mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-16 00:28:23 +01:00
1498 lines
29 KiB
Plaintext
1498 lines
29 KiB
Plaintext
# $Id: phreeqc.dat 3428 2009-03-23 16:31:34Z dlpark $
|
|
SOLUTION_MASTER_SPECIES
|
|
#
|
|
#element species alk gfw_formula element_gfw
|
|
#
|
|
H H+ -1. H 1.008
|
|
H(0) H2 0.0 H
|
|
H(1) H+ -1. 0.0
|
|
E e- 0.0 0.0 0.0
|
|
O H2O 0.0 O 16.00
|
|
O(0) O2 0.0 O
|
|
O(-2) H2O 0.0 0.0
|
|
Ca Ca+2 0.0 Ca 40.08
|
|
Mg Mg+2 0.0 Mg 24.312
|
|
Na Na+ 0.0 Na 22.9898
|
|
K K+ 0.0 K 39.102
|
|
Fe Fe+2 0.0 Fe 55.847
|
|
Fe(+2) Fe+2 0.0 Fe
|
|
Fe(+3) Fe+3 -2.0 Fe
|
|
Mn Mn+2 0.0 Mn 54.938
|
|
Mn(+2) Mn+2 0.0 Mn
|
|
Mn(+3) Mn+3 0.0 Mn
|
|
Al Al+3 0.0 Al 26.9815
|
|
Ba Ba+2 0.0 Ba 137.34
|
|
Sr Sr+2 0.0 Sr 87.62
|
|
Si H4SiO4 0.0 SiO2 28.0843
|
|
Cl Cl- 0.0 Cl 35.453
|
|
C CO3-2 2.0 HCO3 12.0111
|
|
C(+4) CO3-2 2.0 HCO3
|
|
C(-4) CH4 0.0 CH4
|
|
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
|
|
S SO4-2 0.0 SO4 32.064
|
|
S(6) SO4-2 0.0 SO4
|
|
S(-2) HS- 1.0 S
|
|
N NO3- 0.0 N 14.0067
|
|
N(+5) NO3- 0.0 N
|
|
N(+3) NO2- 0.0 N
|
|
N(0) N2 0.0 N
|
|
N(-3) NH4+ 0.0 N
|
|
B H3BO3 0.0 B 10.81
|
|
P PO4-3 2.0 P 30.9738
|
|
F F- 0.0 F 18.9984
|
|
Li Li+ 0.0 Li 6.939
|
|
Br Br- 0.0 Br 79.904
|
|
Zn Zn+2 0.0 Zn 65.37
|
|
Cd Cd+2 0.0 Cd 112.4
|
|
Pb Pb+2 0.0 Pb 207.19
|
|
Cu Cu+2 0.0 Cu 63.546
|
|
Cu(+2) Cu+2 0.0 Cu
|
|
Cu(+1) Cu+1 0.0 Cu
|
|
|
|
SOLUTION_SPECIES
|
|
|
|
H+ = H+
|
|
log_k 0.000
|
|
-gamma 9.0000 0.0000
|
|
-dw 9.31e-9
|
|
e- = e-
|
|
log_k 0.000
|
|
|
|
H2O = H2O
|
|
log_k 0.000
|
|
|
|
Ca+2 = Ca+2
|
|
log_k 0.000
|
|
-gamma 5.0000 0.1650
|
|
-dw 0.793e-9
|
|
-millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262
|
|
Mg+2 = Mg+2
|
|
log_k 0.000
|
|
-gamma 5.5000 0.2000
|
|
-dw 0.705e-9
|
|
-millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457
|
|
Na+ = Na+
|
|
log_k 0.000
|
|
-gamma 4.0000 0.0750
|
|
-dw 1.33e-9
|
|
-millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651
|
|
K+ = K+
|
|
log_k 0.000
|
|
-gamma 3.5000 0.0150
|
|
-dw 1.96e-9
|
|
-millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151
|
|
Fe+2 = Fe+2
|
|
log_k 0.000
|
|
-gamma 6.0000 0.0000
|
|
-dw 0.719e-9
|
|
Mn+2 = Mn+2
|
|
log_k 0.000
|
|
-gamma 6.0000 0.0000
|
|
-dw 0.688e-9
|
|
Al+3 = Al+3
|
|
log_k 0.000
|
|
-gamma 9.0000 0.0000
|
|
-dw 0.559e-9
|
|
Ba+2 = Ba+2
|
|
log_k 0.000
|
|
-gamma 5.0000 0.0000
|
|
-dw 0.848e-9
|
|
Sr+2 = Sr+2
|
|
log_k 0.000
|
|
-gamma 5.2600 0.1210
|
|
-dw 0.794e-9
|
|
-millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084
|
|
H4SiO4 = H4SiO4
|
|
log_k 0.000
|
|
-dw 1.10e-9
|
|
-millero 56.0 # b, c, d, e and f not reported by Millero, 2000
|
|
Cl- = Cl-
|
|
log_k 0.000
|
|
-gamma 3.5000 0.0150
|
|
-dw 2.03e-9
|
|
-millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621
|
|
CO3-2 = CO3-2
|
|
log_k 0.000
|
|
-gamma 5.4000 0.0000
|
|
-dw 0.955e-9
|
|
-millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000
|
|
SO4-2 = SO4-2
|
|
log_k 0.000
|
|
-gamma 5.0000 -0.0400
|
|
-dw 1.07e-9
|
|
-millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05
|
|
NO3- = NO3-
|
|
log_k 0.000
|
|
-gamma 3.0000 0.0000
|
|
-dw 1.9e-9
|
|
-millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000
|
|
H3BO3 = H3BO3
|
|
log_k 0.000
|
|
-dw 1.1e-9
|
|
-millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000
|
|
PO4-3 = PO4-3
|
|
log_k 0.000
|
|
-gamma 4.0000 0.0000
|
|
-dw 0.612e-9
|
|
F- = F-
|
|
log_k 0.000
|
|
-gamma 3.5000 0.0000
|
|
-dw 1.46e-9
|
|
-millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05
|
|
Li+ = Li+
|
|
log_k 0.000
|
|
-gamma 6.0000 0.0000
|
|
-dw 1.03e-9
|
|
Br- = Br-
|
|
log_k 0.000
|
|
-gamma 3.0000 0.0000
|
|
-dw 2.01e-9
|
|
-millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105
|
|
Zn+2 = Zn+2
|
|
