iphreeqc/phreeqcpp/pitzer.cpp
github-actions[bot] 7939dd3209 Squashed 'src/' changes from 7835c6d5..8b97f7b5
8b97f7b5 Merge commit 'a11ac56700283d1570e045d3fc791f56fef913dd'
a11ac567 Squashed 'phreeqcpp/' changes from 83843db..50e4d89

git-subtree-dir: src
git-subtree-split: 8b97f7b51ed6af2d64b5df31c0d15c16290e8337
2025-09-10 22:46:07 +00:00

2710 lines
62 KiB
C++

#include "Phreeqc.h"
#include "phqalloc.h"
#include "Exchange.h"
#include "Solution.h"
#define PITZER_LISTS
#define PITZER
#if defined(PHREEQCI_GUI)
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#endif
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer_init(void)
/* ---------------------------------------------------------------------- */
{
int i;
/*
* Initialization for pitzer
*/
pitzer_model = FALSE;
use_etheta = TRUE;
pitz_params.clear();
theta_params.clear();
ICON = TRUE;
OTEMP = -100.;
OPRESS = -100.;
for (i = 0; i < 23; i++)
{
BK[i] = 0.0;
DK[i] = 0.0;
}
pitzer_pe = FALSE;
VP = 0;
DW0 = 0;
return OK;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer_tidy(void)
/* ---------------------------------------------------------------------- */
{
/*
* Make lists of species for cations, anions, neutral
*/
const char *string1, *string2;
int i, j, order;
int i0, i1, i2;
//int count_pos, count_neg, count_neut, count[3], jj;
int count_neut, count[3], jj;
LDBLE z0, z1;
class pitz_param *pzp_ptr;
class theta_param *theta_param_ptr;
/*
* Ensure new parameters are calculated
*/
OTEMP = -100.;
OPRESS = -100.;
/*
* allocate pointers to species structures
*/
spec.clear();
spec.resize(3 * s.size(), NULL);
cations = &spec[0];
neutrals = &(spec[s.size()]);
anions = &(spec[2 * s.size()]);
MAXCATIONS = (int)s.size();
FIRSTANION = 2 * (int)s.size();
MAXNEUTRAL = (int)s.size();
count_cations = 0;
count_anions = 0;
count_neutrals = 0;
if (itmax < 200)
itmax = 200;
/*
* allocate other arrays for Pitzer
*/
IPRSNT.resize(3 * s.size());
M.resize(3 * s.size());
LGAMMA.resize(3 * s.size());
for (i = 0; i < (int)s.size(); i++)
{
if (s[i] == s_eminus)
continue;
if (s[i] == s_h2o)
continue;
if (s[i]->type == EX || s[i]->type == SURF)
continue;
if (s[i]->z < -.001)
{
anions[count_anions++] = s[i];
}
else if (s[i]->z > .001)
{
cations[count_cations++] = s[i];
}
else
{
neutrals[count_neutrals++] = s[i];
}
}
/*
* Add etheta to parameter list in case theta not defined for
* cation-cation or anion-anion pair
* Remove old TYPE_ETHETA definitions
*/
std::vector<pitz_param*> pitz_params_temp = pitz_params;
pitz_params.clear();
for (i = 0; i < (int)pitz_params_temp.size(); i++)
{
if (pitz_params_temp[i]->type == TYPE_ETHETA)
{
delete pitz_params_temp[i];
}
else
{
pitz_params.push_back(pitz_params_temp[i]);
}
}
for (i = 0; i < count_cations - 1; i++)
{
for (j = i + 1; j < count_cations; j++)
{
snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name);
pzp_ptr = pitz_param_read(line, 2);
pzp_ptr->type = TYPE_ETHETA;
size_t count_pitz_param = pitz_params.size();
pitz_params.resize(count_pitz_param + 1);
pitz_params[count_pitz_param] = pzp_ptr;
}
}
for (i = 2 * (int)s.size(); i < 2 * (int)s.size() + count_anions - 1; i++)
{
for (j = i + 1; j < 2 * (int)s.size() + count_anions; j++)
{
snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name);
pzp_ptr = pitz_param_read(line, 2);
pzp_ptr->type = TYPE_ETHETA;
size_t count_pitz_param = pitz_params.size();
pitz_params.resize(count_pitz_param + 1);
pitz_params[count_pitz_param] = pzp_ptr;
}
}
/*
* put species numbers in pitz_params
*/
for (i = 0; i < (int)pitz_params.size(); i++)
{
for (j = 0; j < 3; j++)
{
if (pitz_params[i]->species[j] == NULL)
continue;
pitz_params[i]->ispec[j] = ISPEC(pitz_params[i]->species[j]);
if ((j < 2 && pitz_params[i]->ispec[j] == -1) ||
(j == 2 && (pitz_params[i]->type == TYPE_PSI || pitz_params[i]->type == TYPE_ZETA)
&& pitz_params[i]->ispec[j] == -1))
{
input_error++;
error_string = sformatf(
"Species for Pitzer parameter not defined in SOLUTION_SPECIES, %s",
pitz_params[i]->species[j]);
error_msg(error_string, CONTINUE);
return (ERROR);
}
}
}
/*
* MacInnes data
*/
string1 = string_hsave("K+");
string2 = string_hsave("Cl-");
IC = ISPEC(string2);
for (i = 0; i < (int)pitz_params.size(); i++)
{
if ((pitz_params[i]->species[0] == string1 &&
pitz_params[i]->species[1] == string2) ||
(pitz_params[i]->species[0] == string2 &&
pitz_params[i]->species[1] == string1) )
{
switch (pitz_params[i]->type)
{
case TYPE_B0:
mcb0 = pitz_params[i];
break;
case TYPE_B1:
mcb1 = pitz_params[i];
break;
case TYPE_C0:
mcc0 = pitz_params[i];
break;
case TYPE_B2:
case TYPE_THETA:
case TYPE_LAMBDA:
case TYPE_ZETA:
case TYPE_PSI:
case TYPE_ETHETA:
case TYPE_ALPHAS:
case TYPE_MU:
case TYPE_ETA:
case TYPE_Other:
default:
break;
}
}
}
if (mcb0 == NULL && mcb1 == NULL && mcc0 == NULL && ICON == TRUE)
{
error_string = sformatf(
"No KCl interaction parameters, turning off MacInnes scaling.");
warning_msg(error_string);
ICON = FALSE;
}
/*
* Set alpha values
*/
for (i = 0; i < (int)pitz_params.size(); i++)
{
z0 = fabs(spec[pitz_params[i]->ispec[0]]->z);
z1 = fabs(spec[pitz_params[i]->ispec[1]]->z);
if (equal(z0, 1.0, 1e-8) || equal(z1, 1.0, 1e-8))
{
order = 1;
}
else if (equal(z0, 2.0, 1e-8) && equal(z1, 2.0, 1e-8))
{
order = 2;
}
else
{
order = 3;
}
if (pitz_params[i]->type == TYPE_B1)
{
switch (order)
{
case 1:
case 3:
pitz_params[i]->alpha = 2.0;
break;
case 2:
pitz_params[i]->alpha = 1.4;
break;
}
}
else if (pitz_params[i]->type == TYPE_B2)
{
switch (order)
{
case 1:
pitz_params[i]->alpha = 12.0;
break;
case 2:
pitz_params[i]->alpha = 12.0;
break;
case 3:
pitz_params[i]->alpha = 50.0;
break;
}
}
}
/*
* Add specific alphas
*/
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_ALPHAS)
{
for (j = 0; j < (int)pitz_params.size(); j++)
{
if (pitz_params[j]->type != TYPE_B1)
continue;
if (pitz_params[i]->ispec[0] != pitz_params[j]->ispec[0])
continue;
if (pitz_params[i]->ispec[1] != pitz_params[j]->ispec[1])
continue;
pitz_params[j]->alpha = pitz_params[i]->a[0];
break;
}
for (j = 0; j < (int)pitz_params.size(); j++)
{
if (pitz_params[j]->type != TYPE_B2)
continue;
if (pitz_params[i]->ispec[0] != pitz_params[j]->ispec[0])
continue;
if (pitz_params[i]->ispec[1] != pitz_params[j]->ispec[1])
continue;
pitz_params[j]->alpha = pitz_params[i]->a[1];
break;
