mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-15 16:18:22 +01:00
26398a44 lsp of databases, changed alk of e- to 1.0 in all databases, modified sit.dat 1c2e59be Tony revised latest sit with lsp 1693e0c1 New version from Tony 5faf092b Tony revisions to phreeqc_rates.dat and rate_xmpls 0bcc9db0 Tony tweaked phreeqc_rates.dat and added rate_xmpls test case. git-subtree-dir: database git-subtree-split: 26398a442446dc31463fb08c3d1cd06df609b633
1966 lines
52 KiB
Plaintext
1966 lines
52 KiB
Plaintext
# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 07/05/2024 14:37, 1961 lines, 56151 bytes, md5=996b3d979d94f4baeb9d27addf2b91a4
|
||
# Created 17 May 2024 14:30:43
|
||
# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "phreeqc.dat"
|
||
|
||
# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on:
|
||
# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS.
|
||
# Details are given at the end of this file.
|
||
|
||
SOLUTION_MASTER_SPECIES
|
||
#
|
||
#element species alk gfw_formula element_gfw
|
||
#
|
||
H H+ -1 H 1.008
|
||
H(0) H2 0 H
|
||
H(1) H+ -1 H
|
||
E e- 1 0 0
|
||
O H2O 0 O 16
|
||
O(0) O2 0 O
|
||
O(-2) H2O 0 0
|
||
Ca Ca+2 0 Ca 40.08
|
||
Mg Mg+2 0 Mg 24.312
|
||
Na Na+ 0 Na 22.9898
|
||
K K+ 0 K 39.102
|
||
Fe Fe+2 0 Fe 55.847
|
||
Fe(+2) Fe+2 0 Fe
|
||
Fe(+3) Fe+3 -2 Fe
|
||
Mn Mn+2 0 Mn 54.938
|
||
Mn(+2) Mn+2 0 Mn
|
||
Mn(+3) Mn+3 0 Mn
|
||
Al Al+3 0 Al 26.9815
|
||
Ba Ba+2 0 Ba 137.34
|
||
Sr Sr+2 0 Sr 87.62
|
||
Si H4SiO4 0 SiO2 28.0843
|
||
Cl Cl- 0 Cl 35.453
|
||
C CO3-2 2 HCO3 12.0111
|
||
C(+4) CO3-2 2 HCO3
|
||
C(-4) CH4 0 CH4
|
||
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
|
||
S SO4-2 0 SO4 32.064
|
||
S(6) SO4-2 0 SO4
|
||
S(-2) HS- 1 S
|
||
N NO3- 0 N 14.0067
|
||
N(+5) NO3- 0 N
|
||
N(+3) NO2- 0 N
|
||
N(0) N2 0 N
|
||
N(-3) NH4+ 0 N 14.0067
|
||
#Amm AmmH+ 0 AmmH 17.031
|
||
B H3BO3 0 B 10.81
|
||
P PO4-3 2 P 30.9738
|
||
F F- 0 F 18.9984
|
||
Li Li+ 0 Li 6.939
|
||
Br Br- 0 Br 79.904
|
||
Zn Zn+2 0 Zn 65.37
|
||
Cd Cd+2 0 Cd 112.4
|
||
Pb Pb+2 0 Pb 207.19
|
||
Cu Cu+2 0 Cu 63.546
|
||
Cu(+2) Cu+2 0 Cu
|
||
Cu(+1) Cu+1 0 Cu
|
||
# redox-uncoupled gases
|
||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||
Oxg Oxg 0 Oxg 32 # O2 gas
|
||
Mtg Mtg 0 Mtg 16.032 # CH4 gas
|
||
Sg H2Sg 0 H2Sg 32.064 # H2S gas
|
||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||
|
||
SOLUTION_SPECIES
|
||
H+ = H+
|
||
-gamma 9 0
|
||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4
|
||
-dw 9.31e-9 838 16.315 0 2.376 24.01 0
|
||
# Dw(25 C) dw_T a a2 visc a3 a_v_dif
|
||
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc
|
||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif
|
||
|
||
# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+)
|
||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm)
|
||
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.)
|
||
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
|
||
|
||
# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT.