log_k 0.000
|
|
-gamma 5.0000 0.0000
|
|
-dw 0.715e-9
|
|
Cd+2 = Cd+2
|
|
log_k 0.000
|
|
-dw 0.717e-9
|
|
Pb+2 = Pb+2
|
|
log_k 0.000
|
|
-dw 0.945e-9
|
|
Cu+2 = Cu+2
|
|
log_k 0.000
|
|
-gamma 6.0000 0.0000
|
|
-dw 0.733e-9
|
|
H2O = OH- + H+
|
|
log_k -14.000
|
|
delta_h 13.362 kcal
|
|
-analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
|
|
-gamma 3.5000 0.0000
|
|
-dw 5.27e-9
|
|
2 H2O = O2 + 4 H+ + 4 e-
|
|
log_k -86.08
|
|
delta_h 134.79 kcal
|
|
-dw 2.35e-9
|
|
2 H+ + 2 e- = H2
|
|
log_k -3.15
|
|
delta_h -1.759 kcal
|
|
-dw 5.1e-9
|
|
CO3-2 + H+ = HCO3-
|
|
log_k 10.329
|
|
delta_h -3.561 kcal
|
|
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
|
-gamma 5.4000 0.0000
|
|
-dw 1.18e-9
|
|
-millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06
|
|
CO3-2 + 2 H+ = CO2 + H2O
|
|
log_k 16.681
|
|
delta_h -5.738 kcal
|
|
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
|
-dw 1.92e-9
|
|
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
|
log_k 41.071
|
|
delta_h -61.039 kcal
|
|
-dw 1.85e-9
|
|
SO4-2 + H+ = HSO4-
|
|
log_k 1.988
|
|
delta_h 3.85 kcal
|
|
-analytic -56.889 0.006473 2307.9 19.8858 0.0
|
|
-dw 1.33e-9
|
|
HS- = S-2 + H+
|
|
log_k -12.918
|
|
delta_h 12.1 kcal
|
|
-gamma 5.0000 0.0000
|
|
-dw 0.731e-9
|
|
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
|
log_k 33.65
|
|
delta_h -60.140 kcal
|
|
-gamma 3.5000 0.0000
|
|
-dw 1.73e-9
|
|
HS- + H+ = H2S
|
|
log_k 6.994
|
|
delta_h -5.300 kcal
|
|
-analytical -11.17 0.02386 3279.0
|
|
-dw 2.1e-9
|
|
|
|
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
|
log_k 28.570
|
|
delta_h -43.760 kcal
|
|
-gamma 3.0000 0.0000
|
|
-dw 1.91e-9
|
|
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
|
log_k 207.080
|
|
delta_h -312.130 kcal
|
|
-dw 1.96e-9
|
|
NH4+ = NH3 + H+
|
|
log_k -9.252
|
|
delta_h 12.48 kcal
|
|
-analytic 0.6322 -0.001225 -2835.76
|
|
-dw 2.28e-9
|
|
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
|
|
log_k 119.077
|
|
delta_h -187.055 kcal
|
|
-gamma 2.5000 0.0000
|
|
-dw 1.98e-9
|
|
-millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported
|
|
NH4+ + SO4-2 = NH4SO4-
|
|
log_k 1.11
|
|
|
|
H3BO3 = H2BO3- + H+
|
|
log_k -9.240
|
|
delta_h 3.224 kcal
|
|
# -analytical 24.3919 0.012078 -1343.9 -13.2258
|
|
|
|
H3BO3 + F- = BF(OH)3-
|
|
log_k -0.400
|
|
delta_h 1.850 kcal
|
|
|
|
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
|
|
log_k 7.63
|
|
delta_h 1.618 kcal
|
|
|
|
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
|
|
log_k 13.67
|
|
delta_h -1.614 kcal
|
|
|
|
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
|
|
log_k 20.28
|
|
delta_h -1.846 kcal
|
|
|
|
PO4-3 + H+ = HPO4-2
|
|
log_k 12.346
|
|
delta_h -3.530 kcal
|
|
-gamma 4.0000 0.0000
|
|
-dw 0.69e-9
|
|
PO4-3 + 2 H+ = H2PO4-
|
|
log_k 19.553
|
|
delta_h -4.520 kcal
|
|
-gamma 4.5000 0.0000
|
|
-dw 0.846e-9
|
|
-millero 33.6 # b, c, d, e and f not reported by Millero, 2000
|
|
H+ + F- = HF
|
|
log_k 3.18
|
|
delta_h 3.18 kcal
|
|
-analytic -2.033 0.012645 429.01
|
|
|
|
H+ + 2 F- = HF2-
|
|
log_k 3.760
|
|
delta_h 4.550 kcal
|
|
|
|
Ca+2 + H2O = CaOH+ + H+
|
|
log_k -12.780
|
|
|
|
Ca+2 + CO3-2 = CaCO3
|
|
log_k 3.224
|
|
delta_h 3.545 kcal
|
|
-analytic -1228.732 -0.299440 35512.75 485.818
|
|
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
|
Ca+2 + CO3-2 + H+ = CaHCO3+
|
|
log_k 11.435
|
|
delta_h -0.871 kcal
|
|
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
|
|
-gamma 5.4000 0.0000
|
|
-dw 5.06e-10
|
|
Ca+2 + SO4-2 = CaSO4
|
|
log_k 2.300
|
|
delta_h 1.650 kcal
|
|
-dw 4.71e-10
|
|
Ca+2 + HSO4- = CaHSO4+
|
|
log_k 1.08
|
|
|
|
Ca+2 + PO4-3 = CaPO4-
|
|
log_k 6.459
|
|
delta_h 3.100 kcal
|
|
|
|
Ca+2 + HPO4-2 = CaHPO4
|
|
log_k 2.739
|
|
delta_h 3.3 kcal
|
|
|
|
Ca+2 + H2PO4- = CaH2PO4+