}
}
}
/*
* Add thetas pointer to etheta pitzer parameters
*/
for (i = 0; i < (int)theta_params.size(); i++)
{
delete theta_params[i];
}
theta_params.clear();
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_ETHETA)
{
z0 = spec[pitz_params[i]->ispec[0]]->z;
z1 = spec[pitz_params[i]->ispec[1]]->z;
theta_param_ptr = theta_param_search(z0, z1);
if (theta_param_ptr == NULL)
{
size_t count_theta_param = theta_params.size();
theta_params.resize(count_theta_param + 1);
theta_params[count_theta_param] = new class theta_param;
theta_params[count_theta_param]->zj = z0;
theta_params[count_theta_param]->zk = z1;
theta_param_ptr = theta_params[count_theta_param];
}
pitz_params[i]->thetas = theta_param_ptr;
}
}
/*
* Tidy TYPE_MU
*/
/* Coef for Osmotic coefficient for TYPE_MU */
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_MU)
{
i0 = pitz_params[i]->ispec[0];
i1 = pitz_params[i]->ispec[1];
i2 = pitz_params[i]->ispec[2];
//count_pos = count_neg = count_neut = 0;
count_neut = 0;
for (j = 0; j <= 2; j++)
{
if (spec[pitz_params[i]->ispec[j]]->z > 0)
{
//count_pos++;
}
if (spec[pitz_params[i]->ispec[j]]->z == 0)
{
count_neut++;
}
if (spec[pitz_params[i]->ispec[j]]->z < 0)
{
//count_neg++;
}
}
/* All neutral */
if (count_neut == 3)
{
if (i0 == i1 && i1 == i2)
{
/* type n, n, n */
pitz_params[i]->os_coef = 1;
continue;
}
else if (i0 == i1 || i1 == i2 || i0 == i2)
{
/* type n, n, n' */
pitz_params[i]->os_coef = 3;
continue;
}
else
{
/* type n, n', n'' */
pitz_params[i]->os_coef = 6;
continue;
}
}
/* Two neutral, one anion or cation */
if (i0 == i1 || i1 == i2 || i0 == i2)
{
/* type n, n, a|c */
pitz_params[i]->os_coef = 3;
continue;
}
else
{
/* type n, n', a|c */
pitz_params[i]->os_coef = 6;
continue;
}
}
}
/* Coef for gammas for TYPE_MU */
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_MU)
{
for (j = 0; j <= 2; j++)
{
count[j] = 0;
for (jj = 0; jj <= 2; jj++)
{
if (pitz_params[i]->ispec[j] == pitz_params[i]->ispec[jj])
{
count[j]++;
}
}
}
for (j = 0; j <= 2; j++)
{
/* cation or anion */
if (spec[pitz_params[i]->ispec[j]]->z < 0
|| spec[pitz_params[i]->ispec[j]]->z > 0)
{
if (count[0] > 1 || count[1] > 1)
{
pitz_params[i]->ln_coef[j] = 3;
}
else
{
pitz_params[i]->ln_coef[j] = 6;
}
continue;
}
/* Neutral */
if (count[j] == 3)
{
pitz_params[i]->ln_coef[j] = 1;
}
else if (count[j] == 2)
{
pitz_params[i]->ln_coef[j] = 3;
}
else if (count[j] == 1)
{
if (count[0] > 1 || count[1] > 1)
{
pitz_params[i]->ln_coef[j] = 3;
}
else
{
pitz_params[i]->ln_coef[j] = 6;
}
}
}
}
}
/* Debug TYPE_MU coefficients */
/*
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_MU)
{
fprintf(stderr, "%s\t%s\t%s\n", pitz_params[i]->species[0], pitz_params[i]->species[1], pitz_params[i]->species[2]);
fprintf(stderr, "%f\t%f\t%f\n", pitz_params[i]->ln_coef[0], pitz_params[i]->ln_coef[1], pitz_params[i]->ln_coef[2]);
fprintf(stderr, "%f\n\n", pitz_params[i]->os_coef);
}
}
*/
/*
* Tidy TYPE_LAMBDA
*/
/* Coef for Osmotic coefficient for TYPE_LAMBDA */
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_LAMBDA)
{
i0 = pitz_params[i]->ispec[0];
i1 = pitz_params[i]->ispec[1];
/* All neutral */
if (i0 == i1)
{
/* type n, n */
pitz_params[i]->os_coef = 0.5;
pitz_params[i]->ln_coef[0] = 1;
pitz_params[i]->ln_coef[1] = 1;
}
else
{
/* type nn', na, nc */
pitz_params[i]->os_coef = 1;
pitz_params[i]->ln_coef[0] = 2;
pitz_params[i]->ln_coef[1] = 2;
}
}
}
/* Debug TYPE_LAMBDA coefficients */
/*
for (i = 0; i < (int)pitz_params.size(); i++)
{
if (pitz_params[i]->type == TYPE_LAMBDA)
{
fprintf(stderr, "%s\t%s\n", pitz_params[i]->species[0], pitz_params[i]->species[1]);
fprintf(stderr, "%f\t%f\n", pitz_params[i]->ln_coef[0], pitz_params[i]->ln_coef[1]);
fprintf(stderr, "%f\n\n", pitz_params[i]->os_coef);
}
}
*/
/* remake map */
{
pitz_param_map.clear();
for (int j = 0; j < (int)pitz_params.size(); j++)
{
std::set< std::string > header;
for (int i = 0; i < 3; i++)
{
if (pitz_params[j]->species[i] != NULL) header.insert(pitz_params[j]->species[i]);
}
std::ostringstream key_str;
key_str << pitz_params[j]->type << " ";
std::set< std::string >::iterator it = header.begin();
for(; it != header.end(); ++it)
{
key_str << *it << " ";
}
std::string key = key_str.str().c_str();
pitz_param_map[key] = j;
}
assert ((int) pitz_param_map.size() == (int)pitz_params.size());
}
return OK;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
ISPEC(const char *name)
/* ---------------------------------------------------------------------- */
/*
* Find species number in spec for character string species name
*/
{
int i;
for (i = 0; i < 3 * (int)s.size(); i++)
{
if (spec[i] == NULL)
continue;
if (name == spec[i]->name)
{
return (i);
}
}
return (-1);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
read_pitzer(void)
/* ---------------------------------------------------------------------- */
{
/*
* Reads advection information
*
* Arguments:
* none
*
* Returns:
* KEYWORD if keyword encountered, input_error may be incremented if
* a keyword is encountered in an unexpected position
* EOF if eof encountered while reading mass balance concentrations
* ERROR if error occurred reading data
*
*/
/*
* Read advection parameters:
* number of cells;
* number of shifts;
*/
int n;
class pitz_param *pzp_ptr;
pitz_param_type pzp_type;
int return_value, opt, opt_save;
const char* next_char;
const char *opt_list[] = {
"b0", /* 0 */
"b1", /* 1 */
"b2", /* 2 */
"c0", /* 3 */
"theta", /* 4 */
"lamda", /* 5 */
"zeta", /* 6 */
"psi", /* 7 */
"macinnes", /* 8 */
"macinnis", /* 9 */
"mac", /* 10 */
"redox", /* 11 */
"pe", /* 12 */
"alphas", /* 13 */
"mu", /* 14 */
"eta", /* 15 */
"etheta", /* 16 */
"use_etheta", /* 17 */
"lambda", /* 18 */
"aphi" /* 19 */
};
int count_opt_list = 20;
/*
* Read lines
*/
opt_save = OPTION_ERROR;
return_value = UNKNOWN;
n = -1;
pzp_type = TYPE_Other;
for (;;)
{
opt = get_option(opt_list, count_opt_list, &next_char);
if (opt == OPTION_DEFAULT)
{
opt = opt_save;
}
switch (opt)
{
case OPTION_EOF: /* end of file */
return_value = EOF;
break;
case OPTION_KEYWORD: /* keyword */
return_value = KEYWORD;
break;
case OPTION_DEFAULT:
pzp_ptr = pitz_param_read(line, n);
if (pzp_ptr != NULL)
{
pzp_ptr->type = pzp_type;
if (pzp_type == TYPE_APHI)
{
delete aphi;
aphi = pzp_ptr;
}
else
{
pitz_param_store(pzp_ptr);