|
||
e- = e-
|
||
H2O = H2O
|
||
-dw 2.299e-9 -254
|
||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||
Li+ = Li+
|
||
-gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2
|
||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||
Na+ = Na+
|
||
-gamma 4 0.075
|
||
-gamma 4.08 0.082 # halite solubility
|
||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
|
||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||
-dw 1.33e-9 75 3.627 0 0.7037
|
||
K+ = K+
|
||
-gamma 3.5 0.015
|
||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||
-viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028
|
||
-dw 1.96e-9 254 3.484 0 0.1964
|
||
Mg+2 = Mg+2
|
||
-gamma 5.5 0.2
|
||
-Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||
-dw 0.705e-9 -4 5.569 0 1.047
|
||
Ca+2 = Ca+2
|
||
-gamma 5 0.165
|
||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1
|
||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M
|
||
-dw 0.792e-9 34 5.411 0 1.046
|
||
Sr+2 = Sr+2
|
||
-gamma 5.26 0.121
|
||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97
|
||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||
-dw 0.794e-9 160 0.68 0.767 1e-9 0.912
|
||
Ba+2 = Ba+2
|
||
-gamma 5 0
|
||
-gamma 4 0.153 # Barite solubility
|
||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||
-dw 0.848e-9 174 10.53 0 3
|
||
Fe+2 = Fe+2
|
||
-gamma 6 0
|
||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||
-dw 0.719e-9
|
||
Mn+2 = Mn+2
|
||
-gamma 6 0
|
||
-Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||
-dw 0.688e-9
|
||
Al+3 = Al+3
|
||
-gamma 9 0
|
||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353
|
||
-dw 0.559e-9
|
||
H4SiO4 = H4SiO4
|
||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1
|
||
-dw 1.1e-9
|
||
Cl- = Cl-
|
||
-gamma 3.5 0.015
|
||
-gamma 3.63 0.017 # cf. pitzer.dat
|
||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||
-dw 2.033e-9 216 3.16 0.2071 0.7432
|
||
CO3-2 = CO3-2
|
||
-gamma 5.4 0
|
||
-Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316
|
||
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
|
||
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
|
||
SO4-2 = SO4-2
|
||
-gamma 5 -0.04
|
||
-Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||
-viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605
|
||
-dw 1.07e-9 -114 17 6.02e-2 4.94e-2
|
||
NO3- = NO3-
|
||
-gamma 3 0
|
||
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
|
||
-viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381
|
||
-dw 1.9e-9 104 1.11
|
||
#AmmH+ = AmmH+
|
||
# -gamma 2.5 0
|
||
# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
|
||
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||
# -dw 1.98e-9 178 3.747 0 1.220
|
||
H3BO3 = H3BO3
|
||
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt
|
||
-dw 1.1e-9
|
||
PO4-3 = PO4-3
|
||
-gamma 4 0
|
||
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
|
||
-dw 0.612e-9
|
||
F- = F-
|
||
-gamma 3.5 0
|
||
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
|
||
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
|
||
-dw 1.46e-9 -36 4.352
|
||
Br- = Br-
|
||
-gamma 3 0
|
||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82
|
||
-dw 2.01e-9 139 2.94 0 1.304
|
||
Zn+2 = Zn+2
|
||
-gamma 5 0
|
||
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
|
||
-dw 0.715e-9
|
||
Cd+2 = Cd+2
|
||
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
|
||
-dw 0.717e-9
|
||