|
|
log_k 1.408
|
|
delta_h 3.4 kcal
|
|
|
|
Ca+2 + F- = CaF+
|
|
log_k 0.940
|
|
delta_h 4.120 kcal
|
|
|
|
Mg+2 + H2O = MgOH+ + H+
|
|
log_k -11.440
|
|
delta_h 15.952 kcal
|
|
|
|
Mg+2 + CO3-2 = MgCO3
|
|
log_k 2.98
|
|
delta_h 2.713 kcal
|
|
-analytic 0.9910 0.00667
|
|
|
|
Mg+2 + H+ + CO3-2 = MgHCO3+
|
|
log_k 11.399
|
|
delta_h -2.771 kcal
|
|
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
|
|
|
|
Mg+2 + SO4-2 = MgSO4
|
|
log_k 2.370
|
|
delta_h 4.550 kcal
|
|
|
|
Mg+2 + PO4-3 = MgPO4-
|
|
log_k 6.589
|
|
delta_h 3.100 kcal
|
|
|
|
Mg+2 + HPO4-2 = MgHPO4
|
|
log_k 2.87
|
|
delta_h 3.3 kcal
|
|
|
|
Mg+2 + H2PO4- = MgH2PO4+
|
|
log_k 1.513
|
|
delta_h 3.4 kcal
|
|
|
|
Mg+2 + F- = MgF+
|
|
log_k 1.820
|
|
delta_h 3.200 kcal
|
|
|
|
Na+ + H2O = NaOH + H+
|
|
log_k -14.180
|
|
|
|
Na+ + CO3-2 = NaCO3-
|
|
log_k 1.270
|
|
delta_h 8.910 kcal
|
|
-dw 5.85e-10
|
|
Na+ + HCO3- = NaHCO3
|
|
log_k -0.25
|
|
-dw 6.73e-10
|
|
Na+ + SO4-2 = NaSO4-
|
|
log_k 0.7
|
|
delta_h 1.120 kcal
|
|
-dw 6.18e-10
|
|
Na+ + HPO4-2 = NaHPO4-
|
|
log_k 0.29
|
|
|
|
Na+ + F- = NaF
|
|
log_k -0.240
|
|
|
|
K+ + H2O = KOH + H+
|
|
log_k -14.460
|
|
|
|
K+ + SO4-2 = KSO4-
|
|
log_k 0.850
|
|
delta_h 2.250 kcal
|
|
-analytical 3.106 0.0 -673.6
|
|
-dw 7.46e-10
|
|
|
|
K+ + HPO4-2 = KHPO4-
|
|
log_k 0.29
|
|
|
|
Fe+2 + H2O = FeOH+ + H+
|
|
log_k -9.500
|
|
delta_h 13.200 kcal
|
|
|
|
Fe+2 + Cl- = FeCl+
|
|
log_k 0.140
|
|
|
|
Fe+2 + CO3-2 = FeCO3
|
|
log_k 4.380
|
|
|
|
Fe+2 + HCO3- = FeHCO3+
|
|
log_k 2.0
|
|
|
|
Fe+2 + SO4-2 = FeSO4
|
|
log_k 2.250
|
|
delta_h 3.230 kcal
|
|
|
|
Fe+2 + HSO4- = FeHSO4+
|
|
log_k 1.08
|
|
|
|
Fe+2 + 2HS- = Fe(HS)2
|
|
log_k 8.95
|
|
|
|
Fe+2 + 3HS- = Fe(HS)3-
|
|
log_k 10.987
|
|
|
|
Fe+2 + HPO4-2 = FeHPO4
|
|
log_k 3.6
|
|
|
|
Fe+2 + H2PO4- = FeH2PO4+
|
|
log_k 2.7
|
|
|
|
Fe+2 + F- = FeF+
|
|
log_k 1.000
|
|
|
|
Fe+2 = Fe+3 + e-
|
|
log_k -13.020
|
|
delta_h 9.680 kcal
|
|
-gamma 9.0000 0.0000
|
|
|
|
Fe+3 + H2O = FeOH+2 + H+
|
|
log_k -2.19
|
|
delta_h 10.4 kcal
|
|
|
|
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
|
|
log_k -5.67
|
|
delta_h 17.1 kcal
|
|
|
|
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
|
|
log_k -12.56
|
|
delta_h 24.8 kcal
|
|
|
|
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
|
|
log_k -21.6
|
|
delta_h 31.9 kcal
|
|
|
|
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
|
|
log_k -2.95
|
|
delta_h 13.5 kcal
|
|
|
|
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
|
|
log_k -6.3
|
|
delta_h 14.3 kcal
|
|
|
|
Fe+3 + Cl- = FeCl+2
|
|
log_k 1.48
|
|
delta_h 5.6 kcal
|
|
|
|
Fe+3 + 2 Cl- = FeCl2+
|
|
log_k 2.13
|
|
|
|
Fe+3 + 3 Cl- = FeCl3
|
|
log_k 1.13
|
|
|
|
Fe+3 + SO4-2 = FeSO4+
|
|
log_k 4.04
|
|
delta_h 3.91 kcal
|
|
|
|
Fe+3 + HSO4- = FeHSO4+2
|
|
log_k 2.48
|
|
|
|
Fe+3 + 2 SO4-2 = Fe(SO4)2-
|
|
log_k 5.38
|
|
delta_h 4.60 kcal
|
|
|
|
Fe+3 + HPO4-2 = FeHPO4+
|
|
log_k 5.43
|
|
delta_h 5.76 kcal
|
|
|
|
Fe+3 + H2PO4- = FeH2PO4+2
|
|
log_k 5.43
|
|
|
|
Fe+3 + F- = FeF+2
|
|
log_k 6.2
|
|
delta_h 2.7 kcal
|
|
|
|
Fe+3 + 2 F- = FeF2+
|
|
log_k 10.8
|
|
delta_h 4.8 kcal
|
|
|
|
Fe+3 + 3 F- = FeF3
|
|
log_k 14.0
|
|
delta_h 5.4 kcal
|
|
|
|
Mn+2 + H2O = MnOH+ + H+
|
|
log_k -10.590
|
|
delta_h 14.400 kcal
|
|
|
|
Mn+2 + Cl- = MnCl+
|
|
log_k 0.610
|
|
|
|
Mn+2 + 2 Cl- = MnCl2
|
|
log_k 0.250
|
|
|
|
Mn+2 + 3 Cl- = MnCl3-
|
|
log_k -0.310
|
|
|
|
Mn+2 + CO3-2 = MnCO3
|
|
log_k 4.900
|
|
|
|
Mn+2 + HCO3- = MnHCO3+
|
|
log_k 1.95
|
|
|
|
Mn+2 + SO4-2 = MnSO4
|
|
log_k 2.250
|
|
delta_h 3.370 kcal
|
|
|
|
Mn+2 + 2 NO3- = Mn(NO3)2
|
|
log_k 0.600
|
|
delta_h -0.396 kcal
|
|
|
|
Mn+2 + F- = MnF+
|
|
log_k 0.840
|
|
|
|
Mn+2 = Mn+3 + e-
|
|
log_k -25.510
|
|
delta_h 25.800 kcal
|
|
|
|
Al+3 + H2O = AlOH+2 + H+
|
|
log_k -5.00