}
}
break;
case OPTION_ERROR:
input_error++;
error_msg("Unknown input in PITZER keyword.", CONTINUE);
error_msg(line_save, CONTINUE);
break;
case 0: /* b0 */
pzp_type = TYPE_B0;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 1: /* b1 */
pzp_type = TYPE_B1;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 2: /* b2 */
pzp_type = TYPE_B2;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 3: /* c0 */
pzp_type = TYPE_C0;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 4: /* theta */
pzp_type = TYPE_THETA;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 5: /* lamda */
case 18: /* lambda */
pzp_type = TYPE_LAMBDA;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 6: /* zeta */
pzp_type = TYPE_ZETA;
n = 3;
opt_save = OPTION_DEFAULT;
break;
case 7: /* psi */
pzp_type = TYPE_PSI;
n = 3;
opt_save = OPTION_DEFAULT;
break;
case 13: /* alphas */
pzp_type = TYPE_ALPHAS;
n = 2;
opt_save = OPTION_DEFAULT;
break;
case 8: /* macinnes */
case 9: /* macinnis */
case 10: /* mac */
opt_save = OPTION_ERROR;
ICON = get_true_false(next_char, TRUE);
break;
case 11: /* redox */
case 12: /* pe */
opt_save = OPTION_ERROR;
pitzer_pe = get_true_false(next_char, TRUE);
break;
case 14: /* mu */
pzp_type = TYPE_MU;
n = 3;
opt_save = OPTION_DEFAULT;
break;
case 15: /* eta */
pzp_type = TYPE_ETA;
n = 3;
opt_save = OPTION_DEFAULT;
break;
case 16: /* etheta */
case 17: /* use_etheta */
opt_save = OPTION_ERROR;
use_etheta = get_true_false(next_char, TRUE);
break;
case 19: /* aphi */
pzp_type = TYPE_APHI;
n = 0;
opt_save = OPTION_DEFAULT;
break;
}
if (return_value == EOF || return_value == KEYWORD)
break;
}
pitzer_model = TRUE;
return (return_value);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
PTEMP(LDBLE TK)
/* ---------------------------------------------------------------------- */
{
/*
C
C SUBROUTINE TO CALCULATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER
C
*/
LDBLE TR = 298.15;
if (fabs(TK - OTEMP) < 0.001 && fabs(patm_x - OPRESS) < 0.1)
return OK;
DW0 = rho_0 = calc_rho_0(TK - 273.15, patm_x);
VP = patm_x;
#if !defined(PITZER_LISTS)
int i;
for (i = 0; i < (int)pitz_params.size(); i++)
{
calc_pitz_param(pitz_params[i], TK, TR);
}
#else
for (size_t j = 0; j < param_list.size(); j++)
{
int i = param_list[j];
calc_pitz_param(pitz_params[i], TK, TR);
}
if (aphi)
{
calc_pitz_param(aphi, TK, TR);
}
if (mcb0)
{
calc_pitz_param(mcb0, TK, TR);
}
if (mcb1)
{
calc_pitz_param(mcb1, TK, TR);
}
if (mcc0)
{
calc_pitz_param(mcc0, TK, TR);
}
#endif
calc_dielectrics(TK - 273.15, patm_x);
OTEMP = TK;
OPRESS = patm_x;
return OK;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
calc_pitz_param(class pitz_param *pz_ptr, LDBLE TK, LDBLE TR)
/* ---------------------------------------------------------------------- */
{
LDBLE param;
/*
*/
if (fabs(TK - TR) < 0.001)
{
param = pz_ptr->a[0];
}
else
{
param = (pz_ptr->a[0] +
pz_ptr->a[1] * (1.e0 / TK - 1.e0 / TR) +
pz_ptr->a[2] * log(TK / TR) +
pz_ptr->a[3] * (TK - TR) +
pz_ptr->a[4] * (TK * TK - TR * TR)) +
pz_ptr->a[5] * (1.e0 / (TK * TK) - 1.e0 / (TR * TR));
}
pz_ptr->p = param;
switch (pz_ptr->type)
{
case TYPE_B0:
pz_ptr->U.b0 = param;
break;
case TYPE_B1:
pz_ptr->U.b1 = param;
break;
case TYPE_B2:
pz_ptr->U.b2 = param;
break;
case TYPE_C0:
pz_ptr->U.c0 = param;
break;
case TYPE_THETA:
pz_ptr->U.theta = param;
break;
case TYPE_LAMBDA:
pz_ptr->U.lambda = param;
break;
case TYPE_ZETA:
pz_ptr->U.zeta = param;
break;
case TYPE_ETHETA:
break;
case TYPE_PSI:
pz_ptr->U.psi = param;
break;
case TYPE_ALPHAS:
break;
case TYPE_MU:
pz_ptr->U.mu = param;
break;
case TYPE_ETA:
pz_ptr->U.eta = param;
break;
case TYPE_APHI:
pz_ptr->U.aphi = param;
break;
case TYPE_Other:
default:
error_msg("Should not be TYPE_Other in function calc_pitz_param",
STOP);
break;
}
return OK;
}
#if !defined(PITZER_LISTS)
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer(void)
/* ---------------------------------------------------------------------- */
{
int i, i0, i1, i2;
LDBLE param, l_alpha, z0, z1;
LDBLE etheta, ethetap;
/*
LDBLE CONV, XI, XX, OSUM, BIGZ, DI, F, XXX, GAMCLM,
CSUM, PHIMAC, OSMOT, BMXP, ETHEAP, CMX, BMX, PHI,
BMXPHI, PHIPHI, AW, A, B;
*/
LDBLE CONV, XX, OSUM, BIGZ, DI, F, F1, F2, F_var, XXX, GAMCLM, CSUM, PHIMAC, OSMOT,
B, B1, B2;
LDBLE I, TK;
/*
C
C INITIALIZE
C
*/
CONV = 1.0 / LOG_10;
XX = 0.0;
OSUM = 0.0;
/*n
I = *I_X;
TK = *TK_X;
*/
I = mu_x;
TK = tk_x;
/* DH_AB(TK, &A, &B); */
/*
C
C TRANSFER DATA FROM TO M
C
*/
for (i = 0; i < 3 * (int)s.size(); i++)
{
IPRSNT[i] = FALSE;
M[i] = 0.0;
if (spec[i] != NULL && spec[i]->in == TRUE)
{
if (spec[i]->type == EX ||
spec[i]->type == SURF || spec[i]->type == SURF_PSI)
continue;
M[i] = under(spec[i]->lm);
if (M[i] > MIN_TOTAL)
IPRSNT[i] = TRUE;
}
}
if (ICON == TRUE)
{
IPRSNT[IC] = TRUE;
}
/*
ICON = 0;
M[1] = 1.40070736;
M[4] = 2.52131086E-05;
M[140] = 4.59985435E-09;
*/
/*
C
C COMPUTE PITZER COEFFICIENTS' TEMPERATURE DEPENDENCE
C
*/
PTEMP(TK);
for (i = 0; i < 2 * (int)s.size() + count_anions; i++)
{
LGAMMA[i] = 0.0;
if (IPRSNT[i] == TRUE)
{
XX = XX + M[i] * fabs(spec[i]->z);
OSUM = OSUM + M[i];
}
}
/*
C
C EQUATION (8)
C
*/
BIGZ = XX;
DI = sqrt(I);
/*
C
C CALCULATE F & GAMCLM
C
*/
B = 1.2;
F = F1 = F2 = -A0 * (DI / (1.0 + B * DI) + 2.0 * log(1.0 + B * DI) / B);
if (patm_x > 1.0)
{
LDBLE pap;
pap = (7e-5 + 1.93e-9 * pow(TK - 250.0, 2.0)) * patm_x;
B1 = B - (pap > 0.2 ? 0.2 : pap);
pap = (9.65e-10 * pow(TK - 263.0, 2.773)) * pow(patm_x, 0.623);
//pap = (-5.22e-4 + 7.19e-8 * pow(TK - 263.0, 2.0)) * pow(patm_x, 0.623);
B2 = B - (pap > 0.2 ? 0.2 : pap);
if (B1 != 0)
F1 = -A0 * (DI / (1.0 + B1 * DI) + 2.0 * log(1.0 + B1 * DI) / B1);
if (B2 != 0)
F2 = -A0 * (DI / (1.0 + B2 * DI) + 2.0 * log(1.0 + B2 * DI) / B2);
}
XXX = 2.0 * DI;
XXX =
(1.0 - (1.0 + XXX - XXX * XXX * 0.5) * exp(-XXX)) / (XXX * XXX);
/*GAMCLM=F+I*2.0e0*(BCX(1,IK,IC)+BCX(2,IK,IC)*XXX)+1.5e0*BCX(4,IK,IC)*I*I; */
/*GAMCLM=F+I*2.0e0*(mcb0->U.b0 + mcb1->U.b1*XXX) + 1.5e0*mcc0->U.c0*I*I; */
/*GAMCLM = F + I * 2.0e0 * (mcb0->p + mcb1->p * XXX) + 1.5e0 * mcc0->p * I * I; */
GAMCLM = F1;
if (mcb0 != NULL)
GAMCLM += I * 2.0 * mcb0->p;
if (mcb1 != NULL)
GAMCLM += I * 2.0 * mcb1->p * XXX;
if (mcc0 != NULL)
GAMCLM += 1.5 * mcc0->p * I * I;
CSUM = 0.0;
OSMOT = -(A0) * pow(I, (LDBLE) 1.5) / (1.0 + B * DI);