Pb+2 = Pb+2
|
||
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||
-dw 0.945e-9
|
||
Cu+2 = Cu+2
|
||
-gamma 6 0
|
||
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
|
||
-dw 0.733e-9
|
||
# redox-uncoupled gases
|
||
Hdg = Hdg # H2
|
||
-Vm 6.52 0.78 0.12 # supcrt
|
||
-dw 5.13e-9
|
||
Oxg = Oxg # O2
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
-dw 2.35e-9
|
||
Mtg = Mtg # CH4
|
||
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 1.85e-9
|
||
Ntg = Ntg # N2
|
||
-Vm 7 # Pray et al., 1952, IEC 44 1146
|
||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||
H2Sg = H2Sg # H2S
|
||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 2.1e-9
|
||
# aqueous species
|
||
H2O = OH- + H+
|
||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||
-gamma 3.5 0
|
||
-Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1
|
||
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
|
||
-dw 5.27e-9 478 0.8695
|
||
2 H2O = O2 + 4 H+ + 4 e-
|
||
-log_k -86.08
|
||
-delta_h 134.79 kcal
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
-dw 2.35e-9
|
||
2 H+ + 2 e- = H2
|
||
-log_k -3.15
|
||
-delta_h -1.759 kcal
|
||
-Vm 6.52 0.78 0.12 # supcrt
|
||
-dw 5.13e-9
|
||
H+ + Cl- = HCl
|
||
-log_k -0.5
|
||
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50<35>C
|
||
-gamma 0 0.4256
|
||
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
|
||
CO3-2 + H+ = HCO3-
|
||
-log_k 10.329; -delta_h -3.561 kcal
|
||
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
||
-gamma 5.4 0
|
||
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
|
||
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
|
||
-dw 1.18e-9 -190 11.386
|
||
CO3-2 + 2 H+ = CO2 + H2O
|
||
-log_k 16.681
|
||
-delta_h -5.738 kcal
|
||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||
-Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171
|
||
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
|
||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||
2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
|
||
-log_k -1.8
|
||
-analytical_expression 8.68 -0.0103 -2190
|
||
-Vm 14.58 1.84 4.14 -2.46 -3.2
|
||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
||
-log_k 41.071
|
||
-delta_h -61.039 kcal
|
||
-Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 1.85e-9
|
||
SO4-2 + H+ = HSO4-
|
||
-log_k 1.988; -delta_h 3.85 kcal
|
||
-analytic -56.889 0.006473 2307.9 19.8858
|
||
-Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
|
||
-dw 1.22e-9 1000 15 2.861
|
||
HS- = S-2 + H+
|
||
-log_k -12.918
|
||
-delta_h 12.1 kcal
|
||
-gamma 5 0
|
||
-dw 0.731e-9
|
||
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
||
-log_k 33.65
|
||
-delta_h -60.14 kcal
|
||
-gamma 3.5 0
|
||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
|
||
-dw 1.73e-9
|
||
HS- + H+ = H2S
|
||
-log_k 6.994; -delta_h -5.3 kcal
|
||
-analytical -11.17 0.02386 3279
|
||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||
-dw 2.1e-9
|
||
2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||
-analytical_expression 10.227 -0.01384 -2200
|
||
-Vm 36.41 -71.95 0 0 2.58
|
||
-dw 2.1e-9
|
||
H2Sg = HSg- + H+
|
||
-log_k -6.994; -delta_h 5.3 kcal
|
||
-analytical_expression 11.17 -0.02386 -3279
|
||
-gamma 3.5 0
|
||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt
|
||
-dw 1.73e-9
|
||
2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||
-analytical_expression 10.227 -0.01384 -2200
|
||