|
|
delta_h 11.49 kcal
|
|
-analytic -38.253 0.0 -656.27 14.327
|
|
|
|
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
|
|
log_k -10.1
|
|
delta_h 26.90 kcal
|
|
-analytic 88.500 0.0 -9391.6 -27.121
|
|
|
|
Al+3 + 3 H2O = Al(OH)3 + 3 H+
|
|
log_k -16.9
|
|
delta_h 39.89 kcal
|
|
-analytic 226.374 0.0 -18247.8 -73.597
|
|
|
|
Al+3 + 4 H2O = Al(OH)4- + 4 H+
|
|
log_k -22.7
|
|
delta_h 42.30 kcal
|
|
-analytic 51.578 0.0 -11168.9 -14.865
|
|
|
|
Al+3 + SO4-2 = AlSO4+
|
|
log_k 3.5
|
|
delta_h 2.29 kcal
|
|
|
|
Al+3 + 2SO4-2 = Al(SO4)2-
|
|
log_k 5.0
|
|
delta_h 3.11 kcal
|
|
|
|
Al+3 + HSO4- = AlHSO4+2
|
|
log_k 0.46
|
|
|
|
Al+3 + F- = AlF+2
|
|
log_k 7.000
|
|
delta_h 1.060 kcal
|
|
|
|
Al+3 + 2 F- = AlF2+
|
|
log_k 12.700
|
|
delta_h 1.980 kcal
|
|
|
|
Al+3 + 3 F- = AlF3
|
|
log_k 16.800
|
|
delta_h 2.160 kcal
|
|
|
|
Al+3 + 4 F- = AlF4-
|
|
log_k 19.400
|
|
delta_h 2.200 kcal
|
|
|
|
Al+3 + 5 F- = AlF5-2
|
|
log_k 20.600
|
|
delta_h 1.840 kcal
|
|
|
|
Al+3 + 6 F- = AlF6-3
|
|
log_k 20.600
|
|
delta_h -1.670 kcal
|
|
|
|
H4SiO4 = H3SiO4- + H+
|
|
log_k -9.83
|
|
delta_h 6.12 kcal
|
|
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
|
|
|
|
H4SiO4 = H2SiO4-2 + 2 H+
|
|
log_k -23.0
|
|
delta_h 17.6 kcal
|
|
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
|
|
|
|
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
|
|
log_k 30.180
|
|
delta_h -16.260 kcal
|
|
|
|
Ba+2 + H2O = BaOH+ + H+
|
|
log_k -13.470
|
|
|
|
Ba+2 + CO3-2 = BaCO3
|
|
log_k 2.71
|
|
delta_h 3.55 kcal
|
|
-analytic 0.113 0.008721
|
|
|
|
Ba+2 + HCO3- = BaHCO3+
|
|
log_k 0.982
|
|
delta_h 5.56 kcal
|
|
-analytical -3.0938 0.013669 0.0 0.0 0.0
|
|
|
|
Ba+2 + SO4-2 = BaSO4
|
|
log_k 2.700
|
|
|
|
Sr+2 + H2O = SrOH+ + H+
|
|
log_k -13.290
|
|
-gamma 5.0000 0.0000
|
|
|
|
Sr+2 + CO3-2 + H+ = SrHCO3+
|
|
log_k 11.509
|
|
delta_h 2.489 kcal
|
|
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
|
|
-gamma 5.4000 0.0000
|
|
|
|
Sr+2 + CO3-2 = SrCO3
|
|
log_k 2.81
|
|
delta_h 5.22 kcal
|
|
-analytic -1.019 0.012826
|
|
|
|
Sr+2 + SO4-2 = SrSO4
|
|
log_k 2.290
|
|
delta_h 2.080 kcal
|
|
|
|
Li+ + H2O = LiOH + H+
|
|
log_k -13.640
|
|
|
|
Li+ + SO4-2 = LiSO4-
|
|
log_k 0.640
|
|
|
|
Cu+2 + e- = Cu+
|
|
log_k 2.720
|
|
delta_h 1.650 kcal
|
|
-gamma 2.5000 0.0000
|
|
|
|
Cu+2 + H2O = CuOH+ + H+
|
|
log_k -8.000
|
|
-gamma 4.0000 0.0000
|
|
|
|
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
|
|
log_k -13.680
|
|
|
|
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
|
|
log_k -26.900
|
|
|
|
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
|
|
log_k -39.600
|
|
|
|
Cu+2 + SO4-2 = CuSO4
|
|
log_k 2.310
|
|
delta_h 1.220 kcal
|
|
|
|
Zn+2 + H2O = ZnOH+ + H+
|
|
log_k -8.96
|
|
delta_h 13.4 kcal
|
|
|
|
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
|
|
log_k -16.900
|
|
|
|
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
|
|
log_k -28.400
|
|
|
|
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
|
|
log_k -41.200
|
|
|
|
Zn+2 + Cl- = ZnCl+
|
|
log_k 0.43
|
|
delta_h 7.79 kcal
|
|
|
|
Zn+2 + 2 Cl- = ZnCl2
|
|
log_k 0.45
|
|
delta_h 8.5 kcal
|
|
|
|
Zn+2 + 3Cl- = ZnCl3-
|
|
log_k 0.5
|
|
delta_h 9.56 kcal
|
|
|
|
Zn+2 + 4Cl- = ZnCl4-2
|
|
log_k 0.2
|
|
delta_h 10.96 kcal
|
|
|
|
Zn+2 + CO3-2 = ZnCO3
|
|
log_k 5.3
|
|
|
|
Zn+2 + 2CO3-2 = Zn(CO3)2-2
|
|
log_k 9.63
|
|
|
|
Zn+2 + HCO3- = ZnHCO3+
|
|
log_k 2.1
|
|
|
|
Zn+2 + SO4-2 = ZnSO4
|
|
log_k 2.37
|
|
delta_h 1.36 kcal
|
|
|
|
Zn+2 + 2SO4-2 = Zn(SO4)2-2
|
|
log_k 3.28
|
|
|
|
Cd+2 + H2O = CdOH+ + H+
|
|
log_k -10.080
|
|
delta_h 13.1 kcal
|
|
|
|
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
|
|
log_k -20.350
|
|
|
|
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
|
|
log_k -33.300
|
|
|
|
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