/*
* Calculate ethetas
*/
for (i = 0; i < (int)theta_params.size(); i++)
{
z0 = theta_params[i]->zj;
z1 = theta_params[i]->zk;
ETHETAS(z0, z1, I, &etheta, &ethetap);
theta_params[i]->etheta = etheta;
theta_params[i]->ethetap = ethetap;
}
/*
* Sums for F, LGAMMA, and OSMOT
*/
for (i = 0; i < (int)pitz_params.size(); i++)
{
i0 = pitz_params[i]->ispec[0];
i1 = pitz_params[i]->ispec[1];
if (IPRSNT[i0] == FALSE || IPRSNT[i1] == FALSE)
continue;
z0 = spec[i0]->z;
z1 = spec[i1]->z;
param = pitz_params[i]->p;
l_alpha = pitz_params[i]->alpha;
F_var = 0;
switch (pitz_params[i]->type)
{
case TYPE_B0:
LGAMMA[i0] += M[i1] * 2.0 * param;
LGAMMA[i1] += M[i0] * 2.0 * param;
OSMOT += M[i0] * M[i1] * param;
break;
case TYPE_B1:
if (param != 0.0)
{
F_var = M[i0] * M[i1] * param * GP(l_alpha * DI) / I;
LGAMMA[i0] += M[i1] * 2.0 * param * G(l_alpha * DI);
LGAMMA[i1] += M[i0] * 2.0 * param * G(l_alpha * DI);
OSMOT += M[i0] * M[i1] * param * exp(-l_alpha * DI);
}
break;
case TYPE_B2:
if (param != 0.0)
{
F_var = M[i0] * M[i1] * param * GP(l_alpha * DI) / I;
LGAMMA[i0] += M[i1] * 2.0 * param * G(l_alpha * DI);
LGAMMA[i1] += M[i0] * 2.0 * param * G(l_alpha * DI);
OSMOT += M[i0] * M[i1] * param * exp(-l_alpha * DI);
}
break;
case TYPE_C0:
CSUM +=
M[i0] * M[i1] * pitz_params[i]->p / (2.0 *
sqrt(fabs(z0 * z1)));
LGAMMA[i0] += M[i1] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
LGAMMA[i1] += M[i0] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
OSMOT +=
M[i0] * M[i1] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
break;
case TYPE_THETA:
LGAMMA[i0] += 2.0 * M[i1] * (param /*+ ETHETA(z0, z1, I) */ );
LGAMMA[i1] += 2.0 * M[i0] * (param /*+ ETHETA(z0, z1, I) */ );
OSMOT += M[i0] * M[i1] * param;
break;
case TYPE_ETHETA:
/*
ETHETAS(z0, z1, I, &etheta, &ethetap);
*/
if (use_etheta == TRUE)
{
etheta = pitz_params[i]->thetas->etheta;
ethetap = pitz_params[i]->thetas->ethetap;
F_var = M[i0] * M[i1] * ethetap;
LGAMMA[i0] += 2.0 * M[i1] * etheta;
LGAMMA[i1] += 2.0 * M[i0] * etheta;
OSMOT += M[i0] * M[i1] * (etheta + I * ethetap);
/*
F += M[i0]*M[i1]*ETHETAP(z0, z1, I);
LGAMMA[i0] += 2.0*M[i1]*(ETHETA(z0, z1, I) );
LGAMMA[i1] += 2.0*M[i0]*(ETHETA(z0, z1, I) );
OSMOT += M[i0]*M[i1]*(ETHETA(z0, z1, I) + I*ETHETAP(z0, z1, I) );
*/
}
break;
case TYPE_PSI:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_LAMBDA:
LGAMMA[i0] += M[i1] * param * pitz_params[i]->ln_coef[0];
LGAMMA[i1] += M[i0] * param * pitz_params[i]->ln_coef[1];
OSMOT += M[i0] * M[i1] * param * pitz_params[i]->os_coef;
break;
case TYPE_ZETA:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_MU:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param * pitz_params[i]->ln_coef[0];
LGAMMA[i1] += M[i0] * M[i2] * param * pitz_params[i]->ln_coef[1];
LGAMMA[i2] += M[i0] * M[i1] * param * pitz_params[i]->ln_coef[2];
OSMOT += M[i0] * M[i1] * M[i2] * param * pitz_params[i]->os_coef;
break;
case TYPE_ETA:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_ALPHAS:
break;
case TYPE_Other:
default:
error_msg("TYPE_Other in pitz_param list.", STOP);
break;
}
F += F_var;
F1 += F_var;
F2 += F_var;
}
/*
* Add F and CSUM terms to LGAMMA
*/
for (i = 0; i < count_cations; i++)
{
if (!IPRSNT[i])
continue;
z0 = fabs(spec[i]->z);
F_var = (z0 == 1 ? F1 : (z0 == 2.0 ? F2 : F));
LGAMMA[i] += z0 * z0 * F_var + z0 * CSUM;
}
for (i = 2 * (int)s.size(); i < 2 * (int)s.size() + count_anions; i++)
{
if (!IPRSNT[i])
continue;
z0 = fabs(spec[i]->z);
F_var = (z0 == 1 ? F1 : (z0 == 2.0 ? F2 : F));
LGAMMA[i] += z0 * z0 * F_var + z0 * CSUM;
}
/*
C
C CONVERT TO MACINNES CONVENTION
C
*/
if (ICON == TRUE)
{
PHIMAC = LGAMMA[IC] - GAMCLM;
/*
C
C CORRECTED ERROR IN PHIMAC, NOVEMBER, 1989
C
*/
for (i = 0; i < 2 * (int)s.size() + count_anions; i++)
{
if (IPRSNT[i] == TRUE)
{
LGAMMA[i] = LGAMMA[i] + spec[i]->z * PHIMAC;
}
}
}
COSMOT = 1.0 + 2.0 * OSMOT / OSUM;
/*
C
C CALCULATE THE ACTIVITY OF WATER
C
*/
AW = exp(-OSUM * COSMOT / 55.50837);
/*
if (AW > 1.0)
AW = 1.0;
*/
/*s_h2o->la=log10(AW); */
mu_x = I;
for (i = 0; i < 2 * (int)s.size() + count_anions; i++)
{
if (IPRSNT[i] == FALSE)
continue;
/*spec[i]->lg=LGAMMA[i]*CONV; */
spec[i]->lg_pitzer = LGAMMA[i] * CONV;
/*
output_msg(sformatf( "%d %s:\t%e\t%e\t%e\t%e \n", i, spec[i]->name, M[i], spec[i]->la, spec[i]->lg_pitzer, spec[i]->lg));
*/
}
/*
output_msg(sformatf( "OSUM: %e\n", OSUM));
output_msg(sformatf( "OSMOT: %e\n", OSMOT));
output_msg(sformatf( "COSMOT: %e\n", COSMOT));
output_msg(sformatf( "F: %e\n", F));
output_msg(sformatf( "AW: %e\n", AW));
*/
/*
*I_X = I;
*COSMOT_X = COSMOT;
*/
return (OK);
}
#else
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer(void)
/* ---------------------------------------------------------------------- */
{
int i, i0, i1, i2;
LDBLE param, l_alpha, z0, z1;
LDBLE etheta, ethetap;
/*
LDBLE CONV, XI, XX, OSUM, BIGZ, DI, F, XXX, GAMCLM,
CSUM, PHIMAC, OSMOT, BMXP, ETHEAP, CMX, BMX, PHI,
BMXPHI, PHIPHI, AW, A, B;
*/
LDBLE CONV, XX, OSUM, BIGZ, DI, F, F1, F2, F_var, XXX, GAMCLM, CSUM, PHIMAC, OSMOT,
B, B1, B2;
LDBLE I, TK;
/*
C
C INITIALIZE
C
*/
CONV = 1.0 / LOG_10;
XX = 0.0;
OSUM = 0.0;
I = mu_x;
TK = tk_x;
/* DH_AB(TK, &A, &B); */
/*
C
C TRANSFER DATA FROM TO M
C
*/
for (size_t j = 0; j < s_list.size(); j++)
{
i = s_list[j];
IPRSNT[i] = FALSE;
M[i] = 0.0;
if (spec[i] != NULL && spec[i]->in == TRUE)
{
if (spec[i]->type == EX ||
spec[i]->type == SURF || spec[i]->type == SURF_PSI)
continue;
M[i] = under(spec[i]->lm);
if (M[i] > MIN_TOTAL)
IPRSNT[i] = TRUE;
}
}
if (ICON == TRUE)
{
IPRSNT[IC] = TRUE;
}
/*
C
C COMPUTE PITZER COEFFICIENTS' TEMPERATURE DEPENDENCE
C
*/
PTEMP(TK);
for (size_t j = 0; j < s_list.size(); j++)
{
int i = s_list[j];
LGAMMA[i] = 0.0;
XX = XX + M[i] * fabs(spec[i]->z);
OSUM = OSUM + M[i];
}
/*
C
C EQUATION (8)
C
*/
BIGZ = XX;
DI = sqrt(I);
/*
C
C CALCULATE F & GAMCLM
C
*/
B = 1.2;
F = F1 = F2 = -A0 * (DI / (1.0 + B * DI) + 2.0 * log(1.0 + B * DI) / B);
if (patm_x > 1.0)
{
LDBLE pap = 0.0;
pap = (7e-5 + 1.93e-9 * pow(TK - 250.0, 2.0)) * patm_x;
B1 = B - (pap > 0.2 ? 0.2 : pap);
if (TK > 263.0)
{
pap = (9.65e-10 * pow(TK - 263.0, 2.773)) * pow(patm_x, 0.623);
//pap = (-5.22e-4 + 7.19e-8 * pow(TK - 263.0, 2.0)) * pow(patm_x, 0.623);
}
B2 = B - (pap > 0.2 ? 0.2 : pap);
if (B1 != 0)
F1 = -A0 * (DI / (1.0 + B1 * DI) + 2.0 * log(1.0 + B1 * DI) / B1);
