# Kaolinite 0 0
# # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1
# EXCHANGE 1
# X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1
# # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1
# KINETICS 1
# Montmorillonite
# -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1
# -m 4e-2
# -parms 0 2.5e5 1 0.67
# -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6
# -cvode true
# INCREMENTAL_REACTIONS true
# USER_GRAPH 4
# -headings time Na K Mg Ca mm_diss
# -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)"
# -axis_scale x_axis auto auto auto auto log
# -axis_scale y_axis auto auto auto auto log
# 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1)
# 10 GRAPH_X t
# 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24
# 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24
# 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca
# 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3
# END
# USE solution 99; REACTION
# USER_GRAPH 4; -connect_simulations false; -headings Solution_99
# 1 t = get(1)
# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red
# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green
# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue
# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
# hard-coded in calc_PR():
# kij CH4 CO2 H2S N2
# H2O 0.49 0.19 0.19 0.49
# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file.
# =============================================================================================
# The molar volumes of solids are entered with
# -Vm vm cm3/mol
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# --------------------
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
# The volume (cm3/mol) is
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
# + z^2 / 2 * Av * f(I^0.5)
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
# 41.84 transforms cal/bar/mol into cm3/mol.
# pb is pressure in bar.
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-H<>ckel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-H<>ckel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions (or fitted).
# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp.
# =============================================================================================
# The viscosity is calculated with a (modified) Jones-Dole equation:
# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i)
# Parameters are for calculating the B and D terms:
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
# # b0 b1 b2 d1 d2 d3 tan
# z_i is absolute charge number, m_i is molality of i
# B_i = b0 + b1 exp(-b2 * tc)
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species
# D_i = d1 * exp(-d2 tc)
# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 <20> m_i)^d3) / (2 + fI), fI is an ionic strength term.
# For details, consult ref. 4.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49<34>67.
# ref. 2: Procedures from ref. 1 using data compiled by Lalibert<72>, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).