|
|
log_k -47.350
|
|
|
|
Cd+2 + Cl- = CdCl+
|
|
log_k 1.980
|
|
delta_h 0.59 kcal
|
|
|
|
Cd+2 + 2 Cl- = CdCl2
|
|
log_k 2.600
|
|
delta_h 1.24 kcal
|
|
|
|
Cd+2 + 3 Cl- = CdCl3-
|
|
log_k 2.400
|
|
delta_h 3.9 kcal
|
|
|
|
Cd+2 + CO3-2 = CdCO3
|
|
log_k 2.9
|
|
|
|
Cd+2 + 2CO3-2 = Cd(CO3)2-2
|
|
log_k 6.4
|
|
|
|
Cd+2 + HCO3- = CdHCO3+
|
|
log_k 1.5
|
|
|
|
Cd+2 + SO4-2 = CdSO4
|
|
log_k 2.460
|
|
delta_h 1.08 kcal
|
|
|
|
Cd+2 + 2SO4-2 = Cd(SO4)2-2
|
|
log_k 3.5
|
|
|
|
Pb+2 + H2O = PbOH+ + H+
|
|
log_k -7.710
|
|
|
|
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
|
|
log_k -17.120
|
|
|
|
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
|
|
log_k -28.060
|
|
|
|
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
|
|
log_k -39.700
|
|
|
|
2 Pb+2 + H2O = Pb2OH+3 + H+
|
|
log_k -6.360
|
|
|
|
Pb+2 + Cl- = PbCl+
|
|
log_k 1.600
|
|
delta_h 4.38 kcal
|
|
|
|
Pb+2 + 2 Cl- = PbCl2
|
|
log_k 1.800
|
|
delta_h 1.08 kcal
|
|
|
|
Pb+2 + 3 Cl- = PbCl3-
|
|
log_k 1.700
|
|
delta_h 2.17 kcal
|
|
|
|
Pb+2 + 4 Cl- = PbCl4-2
|
|
log_k 1.380
|
|
delta_h 3.53 kcal
|
|
|
|
Pb+2 + CO3-2 = PbCO3
|
|
log_k 7.240
|
|
|
|
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
|
|
log_k 10.640
|
|
|
|
Pb+2 + HCO3- = PbHCO3+
|
|
log_k 2.9
|
|
|
|
Pb+2 + SO4-2 = PbSO4
|
|
log_k 2.750
|
|
|
|
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
|
|
log_k 3.470
|
|
|
|
Pb+2 + NO3- = PbNO3+
|
|
log_k 1.170
|
|
|
|
PHASES
|
|
|
|
Calcite
|
|
CaCO3 = CO3-2 + Ca+2
|
|
log_k -8.480
|
|
delta_h -2.297 kcal
|
|
-analytic -171.9065 -0.077993 2839.319 71.595
|
|
|
|
Aragonite
|
|
CaCO3 = CO3-2 + Ca+2
|
|
log_k -8.336
|
|
delta_h -2.589 kcal
|
|
-analytic -171.9773 -0.077993 2903.293 71.595
|
|
|
|
Dolomite
|
|
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
|
log_k -17.090
|
|
delta_h -9.436 kcal
|
|
|
|
Siderite
|
|
FeCO3 = Fe+2 + CO3-2
|
|
log_k -10.890
|
|
delta_h -2.480 kcal
|
|
|
|
Rhodochrosite
|
|
MnCO3 = Mn+2 + CO3-2
|
|
log_k -11.130
|
|
delta_h -1.430 kcal
|
|
|
|
Strontianite
|
|
SrCO3 = Sr+2 + CO3-2
|
|
log_k -9.271
|
|
delta_h -0.400 kcal
|
|
-analytic 155.0305 0.0 -7239.594 -56.58638
|
|
|
|
Witherite
|
|
BaCO3 = Ba+2 + CO3-2
|
|
log_k -8.562
|
|
delta_h 0.703 kcal
|
|
-analytic 607.642 0.121098 -20011.25 -236.4948
|
|
|
|
Gypsum
|
|
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
|
|
log_k -4.580
|
|
delta_h -0.109 kcal
|
|
-analytic 68.2401 0.0 -3221.51 -25.0627
|
|
|
|
Anhydrite
|
|
CaSO4 = Ca+2 + SO4-2
|
|
log_k -4.360
|
|
delta_h -1.710 kcal
|
|
-analytic 197.52 0.0 -8669.8 -69.835
|
|
|
|
Celestite
|
|
SrSO4 = Sr+2 + SO4-2
|
|
log_k -6.630
|
|
delta_h -1.037 kcal
|
|
-analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
|
|
|
|
Barite
|
|
BaSO4 = Ba+2 + SO4-2
|
|
log_k -9.970
|
|
delta_h 6.350 kcal
|
|
-analytic 136.035 0.0 -7680.41 -48.595
|
|
|
|
Hydroxyapatite
|
|
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
|
|
log_k -3.421
|
|
delta_h -36.155 kcal
|
|
|
|
Fluorite
|
|
CaF2 = Ca+2 + 2 F-
|
|
log_k -10.600
|
|
delta_h 4.690 kcal
|
|
-analytic 66.348 0.0 -4298.2 -25.271
|
|
|
|
SiO2(a)
|
|
SiO2 + 2 H2O = H4SiO4
|
|
log_k -2.710
|
|
delta_h 3.340 kcal
|
|
-analytic -0.26 0.0 -731.0
|
|
|
|
Chalcedony
|
|
SiO2 + 2 H2O = H4SiO4
|
|
log_k -3.550
|
|
delta_h 4.720 kcal
|
|
-analytic -0.09 0.0 -1032.0
|
|
|
|
Quartz
|
|
SiO2 + 2 H2O = H4SiO4
|
|
log_k -3.980
|
|
delta_h 5.990 kcal
|
|
-analytic 0.41 0.0 -1309.0
|
|
|
|
Gibbsite
|
|
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
|
log_k 8.110
|
|
delta_h -22.800 kcal
|
|
|
|
Al(OH)3(a)
|
|
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
|
log_k 10.800
|
|
delta_h -26.500 kcal
|
|
|
|
Kaolinite
|
|
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
|
|
log_k 7.435
|
|