if (B2 != 0)
F2 = -A0 * (DI / (1.0 + B2 * DI) + 2.0 * log(1.0 + B2 * DI) / B2);
}
XXX = 2.0 * DI;
XXX = (1.0 - (1.0 + XXX - XXX * XXX * 0.5) * exp(-XXX)) / (XXX * XXX);
GAMCLM = F1;
if (mcb0 != NULL)
GAMCLM += I * 2.0 * mcb0->p;
if (mcb1 != NULL)
GAMCLM += I * 2.0 * mcb1->p * XXX;
if (mcc0 != NULL)
GAMCLM += 1.5 * mcc0->p * I * I;
CSUM = 0.0;
OSMOT = -(A0) * pow(I, (LDBLE) 1.5) / (1.0 + B * DI);
/*
* Calculate ethetas
*/
if (use_etheta == TRUE)
{
for (i = 0; i < (int)theta_params.size(); i++)
{
z0 = theta_params[i]->zj;
z1 = theta_params[i]->zk;
ETHETAS(z0, z1, I, &etheta, &ethetap);
theta_params[i]->etheta = etheta;
theta_params[i]->ethetap = ethetap;
}
}
/*
* Sums for F, LGAMMA, and OSMOT
*/
for (size_t j = 0; j < param_list.size(); j++)
{
int i = param_list[j];
i0 = pitz_params[i]->ispec[0];
i1 = pitz_params[i]->ispec[1];
z0 = spec[i0]->z;
z1 = spec[i1]->z;
param = pitz_params[i]->p;
l_alpha = pitz_params[i]->alpha;
F_var = 0;
switch (pitz_params[i]->type)
{
case TYPE_B0:
LGAMMA[i0] += M[i1] * 2.0 * param;
LGAMMA[i1] += M[i0] * 2.0 * param;
OSMOT += M[i0] * M[i1] * param;
break;
case TYPE_B1:
if (param != 0.0)
{
F_var = M[i0] * M[i1] * param * GP(l_alpha * DI) / I;
LGAMMA[i0] += M[i1] * 2.0 * param * G(l_alpha * DI);
LGAMMA[i1] += M[i0] * 2.0 * param * G(l_alpha * DI);
OSMOT += M[i0] * M[i1] * param * exp(-l_alpha * DI);
}
break;
case TYPE_B2:
if (param != 0.0)
{
F_var = M[i0] * M[i1] * param * GP(l_alpha * DI) / I;
LGAMMA[i0] += M[i1] * 2.0 * param * G(l_alpha * DI);
LGAMMA[i1] += M[i0] * 2.0 * param * G(l_alpha * DI);
OSMOT += M[i0] * M[i1] * param * exp(-l_alpha * DI);
}
break;
case TYPE_C0:
CSUM +=
M[i0] * M[i1] * pitz_params[i]->p / (2.0 *
sqrt(fabs(z0 * z1)));
LGAMMA[i0] += M[i1] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
LGAMMA[i1] += M[i0] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
OSMOT +=
M[i0] * M[i1] * BIGZ * param / (2.0 * sqrt(fabs(z0 * z1)));
break;
case TYPE_THETA:
LGAMMA[i0] += 2.0 * M[i1] * (param /*+ ETHETA(z0, z1, I) */ );
LGAMMA[i1] += 2.0 * M[i0] * (param /*+ ETHETA(z0, z1, I) */ );
OSMOT += M[i0] * M[i1] * param;
break;
case TYPE_ETHETA:
/*
ETHETAS(z0, z1, I, &etheta, &ethetap);
*/
if (use_etheta == TRUE)
{
etheta = pitz_params[i]->thetas->etheta;
ethetap = pitz_params[i]->thetas->ethetap;
F_var = M[i0] * M[i1] * ethetap;
LGAMMA[i0] += 2.0 * M[i1] * etheta;
LGAMMA[i1] += 2.0 * M[i0] * etheta;
OSMOT += M[i0] * M[i1] * (etheta + I * ethetap);
}
break;
case TYPE_PSI:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_LAMBDA:
LGAMMA[i0] += M[i1] * param * pitz_params[i]->ln_coef[0];
LGAMMA[i1] += M[i0] * param * pitz_params[i]->ln_coef[1];
OSMOT += M[i0] * M[i1] * param * pitz_params[i]->os_coef;
break;
case TYPE_ZETA:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_MU:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param * pitz_params[i]->ln_coef[0];
LGAMMA[i1] += M[i0] * M[i2] * param * pitz_params[i]->ln_coef[1];
LGAMMA[i2] += M[i0] * M[i1] * param * pitz_params[i]->ln_coef[2];
OSMOT += M[i0] * M[i1] * M[i2] * param * pitz_params[i]->os_coef;
break;
case TYPE_ETA:
i2 = pitz_params[i]->ispec[2];
if (IPRSNT[i2] == FALSE)
continue;
LGAMMA[i0] += M[i1] * M[i2] * param;
LGAMMA[i1] += M[i0] * M[i2] * param;
LGAMMA[i2] += M[i0] * M[i1] * param;
OSMOT += M[i0] * M[i1] * M[i2] * param;
break;
case TYPE_ALPHAS:
break;
case TYPE_Other:
default:
error_msg("TYPE_Other in pitz_param list.", STOP);
break;
}
F += F_var;
F1 += F_var;
F2 += F_var;
}
/*
* Add F and CSUM terms to LGAMMA
*/
for (size_t j = 0; j < ion_list.size(); j++)
{
int i = ion_list[j];
z0 = fabs(spec[i]->z);
F_var = (z0 == 1 ? F1 : (z0 == 2.0 ? F2 : F));
LGAMMA[i] += z0 * z0 * F_var + z0 * CSUM;
}
/*
C
C CONVERT TO MACINNES CONVENTION
C
*/
if (ICON == TRUE)
{
PHIMAC = LGAMMA[IC] - GAMCLM;
/*
C
C CORRECTED ERROR IN PHIMAC, NOVEMBER, 1989
C
*/
for (size_t j = 0; j < s_list.size(); j++)
{
int i = s_list[j];
LGAMMA[i] = LGAMMA[i] + spec[i]->z * PHIMAC;
}
}
COSMOT = 1.0 + 2.0 * OSMOT / OSUM;
/*
C
C CALCULATE THE ACTIVITY OF WATER
C
*/
AW = exp(-OSUM * COSMOT / 55.50837);
/*
if (AW > 1.0)
AW = 1.0;
*/
/*s_h2o->la=log10(AW); */
mu_x = I;
for (size_t j = 0; j < s_list.size(); j++)
{
int i = s_list[j];
spec[i]->lg_pitzer = LGAMMA[i] * CONV;
}
/*
*I_X = I;
*COSMOT_X = COSMOT;
*/
return (OK);
}
#endif
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
G(LDBLE L_Y)
/* ---------------------------------------------------------------------- */
{
LDBLE d=0.0;
if (L_Y != 0.0)
{
d = 2.0e0 * (1.0e0 - (1.0e0 + L_Y) * exp(-L_Y)) / (L_Y * L_Y);
}
return (d);
}
/* ---------------------------------------------------------------------- */
LDBLE Phreeqc::
GP(LDBLE L_Y)
/* ---------------------------------------------------------------------- */
{
LDBLE d=0.0;
if (L_Y != 0.0)
{
d = -2.0e0 * (1.0e0 - (1.0e0 + L_Y + L_Y * L_Y / 2.0e0) * exp(-L_Y)) /
(L_Y * L_Y);
}
return d;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
ETHETAS(LDBLE ZJ, LDBLE ZK, LDBLE I, LDBLE * etheta, LDBLE * ethetap)
/* ---------------------------------------------------------------------- */
{
/* Revised ETHETAS code thanks to Wouter Falkena and the MoReS team, June, 2015 */
*etheta = 0.0;
*ethetap = 0.0;
if (ZJ == ZK)
return (OK);
const LDBLE XCON = 6.0e0 * A0 * sqrt(I);
const LDBLE ZZ = ZJ * ZK;
/*
C
C NEXT 3 ARE EQUATION (A1)
C
*/
const LDBLE XJK = XCON * ZZ;
const LDBLE XJJ = XCON * ZJ * ZJ;
const LDBLE XKK = XCON * ZK * ZK;
/*
C
C EQUATION (A3)
C
*/
LDBLE JAY_XJK;
LDBLE JPRIME_XJK;
ETHETA_PARAMS( XJK, JAY_XJK, JPRIME_XJK );
LDBLE JAY_XJJ;
LDBLE JPRIME_XJJ;
ETHETA_PARAMS( XJJ, JAY_XJJ, JPRIME_XJJ );
LDBLE JAY_XKK;
LDBLE JPRIME_XKK;
ETHETA_PARAMS( XKK, JAY_XKK, JPRIME_XKK );
*etheta =
ZZ * (JAY_XJK - JAY_XJJ / 2.0e0 - JAY_XKK / 2.0e0) / (4.0e0 * I);
*ethetap =
ZZ * (JPRIME_XJK - JPRIME_XJJ / 2.0e0 -
JPRIME_XKK / 2.0e0) / (8.0e0 * I * I) - *etheta / I;
return (OK);
}
/* ---------------------------------------------------------------------- */
void Phreeqc::
ETHETA_PARAMS(LDBLE X, LDBLE& JAY, LDBLE& JPRIME )
/* ---------------------------------------------------------------------- */
/*
C
C NUMERICAL APPROXIMATION TO THE INTEGRALS IN THE EXPRESSIONS FOR J0
C AND J1. CHEBYSHEV APPROXIMATION IS USED. THE CONSTANTS 'AK' ARE
C DEFINED IN BLOCK COMMON.