-Vm 36.41 -71.95 0 0 2.58
|
||
-dw 2.1e-9
|
||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||
-log_k 28.57
|
||
-delta_h -43.76 kcal
|
||
-gamma 3 0
|
||
-Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt
|
||
-dw 1.91e-9
|
||
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
||
-log_k 207.08
|
||
-delta_h -312.13 kcal
|
||
-Vm 7 # Pray et al., 1952, IEC 44 1146
|
||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
|
||
-log_k 119.077
|
||
-delta_h -187.055 kcal
|
||
-gamma 2.5 0
|
||
-Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569
|
||
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||
-dw 1.98e-9 178 3.747 0 1.22
|
||
|
||
#AmmH+ = Amm + H+
|
||
NH4+ = NH3 + H+
|
||
-log_k -9.252
|
||
-delta_h 12.48 kcal
|
||
-analytic 0.6322 -0.001225 -2835.76
|
||
-Vm 6.69 2.8 3.58 -2.88 1.43
|
||
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
|
||
-dw 2.28e-9
|
||
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
|
||
# -log_k 119.077
|
||
# -delta_h -187.055 kcal
|
||
# -gamma 2.5 0
|
||
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||
#AmmH+ + SO4-2 = AmmHSO4-
|
||
NH4+ + SO4-2 = NH4SO4-
|
||
-gamma 6.54 -0.08
|
||
-log_k 1.106; -delta_h 4.3 kcal
|
||
-Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339
|
||
-viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748
|
||
-dw 1.35e-9 500 12.5 3 -1
|
||
H3BO3 = H2BO3- + H+
|
||
-log_k -9.24
|
||
-delta_h 3.224 kcal
|
||
H3BO3 + F- = BF(OH)3-
|
||
-log_k -0.4
|
||
-delta_h 1.85 kcal
|
||
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
|
||
-log_k 7.63
|
||
-delta_h 1.618 kcal
|
||
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
|
||
-log_k 13.67
|
||
-delta_h -1.614 kcal
|
||
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
|
||
-log_k 20.28
|
||
-delta_h -1.846 kcal
|
||
PO4-3 + H+ = HPO4-2
|
||
-log_k 12.346
|
||
-delta_h -3.53 kcal
|
||
-gamma 5 0
|
||
-dw 0.69e-9
|
||
-Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1
|
||
PO4-3 + 2 H+ = H2PO4-
|
||
-log_k 19.553
|
||
-delta_h -4.52 kcal
|
||
-gamma 5.4 0
|
||
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
|
||
-dw 0.846e-9
|
||
PO4-3 + 3 H+ = H3PO4
|
||
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
|
||
delta_h -10.1 kJ
|
||
-Vm 7.47 12.4 6.29 -3.29 0
|
||
H+ + F- = HF
|
||
-log_k 3.18
|
||
-delta_h 3.18 kcal
|
||
-analytic -2.033 0.012645 429.01
|
||
-Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt
|
||
H+ + 2 F- = HF2-
|
||
-log_k 3.76
|
||
-delta_h 4.55 kcal
|
||
-Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt
|
||
Ca+2 + H2O = CaOH+ + H+
|
||
-log_k -12.78
|
||
Ca+2 + CO3-2 = CaCO3
|
||
-log_k 3.224; -delta_h 3.545 kcal
|
||
-analytic -1228.732 -0.29944 35512.75 485.818
|
||
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||
-Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt
|
||
Ca+2 + CO3-2 + H+ = CaHCO3+
|
||
-log_k 10.91; -delta_h 4.38 kcal
|
||
-analytic -6.009 3.377e-2 2044
|
||
-gamma 6 0
|
||
-Vm 30.19 .01 5.75 -2.78 .308 5.4
|
||
-dw 5.06e-10
|
||
Ca+2 + SO4-2 = CaSO4
|
||
-log_k 2.25
|
||
-delta_h 1.325 kcal
|
||
-dw 4.71e-10
|
||
-Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt
|
||
Ca+2 + HSO4- = CaHSO4+
|
||
-log_k 1.08
|
||
Ca+2 + PO4-3 = CaPO4-
|
||
-log_k 6.459
|
||
-delta_h 3.1 kcal
|
||
-gamma 5.4 0
|
||
Ca+2 + HPO4-2 = CaHPO4
|
||
-log_k 2.739
|
||
-delta_h 3.3 kcal
|
||
Ca+2 + H2PO4- = CaH2PO4+
|
||
-log_k 1.408
|
||
-delta_h 3.4 kcal
|
||