delta_h -35.300 kcal
|
|
|
|
Albite
|
|
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
|
|
log_k -18.002
|
|
delta_h 25.896 kcal
|
|
|
|
Anorthite
|
|
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
|
|
log_k -19.714
|
|
delta_h 11.580 kcal
|
|
|
|
K-feldspar
|
|
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
|
|
log_k -20.573
|
|
delta_h 30.820 kcal
|
|
|
|
K-mica
|
|
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
|
|
log_k 12.703
|
|
delta_h -59.376 kcal
|
|
|
|
Chlorite(14A)
|
|
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
|
|
log_k 68.38
|
|
delta_h -151.494 kcal
|
|
|
|
Ca-Montmorillonite
|
|
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
|
|
log_k -45.027
|
|
delta_h 58.373 kcal
|
|
|
|
Talc
|
|
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
|
|
log_k 21.399
|
|
delta_h -46.352 kcal
|
|
|
|
Illite
|
|
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
|
|
log_k -40.267
|
|
delta_h 54.684 kcal
|
|
|
|
Chrysotile
|
|
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
|
|
log_k 32.200
|
|
delta_h -46.800 kcal
|
|
-analytic 13.248 0.0 10217.1 -6.1894
|
|
|
|
Sepiolite
|
|
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
|
|
log_k 15.760
|
|
delta_h -10.700 kcal
|
|
|
|
Sepiolite(d)
|
|
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
|
|
log_k 18.660
|
|
|
|
Hematite
|
|
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
|
|
log_k -4.008
|
|
delta_h -30.845 kcal
|
|
|
|
Goethite
|
|
FeOOH + 3 H+ = Fe+3 + 2 H2O
|
|
log_k -1.000
|
|
delta_h -14.48 kcal
|
|
|
|
Fe(OH)3(a)
|
|
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
|
|
log_k 4.891
|
|
|
|
Pyrite
|
|
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
|
|
log_k -18.479
|
|
delta_h 11.300 kcal
|
|
|
|
FeS(ppt)
|
|
FeS + H+ = Fe+2 + HS-
|
|
log_k -3.915
|
|
|
|
Mackinawite
|
|
FeS + H+ = Fe+2 + HS-
|
|
log_k -4.648
|
|
|
|
Sulfur
|
|
S + 2H+ + 2e- = H2S
|
|
log_k 4.882
|
|
delta_h -9.5 kcal
|
|
|
|
Vivianite
|
|
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
|
|
log_k -36.000
|
|
|
|
Pyrolusite
|
|
MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O
|
|
log_k 41.380
|
|
delta_h -65.110 kcal
|
|
|
|
Hausmannite
|
|
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
|
|
log_k 61.030
|
|
delta_h -100.640 kcal
|
|
|
|
Manganite
|
|
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
|
|
log_k 25.340
|
|
|
|
Pyrochroite
|
|
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
|
|
log_k 15.200
|
|
|
|
Halite
|
|
NaCl = Na+ + Cl-
|
|
log_k 1.582
|
|
delta_h 0.918 kcal
|
|
|
|
CO2(g)
|
|
CO2 = CO2
|
|
log_k -1.468
|
|
delta_h -4.776 kcal
|
|
-analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
|
|
|
|
O2(g)
|
|
O2 = O2
|
|
# log_k -2.960
|
|
# delta_h -1.844 kcal
|
|
# log K from llnl.dat Aug 23, 2005
|
|
log_k -2.8983
|
|
-analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005
|
|
|
|
H2(g)
|
|
H2 = H2
|
|
log_k -3.150
|
|
delta_h -1.759 kcal
|
|
|
|
H2O(g)
|
|
H2O = H2O
|
|
log_k 1.51
|
|
delta_h -44.03 kJ
|
|
# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
|
|
|
|
N2(g)
|
|
N2 = N2
|
|
log_k -3.260
|
|
delta_h -1.358 kcal
|
|
|
|
H2S(g)
|
|
H2S = H2S
|
|
log_k -0.997
|
|
delta_h -4.570 kcal
|
|
|
|
CH4(g)
|
|
CH4 = CH4
|
|
log_k -2.860
|
|
delta_h -3.373 kcal
|
|
|
|
NH3(g)
|
|
NH3 = NH3
|
|
log_k 1.770
|
|
delta_h -8.170 kcal
|
|
|
|
Melanterite
|
|
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
|
|
log_k -2.209
|
|
delta_h 4.910 kcal
|
|
-analytic 1.447 -0.004153 0.0 0.0 -214949.0
|
|
|
|
Alunite
|
|
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
|
|
log_k -1.400
|
|
delta_h -50.250 kcal
|
|
|
|
Jarosite-K
|
|
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
|
|
log_k -9.210
|
|
delta_h -31.280 kcal
|
|
|
|
Zn(OH)2(e)