C
*/
/*
C
C AK IS USED TO CALCULATE HIGHER ORDER ELECTROSTATIC TERMS IN
C SUBROUTINE PITZER
C
*/
{
static const LDBLE AKX[42] = {
1.925154014814667e0, -.060076477753119e0, -.029779077456514e0,
-.007299499690937e0, 0.000388260636404e0, 0.000636874599598e0,
0.000036583601823e0, -.000045036975204e0, -.000004537895710e0,
0.000002937706971e0, 0.000000396566462e0, -.000000202099617e0,
-.000000025267769e0, 0.000000013522610e0, 0.000000001229405e0,
-.000000000821969e0, -.000000000050847e0, 0.000000000046333e0,
0.000000000001943e0, -.000000000002563e0, -.000000000010991e0,
0.628023320520852e0, 0.462762985338493e0, 0.150044637187895e0,
-.028796057604906e0, -.036552745910311e0, -.001668087945272e0,
0.006519840398744e0, 0.001130378079086e0, -.000887171310131e0,
-.000242107641309e0, 0.000087294451594e0, 0.000034682122751e0,
-.000004583768938e0, -.000003548684306e0, -.000000250453880e0,
0.000000216991779e0, 0.000000080779570e0, 0.000000004558555e0,
-.000000006944757e0, -.000000002849257e0, 0.000000000237816e0
};
/*
LDBLE PRECISION AK, BK, DK
COMMON / MX8 / AK(0:20,2),BK(0:22),DK(0:22)
*/
const LDBLE *AK;
LDBLE L_Z = 0.0;
LDBLE L_DZ = 0.0;
if ( X <= 1.0e0 )
{
const LDBLE powX0_2 = pow( X, 0.2 );
L_Z = 4.0e0 * powX0_2 - 2.0e0;
L_DZ = 0.8e0 * powX0_2 / 2.0e0;
AK = &AKX[0];
}
else
{
const LDBLE powXmin0_1 = pow( X, -0.1 );
L_Z = ( 40.0e0 * powXmin0_1 - 22.0e0 ) / 9.0e0;
L_DZ = -4.0e0 * powXmin0_1 / 18.0e0;
AK = &AKX[21];
}
BK[20] = AK[20];
BK[19] = L_Z * AK[20] + AK[19];
DK[19] = AK[20];
for ( int i = 18; i >= 0; i-- )
{
BK[i] = L_Z * BK[i + 1] - BK[i + 2] + AK[i];
DK[i] = BK[i + 1] + L_Z * DK[i + 1] - DK[i + 2];
}
JAY = X / 4.0e0 - 1.0e0 + 0.5e0 * (BK[0] - BK[2]);
JPRIME = X * .25e0 + L_DZ * (DK[0] - DK[2]);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer_clean_up(void)
/* ---------------------------------------------------------------------- */
{
/*
* Free all allocated memory, except strings
*/
int i;
for (i = 0; i < (int)pitz_params.size(); i++)
{
delete pitz_params[i];
}
pitz_param_map.clear();
pitz_params.clear();
for (i = 0; i < (int)theta_params.size(); i++)
{
delete theta_params[i];
}
theta_params.clear();
LGAMMA.clear();
IPRSNT.clear();
spec.clear();
if (aphi != NULL)
{
delete aphi;
aphi = NULL;
}
M.clear();
return OK;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
set_pz(int initial)
/* ---------------------------------------------------------------------- */
{
/*
* Sets initial guesses for unknowns if initial == TRUE
* Revises guesses whether initial is true or not
*/
int i;
cxxSolution *solution_ptr;
/*
* Set initial log concentrations to zero
*/
iterations = -1;
solution_ptr = use.Get_solution_ptr();
for (i = 0; i < (int)this->s_x.size(); i++)
{
s_x[i]->lm = LOG_ZERO_MOLALITY;
s_x[i]->lg_pitzer = 0.0;
}
if (initial == TRUE || set_and_run_attempt > 0)
{
for (i = 0; i < (int)this->s_x.size(); i++)
{
s_x[i]->lg = 0.0;
}
}
/*
* Set master species activities
*/
tc_x = solution_ptr->Get_tc();
tk_x = tc_x + 273.15;
patm_x = solution_ptr->Get_patm(); // done in calc_rho_0(tc, pa)
potV_x = solution_ptr->Get_potV(); // added in DL_pitz
/*
* H+, e-, H2O
*/
mass_water_aq_x = solution_ptr->Get_mass_water();
mu_x = solution_ptr->Get_mu();
s_h2o->moles = mass_water_aq_x / gfw_water;
s_h2o->la = log10(solution_ptr->Get_ah2o());
AW = pow((LDBLE) 10.0, s_h2o->la);
s_hplus->la = -solution_ptr->Get_ph();
s_hplus->lm = s_hplus->la;
s_hplus->moles = exp(s_hplus->lm * LOG_10) * mass_water_aq_x;
s_eminus->la = -solution_ptr->Get_pe();
if (initial == TRUE)
pitzer_initial_guesses();
if (dl_type_x != cxxSurface::NO_DL)
initial_surface_water();
pitzer_revise_guesses();
return (OK);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer_initial_guesses(void)
/* ---------------------------------------------------------------------- */
{
/*
* Make initial guesses for activities of master species and
* ionic strength
*/
int i;
cxxSolution *solution_ptr;
solution_ptr = use.Get_solution_ptr();
mu_x =
s_hplus->moles +
exp((solution_ptr->Get_ph() - 14.) * LOG_10) * mass_water_aq_x;
mu_x /= mass_water_aq_x;
s_h2o->la = 0.0;
for (i = 0; i < count_unknowns; i++)
{
if (x[i] == ph_unknown || x[i] == pe_unknown)
continue;
if (x[i]->type < CB)
{
mu_x +=
x[i]->moles / mass_water_aq_x * 0.5 * x[i]->master[0]->s->z *
x[i]->master[0]->s->z;
x[i]->master[0]->s->la = log10(x[i]->moles / mass_water_aq_x);
}
else if (x[i]->type == CB)
{
x[i]->master[0]->s->la =
log10(0.001 * x[i]->moles / mass_water_aq_x);
}
else if (x[i]->type == SOLUTION_PHASE_BOUNDARY)
{
x[i]->master[0]->s->la =
log10(0.001 * x[i]->moles / mass_water_aq_x);
}
else if (x[i]->type == EXCH)
{
if (x[i]->moles <= 0)
{
x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY;
}
else
{
x[i]->master[0]->s->la = log10(x[i]->moles);
}
}
else if (x[i]->type == SURFACE)
{
if (x[i]->moles <= 0)
{
x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY;
}
else
{
x[i]->master[0]->s->la = log10(0.1 * x[i]->moles);
}
}
else if (x[i]->type == SURFACE_CB)
{
x[i]->master[0]->s->la = 0.0;
}
}
return (OK);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
pitzer_revise_guesses(void)
/* ---------------------------------------------------------------------- */
{
/*
* Revise molalities species
*/
int i;
int l_iter, max_iter, repeat, fail;
LDBLE weight, f;
max_iter = 100;
if (iterations < 0 && (use.Get_surface_in() || use.Get_exchange_in()))
gammas_pz(true); // DL_pitz : for SURF estimates
l_iter = 0;
repeat = TRUE;
fail = FALSE;
double d = 2;
double logd = log10(d);
while (repeat == TRUE && fail == FALSE)
{
l_iter++;
if (debug_set == TRUE)
{
output_msg(sformatf( "\nBeginning set iteration %d.\n",
l_iter));
}
if (l_iter == max_iter + 1)
{
log_msg(sformatf(
"Did not converge in set, iteration %d.\n",
iterations));
fail = TRUE;
}
if (l_iter > 2 * max_iter)
{
log_msg(sformatf(
"Did not converge with relaxed criteria in set.\n"));
return (OK);
}
molalities(TRUE);
/*pitzer(); */
/*s_h2o->la = 0.0; */
/*molalities(TRUE); */
mb_sums();
if (state < REACTION)
{
sum_species();
}
else
{
for (i = 0; i < count_unknowns; i++)
{
x[i]->sum = x[i]->f;
}
}
/*n
if (debug_set == TRUE) {
pr.species = TRUE;
pr.all = TRUE;
print_species();
}
*/
repeat = FALSE;
for (i = 0; i < count_unknowns; i++)
{
if (x[i] == ph_unknown || x[i] == pe_unknown)
continue;
if (x[i]->type == MB ||
/* x[i]->type == ALK || */
x[i]->type == CB ||
x[i]->type == SOLUTION_PHASE_BOUNDARY ||
x[i]->type == EXCH || x[i]->type == SURFACE)
{
if (debug_set == TRUE)
{
output_msg(sformatf(
"\n\t%5s at beginning of set %d: %e\t%e\t%e\n",
x[i]->description, l_iter, (double) x[i]->sum,
(double) x[i]->moles,
(double) x[i]->master[0]->s->la));
}
if (fabs(x[i]->moles) < 1e-30)
x[i]->moles = 0;
f = fabs(x[i]->sum);
if (f == 0 && x[i]->moles == 0)
{
x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY;
continue;
}
else if (f == 0)
{
repeat = TRUE;
x[i]->master[0]->s->la += logd;
if (x[i]->master[0]->s->la < -999.)