-gamma 5.4 0
|
||
# Ca+2 + F- = CaF+
|
||
# -log_k 0.94
|
||
# -delta_h 4.120 kcal
|
||
# -gamma 5.5 0.0
|
||
# -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt
|
||
Mg+2 + H2O = MgOH+ + H+
|
||
-log_k -11.44
|
||
-delta_h 15.952 kcal
|
||
-gamma 6.5 0
|
||
Mg+2 + CO3-2 = MgCO3
|
||
-log_k 2.98
|
||
-delta_h 2.713 kcal
|
||
-analytic 0.991 0.00667
|
||
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt
|
||
-dw 4.21e-10
|
||
Mg+2 + H+ + CO3-2 = MgHCO3+
|
||
-log_k 11.399
|
||
-delta_h -2.771 kcal
|
||
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
|
||
-gamma 4 0
|
||
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
|
||
-dw 4.78e-10
|
||
Mg+2 + SO4-2 = MgSO4
|
||
-gamma 0 0.2
|
||
-log_k 2.42; -delta_h 19 kJ
|
||
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||
-Vm 8.65 -10.21 29.58 -18.6 1.061
|
||
-viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696
|
||
-dw 4.45e-10
|
||
SO4-2 + MgSO4 = Mg(SO4)2-2
|
||
-gamma 7 0.047
|
||
-log_k 0.52; -delta_h -13.6 kJ
|
||
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||
-Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2
|
||
-viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3
|
||
-dw 0.845e-9 -200 8 0 0.965
|
||
Mg+2 + PO4-3 = MgPO4-
|
||
-log_k 6.589
|
||
-delta_h 3.1 kcal
|
||
-gamma 5.4 0
|
||
Mg+2 + HPO4-2 = MgHPO4
|
||
-log_k 2.87
|
||
-delta_h 3.3 kcal
|
||
Mg+2 + H2PO4- = MgH2PO4+
|
||
-log_k 1.513
|
||
-delta_h 3.4 kcal
|
||
-gamma 5.4 0
|
||
Mg+2 + F- = MgF+
|
||
-log_k 1.82
|
||
-delta_h 3.2 kcal
|
||
-gamma 4.5 0
|
||
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
|
||
Na+ + OH- = NaOH
|
||
-log_k -10 # remove this complex
|
||
Na+ + HCO3- = NaHCO3
|
||
-log_k -0.06; -delta_h 21 kJ
|
||
-gamma 0 0.2
|
||
-Vm 7.95 0 0 0 0.609
|
||
-viscosity -4e-2 -2.717 1.67e-5
|
||
-dw 6.73e-10
|
||
Na+ + SO4-2 = NaSO4-
|
||
-gamma 5.5 0
|
||
-log_k 0.6; -delta_h -14.4 kJ
|
||
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||
-Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325
|
||
-viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208
|
||
-dw 1.13e-9 -23 8.5 0.392 0.521
|
||
Na+ + HPO4-2 = NaHPO4-
|
||
-log_k 0.29
|
||
-gamma 5.4 0
|
||
-Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1
|
||
Na+ + F- = NaF
|
||
-log_k -0.24
|
||
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt
|
||
K+ + HCO3- = KHCO3
|
||
-log_k -0.35; -delta_h 12 kJ
|
||
-gamma 0 9.4e-3
|
||
-Vm 9.48 0 0 0 -0.542
|
||
-viscosity 0.7 -1.289 9e-2
|
||
K+ + SO4-2 = KSO4-
|
||
-gamma 5.4 0.19
|
||
-log_k 0.6; -delta_h -10.4 kJ
|
||
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
|
||
-Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919
|
||
-viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69
|
||
-dw 0.9e-9 63 8.48 0 1.8
|
||
K+ + HPO4-2 = KHPO4-
|
||
-log_k 0.29
|
||
-gamma 5.4 0
|
||
-Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1
|
||
Fe+2 + H2O = FeOH+ + H+
|
||
-log_k -9.5
|
||
-delta_h 13.2 kcal
|
||
-gamma 5 0
|
||
Fe+2 + 3 H2O = Fe(OH)3- + 3 H+
|
||
-log_k -31
|
||
-delta_h 30.3 kcal
|
||
-gamma 5 0
|
||
Fe+2 + Cl- = FeCl+
|
||
-log_k 0.14
|
||
Fe+2 + CO3-2 = FeCO3
|
||
-log_k 4.38
|
||
Fe+2 + HCO3- = FeHCO3+
|
||
-log_k 2
|
||
Fe+2 + SO4-2 = FeSO4
|
||
-log_k 2.25
|
||
-delta_h 3.23 kcal
|
||
-Vm -13 0 123
|
||
Fe+2 + HSO4- = FeHSO4+
|
||
-log_k 1.08
|
||
Fe+2 + 2 HS- = Fe(HS)2
|
||
-log_k 8.95
|
||
Fe+2 + 3 HS- = Fe(HS)3-
|
||
-log_k 10.987
|
||