|
|
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
|
|
log_k 11.50
|
|
|
|
Smithsonite
|
|
ZnCO3 = Zn+2 + CO3-2
|
|
log_k -10.000
|
|
delta_h -4.36 kcal
|
|
|
|
Sphalerite
|
|
ZnS + H+ = Zn+2 + HS-
|
|
log_k -11.618
|
|
delta_h 8.250 kcal
|
|
|
|
Willemite 289
|
|
Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
|
|
log_k 15.33
|
|
delta_h -33.37 kcal
|
|
|
|
Cd(OH)2
|
|
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
|
|
log_k 13.650
|
|
|
|
Otavite 315
|
|
CdCO3 = Cd+2 + CO3-2
|
|
log_k -12.1
|
|
delta_h -0.019 kcal
|
|
|
|
CdSiO3 328
|
|
CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
|
|
log_k 9.06
|
|
delta_h -16.63 kcal
|
|
|
|
CdSO4 329
|
|
CdSO4 = Cd+2 + SO4-2
|
|
log_k -0.1
|
|
delta_h -14.74 kcal
|
|
|
|
Cerrusite 365
|
|
PbCO3 = Pb+2 + CO3-2
|
|
log_k -13.13
|
|
delta_h 4.86 kcal
|
|
|
|
Anglesite 384
|
|
PbSO4 = Pb+2 + SO4-2
|
|
log_k -7.79
|
|
delta_h 2.15 kcal
|
|
|
|
Pb(OH)2 389
|
|
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
|
|
log_k 8.15
|
|
delta_h -13.99 kcal
|
|
|
|
EXCHANGE_MASTER_SPECIES
|
|
X X-
|
|
EXCHANGE_SPECIES
|
|
X- = X-
|
|
log_k 0.0
|
|
|
|
Na+ + X- = NaX
|
|
log_k 0.0
|
|
-gamma 4.0 0.075
|
|
|
|
K+ + X- = KX
|
|
log_k 0.7
|
|
-gamma 3.5 0.015
|
|
delta_h -4.3 # Jardine & Sparks, 1984
|
|
|
|
Li+ + X- = LiX
|
|
log_k -0.08
|
|
-gamma 6.0 0.0
|
|
delta_h 1.4 # Merriam & Thomas, 1956
|
|
|
|
NH4+ + X- = NH4X
|
|
log_k 0.6
|
|
-gamma 2.5 0.0
|
|
delta_h -2.4 # Laudelout et al., 1968
|
|
|
|
Ca+2 + 2X- = CaX2
|
|
log_k 0.8
|
|
-gamma 5.0 0.165
|
|
delta_h 7.2 # Van Bladel & Gheyl, 1980
|
|
|
|
Mg+2 + 2X- = MgX2
|
|
log_k 0.6
|
|
-gamma 5.5 0.2
|
|
delta_h 7.4 # Laudelout et al., 1968
|
|
|
|
Sr+2 + 2X- = SrX2
|
|
log_k 0.91
|
|
-gamma 5.26 0.121
|
|
delta_h 5.5 # Laudelout et al., 1968
|
|
|
|
Ba+2 + 2X- = BaX2
|
|
log_k 0.91
|
|
-gamma 5.0 0.0
|
|
delta_h 4.5 # Laudelout et al., 1968
|
|
|
|
Mn+2 + 2X- = MnX2
|
|
log_k 0.52
|
|
-gamma 6.0 0.0
|
|
|
|
Fe+2 + 2X- = FeX2
|
|
log_k 0.44
|
|
-gamma 6.0 0.0
|
|
|
|
Cu+2 + 2X- = CuX2
|
|
log_k 0.6
|
|
-gamma 6.0 0.0
|
|
|
|
Zn+2 + 2X- = ZnX2
|
|
log_k 0.8
|
|
-gamma 5.0 0.0
|
|
|
|
Cd+2 + 2X- = CdX2
|
|
log_k 0.8
|
|
-gamma 0.0 0.0
|
|
|
|
Pb+2 + 2X- = PbX2
|
|
log_k 1.05
|
|
-gamma 0.0 0.0
|
|
|
|
Al+3 + 3X- = AlX3
|
|
log_k 0.41
|
|
-gamma 9.0 0.0
|
|
|
|
AlOH+2 + 2X- = AlOHX2
|
|
log_k 0.89
|
|
-gamma 0.0 0.0
|
|
SURFACE_MASTER_SPECIES
|
|
Hfo_s Hfo_sOH
|
|
Hfo_w Hfo_wOH
|
|
SURFACE_SPECIES
|
|
# All surface data from
|
|
# Dzombak and Morel, 1990
|
|
#
|
|
#
|
|
# Acid-base data from table 5.7
|
|
#
|
|
# strong binding site--Hfo_s,
|
|
|
|
Hfo_sOH = Hfo_sOH
|
|
log_k 0.0
|
|
|
|
Hfo_sOH + H+ = Hfo_sOH2+
|
|
log_k 7.29 # = pKa1,int
|
|
|
|
Hfo_sOH = Hfo_sO- + H+
|
|
log_k -8.93 # = -pKa2,int
|
|
|
|
# weak binding site--Hfo_w
|
|
|
|
Hfo_wOH = Hfo_wOH
|
|
log_k 0.0
|
|
|
|
Hfo_wOH + H+ = Hfo_wOH2+
|
|
log_k 7.29 # = pKa1,int
|
|
|
|
Hfo_wOH = Hfo_wO- + H+
|
|
log_k -8.93 # = -pKa2,int
|
|
|
|
###############################################
|
|
# CATIONS #
|
|
###############################################
|
|
#
|
|
# Cations from table 10.1 or 10.5
|
|
#
|
|
# Calcium
|
|
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
|
|
log_k 4.97
|
|
|
|
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
|
|
log_k -5.85
|
|
# Strontium
|
|
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
|
|
log_k 5.01
|
|
|
|
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
|
|
log_k -6.58
|
|
|
|
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
|
|
log_k -17.60
|
|
# Barium
|
|
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
|
|
log_k 5.46
|
|
|
|
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
|
log_k -7.2 # table 10.5
|
|
#
|
|
# Cations from table 10.2
|
|
#
|
|
# Cadmium
|
|
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
|
|
log_k 0.47
|
|
|
|
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
|
|
log_k -2.91
|
|
# Zinc
|
|
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
|
|
log_k 0.99
|
|
|
|
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
|
|
log_k -1.99
|
|
# Copper
|
|
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
|
|
log_k 2.89
|
|
|
|
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
|
|
log_k 0.6 # table 10.5
|
|
# Lead
|
|
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
|
|
log_k 4.65
|
|
|
|
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
|
|
log_k 0.3 # table 10.5
|
|
#
|
|
# Derived constants table 10.5
|
|
#
|
|
# Magnesium
|
|
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
|
|
log_k -4.6
|
|
# Manganese
|
|
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
|
log_k -0.4 # table 10.5
|
|
|
|
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
|
log_k -3.5 # table 10.5
|
|
# Iron
|
|
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
|
# log_k 0.7 # LFER using table 10.5
|
|
|
|
# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
|
# log_k -2.5 # LFER using table 10.5
|
|
|
|
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36,
|
|
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
|
log_k -0.95
|
|
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
|
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
|
log_k -2.98
|
|
|
|
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
|
|
log_k -11.55
|
|
|
|
###############################################
|
|
# ANIONS #
|
|