x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY;
}
else if (f > d * fabs(x[i]->moles)
|| f < 1.0/d * fabs(x[i]->moles))
{
weight = (f < 1.0/d * fabs(x[i]->moles)) ? 0.3 : 1.0;
if (x[i]->moles <= 0)
{
x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY;
}
else
{
repeat = TRUE;
x[i]->master[0]->s->la +=
weight * log10(fabs(x[i]->moles / x[i]->sum));
}
if (debug_set == TRUE)
{
output_msg(sformatf(
"\t%5s not converged in set %d: %e\t%e\t%e\n",
x[i]->description, l_iter,
(double) x[i]->sum, (double) x[i]->moles,
(double) x[i]->master[0]->s->la));
}
}
}
else if (x[i]->type == ALK)
{
f = total_co2;
if (fail == TRUE && f < 1.5 * fabs(x[i]->moles))
{
continue;
}
if (f > 1.5 * fabs(x[i]->moles)
|| f < 1.0/d * fabs(x[i]->moles))
{
repeat = TRUE;
weight = (f < 1.0/d * fabs(x[i]->moles)) ? 0.3 : 1.0;
x[i]->master[0]->s->la += weight *
log10(fabs(x[i]->moles / x[i]->sum));
if (debug_set == TRUE)
{
output_msg(sformatf(
"%s not converged in set. %e\t%e\t%e\n",
x[i]->description, (double) x[i]->sum,
(double) x[i]->moles,
(double) x[i]->master[0]->s->la));
}
}
}
}
}
log_msg(sformatf( "Iterations in pitzer_revise_guesses: %d\n", l_iter));
/*mu_x = mu_unknown->f * 0.5 / mass_water_aq_x; */
if (mu_x <= 1e-8)
{
mu_x = 1e-8;
}
return (OK);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
jacobian_pz(void)
/* ---------------------------------------------------------------------- */
{ // calculate the derivatives numerically
std::vector<double> base;
std::vector<class phase*> phase_ptrs;
std::vector<class phase> base_phases;
cxxGasPhase base_gas_phase;
cxxSurface base_surface;
LDBLE d, d1, d2;
int i, j;
Restart:
if (use.Get_surface_ptr() != NULL)
{
base_surface = *use.Get_surface_ptr();
}
if (use.Get_gas_phase_ptr() != NULL)
{
cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr();
base_gas_phase = *gas_phase_ptr;
base_phases.resize(gas_phase_ptr->Get_gas_comps().size());
for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++)
{
const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]);
class phase* phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE);
phase_ptrs.push_back(phase_ptr);
base_phases[i] = *phase_ptr;
}
}
calculating_deriv = 1;
molalities(TRUE);
if (full_pitzer == TRUE)
{
pitzer();
}
mb_sums();
residuals();
size_t pz_max_unknowns = max_unknowns;
base.resize(count_unknowns);
for (i = 0; i < count_unknowns; i++)
{
base[i] = residual[i];
}
d = 0.0001;
d1 = d * LOG_10;
d2 = 0;
for (i = 0; i < count_unknowns; i++)
{
switch (x[i]->type)
{
case MB:
case ALK:
case CB:
case SOLUTION_PHASE_BOUNDARY:
case EXCH:
case SURFACE:
case SURFACE_CB:
case SURFACE_CB1:
case SURFACE_CB2:
x[i]->master[0]->s->la += d;
//d2 = d1;
d2 = d * LOG_10;
break;
case AH2O:
x[i]->master[0]->s->la += d;
//d2 = d1;
d2 = d * LOG_10;
break;
case PITZER_GAMMA:
if (!full_pitzer)
continue;
x[i]->s->lg += d;
d2 = d;
break;
case MH2O:
//mass_water_aq_x *= (1 + d);
//x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water;
//d2 = log(1.0 + d);
//break;
// DL_pitz
d1 = mass_water_aq_x * d;
mass_water_aq_x += d1;
if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL)
mass_water_bulk_x += d1;
x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water;
//d2 = log(1.0 + d);
d2 = d1;
break;
case MH:
if (pitzer_pe == TRUE)
{
s_eminus->la += d;
//d2 = d1;
d2 = d * LOG_10;
break;
}
else
{
continue;
}
case GAS_MOLES:
if (gas_in == FALSE)
continue;
d2 = (x[i]->moles > 1 ? 1 : 30);
d2 *= d * x[i]->moles;
d2 = (d2 < ineq_tol ? ineq_tol : d2);
//if (d2 < 1e-14)
// d2 = 1e-14;
x[i]->moles += d2;
break;
case MU:
//continue;
d2 = d * mu_x;
mu_x += d2;
//k_temp(tc_x, patm_x);
gammas_pz(false);
break;
case PP:
continue;
break;
case SS_MOLES:
//continue;
//break;
if (x[i]->ss_in == FALSE)
continue;
for (j = 0; j < count_unknowns; j++)
{
delta[j] = 0.0;
}
d2 = d * 10 * x[i]->moles;
delta[i] = d2;
reset();
d2 = delta[i];
break;
}
molalities(TRUE);
if (max_unknowns > pz_max_unknowns)
{
base.clear();
gammas_pz(false);
jacobian_sums();
goto Restart;
}
if (full_pitzer == TRUE)
pitzer();
mb_sums();
residuals();
for (j = 0; j < count_unknowns; j++)
{
my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2;
if (x[i]->type == MH2O) // DL_pitz
my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x;
}
switch (x[i]->type)
{
case MB:
case ALK:
case CB:
case SOLUTION_PHASE_BOUNDARY:
case EXCH:
case SURFACE:
case SURFACE_CB:
case SURFACE_CB1:
case SURFACE_CB2:
case AH2O:
x[i]->master[0]->s->la -= d;
break;
case MH:
s_eminus->la -= d;
if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0)
{
my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] =
exp(s_h2->lm * LOG_10) * 2;
}
break;
case PITZER_GAMMA:
x[i]->s->lg -= d;
break;
case MH2O:
//mass_water_aq_x /= (1 + d);
//x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water;
//break;
//DL_pitz
mass_water_aq_x -= d1;
if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL)
mass_water_bulk_x -= d1;
x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water;
break;
case MU:
mu_x -= d2;
//k_temp(tc_x, patm_x);
gammas_pz(false);
break;
case GAS_MOLES:
if (gas_in == FALSE)
continue;
x[i]->moles -= d2;
break;
case SS_MOLES:
delta[i] = -d2;
reset();
break;
}
if (use.Get_surface_ptr() != NULL)
{
*use.Get_surface_ptr() = base_surface;
}
if (use.Get_gas_phase_ptr() != NULL)
{
*use.Get_gas_phase_ptr() = base_gas_phase;
for (size_t g = 0; g < base_phases.size(); g++)
{
*phase_ptrs[g] = base_phases[g];
}
}
//molalities(TRUE);
//if (full_pitzer == TRUE)
// pitzer();
//mb_sums();
//residuals();
}
molalities(TRUE);
if (full_pitzer == TRUE)
pitzer();
mb_sums();
residuals();
//for (i = 0; i < count_unknowns; i++)
//{
// //Debugging
// if (fabs(2.0 * (residual[i] - base[i]) / (residual[i] + base[i])) > 1e-2 &&
// fabs(residual[i]) + fabs(base[i]) > 1e-6)
// {
// std::cerr << iterations << ": " << x[i]->description << " " << residual[i] << " " << base[i] << std::endl;
// }
//}
base.clear();
calculating_deriv = 0;
return OK;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
model_pz(void)
/* ---------------------------------------------------------------------- */
{
/*
* model is called after the equations have been set up by prep
* and initial guesses have been made in set.
*
* Here is the outline of the calculation sequence:
* residuals--residuals are calculated, if small we are done
* sum_jacobian--jacobian is calculated
* ineq--inequality solver is called
* reset--estimates of unknowns revised, if changes are small solution
* has been found, usually convergence is found in residuals.
* gammas--new activity coefficients
* molalities--calculate molalities
* mb_sums--calculate mass-balance sums
* mb_gases--decide if gas_phase exists
* mb_ss--decide if solid_solutions exists
* switch_bases--check to see if new basis species is needed
* reprep--rewrite equations with new basis species if needed
* pitzer_revise_guesses--revise unknowns to get initial mole balance
* check_residuals--check convergence one last time
* sum_species--calculate sums of elements from species concentrations
*
* An additional pass through may be needed if unstable phases still exist
* in the phase assemblage.
*/
int l_kode, return_kode;
int r;
int count_infeasible, count_basis_change;
int debug_model_save;
int mass_water_switch_save;
/* debug_model = TRUE; */
/* debug_prep = TRUE; */
/* debug_set = TRUE; */
/* mass_water_switch == TRUE, mass of water is constant */
mass_water_switch_save = mass_water_switch;
if (mass_water_switch_save == FALSE && delay_mass_water == TRUE)
{
mass_water_switch = TRUE;
}
debug_model_save = debug_model;
pe_step_size_now = pe_step_size;
step_size_now = step_size;
#ifdef NPP
if (!use.Get_kinetics_in()) status(0, NULL);
#else
status(0, NULL);
#endif
iterations = 0;
gamma_iterations = 0;
count_basis_change = count_infeasible = 0;
stop_program = FALSE;
remove_unstable_phases = FALSE;
if (always_full_pitzer == TRUE)
{
full_pitzer = TRUE;
}
else
{
full_pitzer = FALSE;
}
#if defined(PITZER_LISTS)
//pitzer_make_lists();
#endif
for (;;)
{
mb_gases();
mb_ss();
l_kode = 1;
while ((r = residuals()) != CONVERGED
|| remove_unstable_phases == TRUE)
{
#if defined(PHREEQCI_GUI)
PhreeqcIWait(this);
#endif
iterations++;
overall_iterations++;
if (iterations > itmax - 1 && debug_model == FALSE
&& pr.logfile == TRUE)
{
set_forward_output_to_log(TRUE);
debug_model = TRUE;
}
if (debug_model == TRUE)
{
output_msg(sformatf(
"\nIteration %d\tStep_size = %f\n", iterations,