Fe+2 + HPO4-2 = FeHPO4
|
||
-log_k 3.6
|
||
Fe+2 + H2PO4- = FeH2PO4+
|
||
-log_k 2.7
|
||
-gamma 5.4 0
|
||
Fe+2 + F- = FeF+
|
||
-log_k 1
|
||
Fe+2 = Fe+3 + e-
|
||
-log_k -13.02
|
||
-delta_h 9.68 kcal
|
||
-gamma 9 0
|
||
Fe+3 + H2O = FeOH+2 + H+
|
||
-log_k -2.19
|
||
-delta_h 10.4 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
|
||
-log_k -5.67
|
||
-delta_h 17.1 kcal
|
||
-gamma 5.4 0
|
||
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
|
||
-log_k -12.56
|
||
-delta_h 24.8 kcal
|
||
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
|
||
-log_k -21.6
|
||
-delta_h 31.9 kcal
|
||
-gamma 5.4 0
|
||
Fe+2 + 2 H2O = Fe(OH)2 + 2 H+
|
||
-log_k -20.57
|
||
-delta_h 28.565 kcal
|
||
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
|
||
-log_k -2.95
|
||
-delta_h 13.5 kcal
|
||
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
|
||
-log_k -6.3
|
||
-delta_h 14.3 kcal
|
||
Fe+3 + Cl- = FeCl+2
|
||
-log_k 1.48
|
||
-delta_h 5.6 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 Cl- = FeCl2+
|
||
-log_k 2.13
|
||
-gamma 5 0
|
||
Fe+3 + 3 Cl- = FeCl3
|
||
-log_k 1.13
|
||
Fe+3 + SO4-2 = FeSO4+
|
||
-log_k 4.04
|
||
-delta_h 3.91 kcal
|
||
-gamma 5 0
|
||
Fe+3 + HSO4- = FeHSO4+2
|
||
-log_k 2.48
|
||
Fe+3 + 2 SO4-2 = Fe(SO4)2-
|
||
-log_k 5.38
|
||
-delta_h 4.6 kcal
|
||
Fe+3 + HPO4-2 = FeHPO4+
|
||
-log_k 5.43
|
||
-delta_h 5.76 kcal
|
||
-gamma 5 0
|
||
Fe+3 + H2PO4- = FeH2PO4+2
|
||
-log_k 5.43
|
||
-gamma 5.4 0
|
||
Fe+3 + F- = FeF+2
|
||
-log_k 6.2
|
||
-delta_h 2.7 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 2 F- = FeF2+
|
||
-log_k 10.8
|
||
-delta_h 4.8 kcal
|
||
-gamma 5 0
|
||
Fe+3 + 3 F- = FeF3
|
||
-log_k 14
|
||
-delta_h 5.4 kcal
|
||
Mn+2 + H2O = MnOH+ + H+
|
||
-log_k -10.59
|
||
-delta_h 14.4 kcal
|
||
-gamma 5 0
|
||
Mn+2 + 3 H2O = Mn(OH)3- + 3 H+
|
||
-log_k -34.8
|
||
-gamma 5 0
|
||
Mn+2 + Cl- = MnCl+
|
||
-log_k 0.61
|
||
-gamma 5 0
|
||
-Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1
|
||
Mn+2 + 2 Cl- = MnCl2
|
||
-log_k 0.25
|
||
-Vm 1e-5 0 144
|
||
Mn+2 + 3 Cl- = MnCl3-
|
||
-log_k -0.31
|
||
-gamma 5 0
|
||
-Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1
|
||
Mn+2 + CO3-2 = MnCO3
|
||
-log_k 4.9
|
||
Mn+2 + HCO3- = MnHCO3+
|
||
-log_k 1.95
|
||
-gamma 5 0
|
||
Mn+2 + SO4-2 = MnSO4
|
||
-log_k 2.25
|
||
-delta_h 3.37 kcal
|
||
-Vm -1.31 -1.83 62.3 -2.7
|
||
Mn+2 + 2 NO3- = Mn(NO3)2
|
||
-log_k 0.6
|
||
-delta_h -0.396 kcal
|
||
-Vm 6.16 0 29.4 0 0.9
|
||
Mn+2 + F- = MnF+
|
||
-log_k 0.84
|
||
-gamma 5 0
|
||
Mn+2 = Mn+3 + e-
|
||
-log_k -25.51
|
||
-delta_h 25.8 kcal
|
||
-gamma 9 0
|
||
Al+3 + H2O = AlOH+2 + H+
|
||
-log_k -5
|
||
-delta_h 11.49 kcal
|
||
-analytic -38.253 0 -656.27 14.327
|
||
-gamma 5.4 0
|
||
-Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353
|
||
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
|
||
-log_k -10.1
|
||
-delta_h 26.9 kcal
|
||
-gamma 5.4 0
|
||
-analytic 88.5 0 -9391.6 -27.121
|
||
Al+3 + 3 H2O = Al(OH)3 + 3 H+
|
||
-log_k -16.9
|
||
-delta_h 39.89 kcal
|
||
-analytic 226.374 0 -18247.8 -73.597
|
||
Al+3 + 4 H2O = Al(OH)4- + 4 H+
|
||
-log_k -22.7
|
||
-delta_h 42.3 kcal
|
||
-analytic 51.578 0 -11168.9 -14.865
|
||
-gamma 4.5 0
|
||
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
|
||
Al+3 + SO4-2 = AlSO4+
|
||
-log_k 3.5
|
||
-delta_h 2.29 kcal
|
||
-gamma 4.5 0
|
||
Al+3 + 2 SO4-2 = Al(SO4)2-
|
||
-log_k 5
|
||
-delta_h 3.11 kcal
|
||
-gamma 4.5 0
|
||