###############################################
|
|
#
|
|
# Anions from table 10.6
|
|
#
|
|
# Phosphate
|
|
Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
|
|
log_k 31.29
|
|
|
|
Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
|
|
log_k 25.39
|
|
|
|
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
|
|
log_k 17.72
|
|
#
|
|
# Anions from table 10.7
|
|
#
|
|
# Borate
|
|
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
|
|
log_k 0.62
|
|
#
|
|
# Anions from table 10.8
|
|
#
|
|
# Sulfate
|
|
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
|
|
log_k 7.78
|
|
|
|
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
|
|
log_k 0.79
|
|
#
|
|
# Derived constants table 10.10
|
|
#
|
|
Hfo_wOH + F- + H+ = Hfo_wF + H2O
|
|
log_k 8.7
|
|
|
|
Hfo_wOH + F- = Hfo_wOHF-
|
|
log_k 1.6
|
|
#
|
|
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
|
|
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
|
|
#
|
|
# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
|
|
# log_k 12.56
|
|
#
|
|
# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
|
# log_k 20.62
|
|
|
|
# 9/19/96
|
|
# Added analytical expression for H2S, NH3, KSO4.
|
|
# Added species CaHSO4+.
|
|
# Added delta H for Goethite.
|
|
|
|
RATES
|
|
|
|
|
|
###########
|
|
#Kaolinite marty et al 2015
|
|
###########
|
|
Kaolinite
|
|
|
|
# from Marty et al 2015
|
|
# pre-exponent coefficient A is calculated from logk using equation A=k/exp(-Ea/RT)
|
|
# experimental condition range T=22-80C, pH=0.5-12
|
|
|
|
-start
|
|
1 rem unit should be mol,kgw-1 and second-1
|
|
2 rem PARM(1) is surface area in the unit of m2/kgw
|
|
3 rem calculation of surface area can be found in the note
|
|
4 rem M is current moles of minerals
|
|
5 rem M0 is the initial moles of minerals
|
|
6 rem PARM(2) is a correction factor
|
|
10 rem acid solution parameters
|
|
11 a1=2.56E-04
|
|
12 E1=43000
|
|
13 n1=0.51
|
|
20 rem neutral solution parameters
|
|
21 a2=5.0E-08
|
|
22 E2=38000
|
|
30 rem base solution parameters
|
|
31 a3=2.87E-03
|
|
32 E3=46000
|
|
33 n2=0.58
|
|
36 rem rate=0 if no minerals and undersaturated
|
|
40 SR_mineral=SR("Kaolinite")
|
|
41 if (M<0) then goto 200
|
|
42 if (M=0 and SR_mineral<1) then goto 200
|
|
43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67
|
|
50 if (SA<=0) then SA=1
|
|
60 R=8.31451
|
|
75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression
|
|
80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression
|
|
85 Rate3=a3*EXP(-E3/R/TK)*ACT("OH-")^n2 #base rate expression
|
|
90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*PARM(2)
|
|
100 moles= Rate*Time
|
|
200 save moles
|
|
-end
|
|
|
|
###########
|
|
#Quartz Marty et al 2015
|
|
###########
|
|
Quartz
|
|
|
|
# from Marty et al 2015
|
|
# pre-exponent coefficient A is calculated from logk using equation A=k/exp(-Ea/RT)
|
|
# experimental condition range T=25-300C, pH=2-13
|
|
|
|
-start
|
|
1 rem unit should be mol,kgw-1 and second-1
|
|
2 rem PARM(1) is surface area in the unit of m2/kgw
|
|
3 rem calculation of surface area can be found in the note
|
|
4 rem M is current moles of minerals. M0 is the initial moles of minerals
|
|
5 rem PARM(2) is a correction factor
|
|
10 rem acid solution parameters
|
|
11 a1=0
|
|
12 E1=0
|
|
13 n1=0
|
|
20 rem neutral solution parameters
|
|
21 a2=1.98
|
|
22 E2=77000
|
|
30 rem base solution parameters
|
|
31 a3=1.97E+04
|
|
32 E3=80000
|
|
33 n2=0.34
|
|
36 rem rate=0 if no minerals and undersaturated
|
|
40 SR_mineral=SR("Quartz")
|
|
41 if (M<0) then goto 200
|
|
42 if (M=0 and SR_mineral<1) then goto 200
|
|
43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67
|
|
50 if (SA<=0) then SA=1
|
|
60 R=8.31451
|
|
75 Rate1 = a1*EXP(-E1/R/TK)*ACT("H+")^n1 # acid rate expression
|
|
80 Rate2 = a2*EXP(-E2/R/TK) # neutral rate expression
|
|
85 Rate3 = a3*EXP(-E3/R/TK)*ACT("OH-")^n2 # base rate expression
|
|
90 rate = (Rate1 + Rate2 + Rate3) * (1-Sr_mineral) * SA * PARM(2)
|
|
100 moles= rate*TIME
|
|
200 save moles
|
|
-end
|
|
|
|
################
|
|
# Siderite marty et al 2015
|
|
################
|
|
Siderite
|
|
|
|
# from Marty et al 2015
|
|
# pre-exponent coefficient A is calculated from logk using equation A=k/exp(-Ea/RT)
|
|
# experimental condition range T=25-100C, pH=1.5-11.5
|
|
|
|
-start
|
|
1 rem unit should be mol,kgw-1 and second-1
|
|
2 rem PARM(1) is surface area in the unit of m2/kgw
|
|
3 rem calculation of surface area can be found in the note
|
|
4 rem M is current moles of minerals. M0 is the initial moles of minerals
|
|
5 rem parm(2) is a correction factor
|
|
10 rem acid solution parameters
|
|
11 a1=3.82E+04
|
|
12 E1=56000
|
|
13 n1=0.6
|
|
20 rem neutral solution parameters
|
|
21 a2=1.36E+01
|
|
22 E2=56000
|
|
30 rem base solution parameters
|
|
31 a3=0
|
|
32 E3=0
|
|
33 n2=0
|
|
36 rem rate=0 if no minerals and undersaturated
|
|
40 SR_mineral=SR("Siderite")
|
|
41 if (M<0) then goto 200
|
|
42 if (M=0 and SR_mineral<1) then goto 200
|
|
43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67
|
|
50 if (SA<=0) then SA=1
|
|
60 R=8.31451
|
|
75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression
|
|
80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression
|
|
85 Rate3=a3*EXP(-E3/R/TK)*ACT("OH-")^n2 #base rate expression
|
|
90 rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*PARM(2)
|
|
100 moles= rate*TIME
|
|
200 save moles
|
|
-end
|
|
|
|
|
|
|