(double) step_size_now));
output_msg(sformatf( "\t\tPe_step_size = %f\n\n",
(double) pe_step_size_now));
}
/*
* Iterations exceeded
*/
if (iterations > itmax)
{
error_string = sformatf( "Maximum iterations exceeded, %d\n",
itmax);
warning_msg(error_string);
stop_program = TRUE;
break;
}
/*
* Calculate jacobian
*/
gammas_pz(false); // appt: no gammas_a_f here
jacobian_sums();
jacobian_pz();
/*
* Full matrix with pure phases
*/
if (r == OK || remove_unstable_phases == TRUE)
{
return_kode = ineq(l_kode);
if (return_kode != OK)
{
if (debug_model == TRUE)
{
output_msg(sformatf(
"Ineq had infeasible solution, "
"kode %d, iteration %d\n", return_kode,
iterations));
}
log_msg(sformatf( "Ineq had infeasible solution, "
"kode %d, iteration %d\n", return_kode,
iterations));
count_infeasible++;
}
if (return_kode == 2)
{
ineq(0);
}
reset();
}
// appt calculate gammas_a_f here
gammas_pz(true);
if (full_pitzer == TRUE)
pitzer();
if (always_full_pitzer == TRUE)
{
full_pitzer = TRUE;
}
else
{
full_pitzer = FALSE;
}
if (molalities(FALSE) == ERROR)
{
pitzer_revise_guesses();
}
if (use.Get_surface_ptr() != NULL &&
use.Get_surface_ptr()->Get_dl_type() != cxxSurface::NO_DL &&
use.Get_surface_ptr()->Get_related_phases())
initial_surface_water();
mb_sums();
mb_gases();
mb_ss();
/*
* Switch bases if necessary
*/
if (switch_bases() == TRUE)
{
count_basis_change++;
count_unknowns -= (int)this->s_x.size();
reprep();
full_pitzer = false;
}
//debug
//species_list_sort();
//sum_species();
//print_species();
//print_exchange();
//print_surface();
if (stop_program == TRUE)
{
break;
}
}
/*
* Check for stop_program
*/
if (stop_program == TRUE)
{
break;
}
if (check_residuals() == ERROR)
{
stop_program = TRUE;
break;
}
/* remove_unstable_phases is set in check_residuals */
if (remove_unstable_phases == FALSE && mass_water_switch_save == FALSE
&& mass_water_switch == TRUE)
{
log_msg(sformatf(
"\nChanging water switch to FALSE. Iteration %d.\n",
iterations));
mass_water_switch = FALSE;
continue;
}
gamma_iterations++;
if (gamma_iterations > itmax)
{
error_string = sformatf( "Maximum gamma iterations exceeded, %d\n",
itmax);
warning_msg(error_string);
stop_program = TRUE;
break;
}
if (check_gammas_pz() != TRUE)
{
full_pitzer = TRUE;
continue;
}
if (remove_unstable_phases == FALSE)
break;
if (debug_model == TRUE)
{
output_msg(sformatf(
"\nRemoving unstable phases. Iteration %d.\n",
iterations));
}
log_msg(sformatf( "\nRemoving unstable phases. Iteration %d.\n",
iterations));
}
log_msg(sformatf( "\nNumber of infeasible solutions: %d\n",
count_infeasible));
log_msg(sformatf( "Number of basis changes: %d\n\n",
count_basis_change));
log_msg(sformatf( "Number of iterations: %d\n", iterations));
log_msg(sformatf( "Number of gamma iterations: %d\n\n", gamma_iterations));
debug_model = debug_model_save;
set_forward_output_to_log(FALSE);
if (stop_program == TRUE)
{
return (ERROR);
}
return (OK);
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
check_gammas_pz(void)
/* ---------------------------------------------------------------------- */
{
LDBLE /*old_aw,*/ old_mu, tol;
int converge, i;
old_mu = mu_x;
pitzer();
molalities(TRUE);
mb_sums();
converge = TRUE;
tol = convergence_tolerance * 10.;
for (i = 0; i < count_unknowns; i++)
{
if (x[i]->type != PITZER_GAMMA)
continue;
if (fabs(x[i]->s->lg - x[i]->s->lg_pitzer) > tol)
{
converge = FALSE;
}
}
if (fabs(old_mu - mu_x) > tol)
converge = FALSE;
if ((pow((LDBLE) 10.0, s_h2o->la) - AW) > tol)
converge = FALSE;
return converge;
}
/* ---------------------------------------------------------------------- */
int Phreeqc::
gammas_pz(bool exch_a_f)
/* ---------------------------------------------------------------------- */
{
/*
* Need exchange gammas for pitzer
*/
int i, j;
LDBLE coef, equiv;
/* Initialize */
k_temp(tc_x, patm_x);
/*
* Calculate activity coefficients
*/
for (i = 0; i < (int)this->s_x.size(); i++)
{
switch (s_x[i]->gflag)
{
case 0: /* uncharged */
case 1: /* Davies */
case 2: /* Extended D-H, WATEQ D-H */
case 3: /* Always 1.0 */
break;
case 4: /* Exchange */
/* Now calculated in next loop */
break;
case 5: /* Always 1.0 */
break;
case 6: /* Surface */
/*
* Find moles of sites.
* s_x[i]->equiv is stoichiometric coefficient of sites in species
*/
for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++)
{
if (s_x[i]->rxn_x.token[j].s->type == SURF)
{
s_x[i]->alk =
s_x[i]->rxn_x.token[j].s->primary->unknown->moles;
break;
}
}
if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) // DL_pitz
{
/* mole fraction */
equiv = 1.0;
}
else
{
equiv = s_x[i]->equiv;
}
if (s_x[i]->alk > 0)
{
s_x[i]->lg = log10(equiv / s_x[i]->alk);
s_x[i]->dg = 0.0;
}
else
{
s_x[i]->lg = 0.0;
s_x[i]->dg = 0.0;
}
break;
case 7: /* LLNL */
break;
case 8: /* LLNL CO2 */
break;
case 9: /* activity water */
s_x[i]->lg = log10(exp(s_h2o->la * LOG_10) * gfw_water);
s_x[i]->dg = 0.0;
break;
}
/*
if (mu_unknown != NULL) {
if (fabs(residual[mu_unknown->number]) > 0.1 &&
fabs(residual[mu_unknown->number])/mu_x > 0.5) {
s_x[i]->dg = 0.0;
}
}
*/
}
/*
* calculate exchange gammas
*/
if (use.Get_exchange_ptr() != NULL && exch_a_f) // appt for gammas_a_f
{
for (i = 0; i < (int)this->s_x.size(); i++)
{
switch (s_x[i]->gflag)
{
case 0: /* uncharged */
case 1: /* Davies */
case 2: /* Extended D-H, WATEQ D-H */
case 3: /* Always 1.0 */
case 5: /* Always 1.0 */
case 6: /* Surface */
case 7: /* LLNL */
case 8: /* LLNL CO2 */
case 9: /* activity water */
break;
case 4: /* Exchange */
/*
* Find CEC
* z contains valence of cation for exchange species, alk contains cec
*/
for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++)
{
if (s_x[i]->rxn_x.token[j].s->type == EX)
{
s_x[i]->alk = s_x[i]->rxn_x.token[j].s->primary->unknown->moles;
break;
}
}
/*
* Master species is a dummy variable with meaningless activity and mass
*/
s_x[i]->lg = 0.0;
s_x[i]->dg = 0.0;
if (s_x[i]->primary != NULL)
{
break;
}
/*
* All other species
*/
/* modific 29 july 2005... */
if (s_x[i]->equiv != 0 && s_x[i]->alk > 0)
{
s_x[i]->lg = log10(fabs(s_x[i]->equiv) / s_x[i]->alk);
}
if (use.Get_exchange_ptr()->Get_pitzer_exchange_gammas())
{
/* Assume equal gamma's of solute and exchangeable species... */
for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++)
{
if (s_x[i]->rxn_x.token[j].s->type == EX)
continue;
coef = s_x[i]->rxn_x.token[j].coef;
s_x[i]->lg += coef * s_x[i]->rxn_x.token[j].s->lg;
}
}
if (s_x[i]->a_f && s_x[i]->primary == NULL && s_x[i]->moles)
gammas_a_f(i); // appt
}
}
}
/* ...end modific 29 july 2005 */
return (OK);
}
/* ---------------------------------------------------------------------- */
void Phreeqc::
pitzer_make_lists(void)
/* ---------------------------------------------------------------------- */
{
double log_min = log10(MIN_TOTAL);
s_list.clear();
cation_list.clear();
neutral_list.clear();
anion_list.clear();
ion_list.clear();
param_list.clear();
OTEMP = -100.0;
for (int j = 0; j < 3; j++)
{
int min, max;
switch (j)
{
case 0:
min = 0;
max = count_cations;
break;
case 1:
min = (int)s.size();
max = (int)s.size() + count_neutrals;
break;
case 2:
min = 2* (int)s.size();
max = 2* (int)s.size() + count_anions;
break;
}
for (int i = min; i < max; i++)
{
IPRSNT[i] = FALSE;
M[i] = 0.0;
if ((spec[i] != NULL && spec[i]->in == TRUE) ||
(ICON == TRUE && i == IC))
{
if (spec[i]->type == EX ||
spec[i]->type == SURF || spec[i]->type == SURF_PSI)
continue;
IPRSNT[i] = TRUE;
s_list.push_back(i);
if (i < (int)s.size())
{
cation_list.push_back(i);
}
if (i >= (int)s.size() && i < 2* (int)s.size())
{
neutral_list.push_back(i);
}
if (i >= 2* (int)s.size())
{
anion_list.push_back(i);
}
if (i < (int)s.size() || i >= 2* (int)s.size())
{
ion_list.push_back(i);
}
if (spec[i]->lm > log_min)
{
M[i] = under(spec[i]->lm);
}
}
}
}
if (ICON == TRUE)
{
IPRSNT[IC] = TRUE;
}
for (int i = 0; i < (int)pitz_params.size(); i++)
{
/*
TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMBDA, TYPE_ZETA,
TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other,
TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI, TYPE_SIT_EPSILON2
*/
int i0 = pitz_params[i]->ispec[0];
int i1 = pitz_params[i]->ispec[1];
if (IPRSNT[i0] == FALSE || IPRSNT[i1] == FALSE) continue;
int i2 = pitz_params[i]->ispec[2];
if (pitz_params[i]->type == TYPE_PSI ||
pitz_params[i]->type == TYPE_ZETA ||
pitz_params[i]->type == TYPE_MU ||
pitz_params[i]->type == TYPE_ETA)
{
if (IPRSNT[i2] == FALSE)
continue;
}
param_list.push_back(i);
}
}