Al+3 + HSO4- = AlHSO4+2
|
||
-log_k 0.46
|
||
Al+3 + F- = AlF+2
|
||
-log_k 7
|
||
-delta_h 1.06 kcal
|
||
-gamma 5.4 0
|
||
Al+3 + 2 F- = AlF2+
|
||
-log_k 12.7
|
||
-delta_h 1.98 kcal
|
||
-gamma 5.4 0
|
||
Al+3 + 3 F- = AlF3
|
||
-log_k 16.8
|
||
-delta_h 2.16 kcal
|
||
Al+3 + 4 F- = AlF4-
|
||
-log_k 19.4
|
||
-delta_h 2.2 kcal
|
||
-gamma 4.5 0
|
||
# Al+3 + 5 F- = AlF5-2
|
||
# log_k 20.6
|
||
# delta_h 1.840 kcal
|
||
# Al+3 + 6 F- = AlF6-3
|
||
# log_k 20.6
|
||
# delta_h -1.670 kcal
|
||
H4SiO4 = H3SiO4- + H+
|
||
-log_k -9.83
|
||
-delta_h 6.12 kcal
|
||
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669
|
||
-gamma 4 0
|
||
-Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1
|
||
H4SiO4 = H2SiO4-2 + 2 H+
|
||
-log_k -23
|
||
-delta_h 17.6 kcal
|
||
-analytic -294.0184 -0.07265 11204.49 108.18466 -1119669
|
||
-gamma 5.4 0
|
||
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
|
||
-log_k 30.18
|
||
-delta_h -16.26 kcal
|
||
-gamma 5 0
|
||
-Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt
|
||
Ba+2 + H2O = BaOH+ + H+
|
||
-log_k -13.47
|
||
-gamma 5 0
|
||
Ba+2 + CO3-2 = BaCO3
|
||
-log_k 2.71
|
||
-delta_h 3.55 kcal
|
||
-analytic 0.113 0.008721
|
||
-Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt
|
||
Ba+2 + HCO3- = BaHCO3+
|
||
-log_k 0.982
|
||
-delta_h 5.56 kcal
|
||
-analytic -3.0938 0.013669
|
||
Ba+2 + SO4-2 = BaSO4
|
||
-log_k 2.7
|
||
Sr+2 + H2O = SrOH+ + H+
|
||
-log_k -13.29
|
||
-gamma 5 0
|
||
Sr+2 + CO3-2 + H+ = SrHCO3+
|
||
-log_k 11.509
|
||
-delta_h 2.489 kcal
|
||
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
|
||
-gamma 5.4 0
|
||
Sr+2 + CO3-2 = SrCO3
|
||
-log_k 2.81
|
||
-delta_h 5.22 kcal
|
||
-analytic -1.019 0.012826
|
||
-Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt
|
||
Sr+2 + SO4-2 = SrSO4
|
||
-log_k 2.29
|
||
-delta_h 2.08 kcal
|
||
-Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility
|
||
Li+ + SO4-2 = LiSO4-
|
||
-log_k 0.64
|
||
-gamma 5 0
|
||
Cu+2 + e- = Cu+
|
||
-log_k 2.72
|
||
-delta_h 1.65 kcal
|
||
-gamma 2.5 0
|
||
Cu+ + 2 Cl- = CuCl2-
|
||
-log_k 5.5
|
||
-delta_h -0.42 kcal
|
||
-gamma 4 0
|
||
Cu+ + 3 Cl- = CuCl3-2
|
||
-log_k 5.7
|
||
-delta_h 0.26 kcal
|
||
-gamma 5 0
|
||
Cu+2 + CO3-2 = CuCO3
|
||
-log_k 6.73
|
||
Cu+2 + 2 CO3-2 = Cu(CO3)2-2
|
||
-log_k 9.83
|
||
Cu+2 + HCO3- = CuHCO3+
|
||
-log_k 2.7
|
||
Cu+2 + Cl- = CuCl+
|
||
-log_k 0.43
|
||
-delta_h 8.65 kcal
|
||
-gamma 4 0
|
||
-Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1
|
||
Cu+2 + 2 Cl- = CuCl2
|
||
-log_k 0.16
|
||
-delta_h 10.56 kcal
|
||
-Vm 26.8 0 -136
|
||
Cu+2 + 3 Cl- = CuCl3-
|
||
-log_k -2.29
|
||
-delta_h 13.69 kcal
|
||
-gamma 4 0
|
||
Cu+2 + 4 Cl- = CuCl4-2
|
||
-log_k -4.59
|
||
-delta_h 17.78 kcal
|
||
-gamma 5 0
|
||
Cu+2 + F- = CuF+
|
||
-log_k 1.26
|
||
-delta_h 1.62 kcal
|
||
Cu+2 + H2O = CuOH+ + H+
|
||
-log_k -8
|
||
-gamma 4 0
|
||
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
|
||
-log_k -13.68
|
||
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
|
||
-log_k -26.9
|
||
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
|
||
-log_k -39.6
|
||
2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+
|
||
-log_k -10.359
|
||
-delta_h 17.539 kcal
|
||
-analytical 2.497 0 -3833
|
||
Cu+2 + SO4-2 = CuSO4
|
||
-log_k 2.31
|
||
-delta_h 1.22 kcal
|
||
-Vm 5.21 0 -14.6
|
||
Cu+2 + 3 HS- = Cu(HS)3-
|
||
-log_k 25.9
|
||
Zn+2 + H2O = ZnOH+ + H+
|
||
-log_k -8.96
|
||
-delta_h 13.4 kcal
|
||
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
|
||
-log_k -16.9
|
||
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
|
||
-log_k -28.4
|
||
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
|
||
-log_k -41.2
|
||
Zn+2 + Cl- = ZnCl+
|
||
-log_k 0.43
|
||
-delta_h 7.79 kcal
|
||
-gamma 4 0
|
||
-Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1
|
||
Zn+2 + 2 Cl- = ZnCl2
|
||
-log_k 0.45
|
||
-delta_h 8.5 kcal
|
||
-Vm -10.1 4.57 241 -2.97 -1e-3
|
||
Zn+2 + 3 Cl- = ZnCl3-
|
||
-log_k 0.5
|
||
-delta_h 9.56 kcal
|
||
-gamma 4 0
|
||
-Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1
|
||
Zn+2 + 4 Cl- = ZnCl4-2
|
||
-log_k 0.2
|
||
-delta_h 10.96 kcal
|
||
-gamma 5 0
|
||
-Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1
|
||
Zn+2 + H2O + Cl- = ZnOHCl + H+
|
||
-log_k -7.48
|
||
Zn+2 + 2 HS- = Zn(HS)2
|
||
-log_k 14.94
|
||
Zn+2 + 3 HS- = Zn(HS)3-
|
||
-log_k 16.1
|
||
Zn+2 + CO3-2 = ZnCO3
|
||
-log_k 5.3
|
||
Zn+2 + 2 CO3-2 = Zn(CO3)2-2
|
||
-log_k 9.63
|
||
Zn+2 + HCO3- = ZnHCO3+
|
||
-log_k 2.1
|
||
Zn+2 + SO4-2 = ZnSO4
|
||
-log_k 2.37
|
||
-delta_h 1.36 kcal
|
||
-Vm 2.51 0 18.8
|
||
Zn+2 + 2 SO4-2 = Zn(SO4)2-2
|
||
-log_k 3.28
|
||
-Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1
|
||
Zn+2 + Br- = ZnBr+
|
||
-log_k -0.58
|
||
Zn+2 + 2 Br- = ZnBr2
|
||
-log_k -0.98
|
||
Zn+2 + F- = ZnF+
|
||
-log_k 1.15
|
||
-delta_h 2.22 kcal
|
||
Cd+2 + H2O = CdOH+ + H+
|
||
-log_k -10.08
|
||
-delta_h 13.1 kcal
|
||
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
|
||
-log_k -20.35
|
||
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
|
||
-log_k -33.3
|
||
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
|
||
-log_k -47.35
|
||
2 Cd+2 + H2O = Cd2OH+3 + H+
|
||
-log_k -9.39
|
||
-delta_h 10.9 kcal
|
||
Cd+2 + H2O + Cl- = CdOHCl + H+
|
||
-log_k -7.404
|
||
-delta_h 4.355 kcal
|
||
Cd+2 + NO3- = CdNO3+
|
||
-log_k 0.4
|
||
-delta_h -5.2 kcal
|
||
-Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1
|
||
Cd+2 + Cl- = CdCl+
|
||
-log_k 1.98
|
||
-delta_h 0.59 kcal
|
||
-Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1
|
||
Cd+2 + 2 Cl- = CdCl2
|
||
-log_k 2.6
|
||
-delta_h 1.24 kcal
|
||
-Vm 5.53
|
||
Cd+2 + 3 Cl- = CdCl3-
|
||
-log_k 2.4
|
||
-delta_h 3.9 kcal
|
||
-Vm 4.6 0 83.9 0 0 0 0 0 0 1
|
||
Cd+2 + CO3-2 = CdCO3
|
||
-log_k 2.9
|
||
Cd+2 + 2 CO3-2 = Cd(CO3)2-2
|
||
-log_k 6.4
|
||
Cd+2 + HCO3- = CdHCO3+
|
||
-log_k 1.5
|
||
Cd+2 + SO4-2 = CdSO4
|
||
-log_k 2.46
|
||
-delta_h 1.08 kcal
|
||
-Vm 10.4 0 57.9
|
||
Cd+2 + 2 SO4-2 = Cd(SO4)2-2
|
||
-log_k 3.5
|
||
-Vm -6.29 0 -93 0 9.5 7 0 0 0 1
|
||
Cd+2 + Br- = CdBr+
|
||
-log_k 2.17
|
||
-delta_h -0.81 kcal
|
||
Cd+2 + 2 Br- = CdBr2
|
||
-log_k 2.9
|
||
Cd+2 + F- = CdF+
|
||
-log_k 1.1
|
||
Cd+2 + 2 F- = CdF2
|
||
-log_k 1.5
|
||
Cd+2 + HS- = CdHS+
|
||
-log_k 10.17
|
||
Cd+2 + 2 HS- = Cd(HS)2
|
||
-log_k 16.53
|
||
Cd+2 + 3 HS- = Cd(HS)3-
|
||
-log_k 18.71
|
||
Cd+2 + 4 HS- = Cd(HS)4-2
|
||
-log_k 20.9
|
||
Pb+2 + H2O = PbOH+ + H+
|
||
-log_k -7.71
|
||
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
|
||
-log_k -17.12
|
||
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
|
||
-log_k -28.06
|
||
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
|
||
-log_k -39.7
|
||
2 Pb+2 + H2O = Pb2OH+3 + H+
|
||
-log_k -6.36
|
||
Pb+2 + Cl- = PbCl+
|
||
-log_k 1.6
|
||
-delta_h 4.38 kcal
|
||
-Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt
|
||
Pb+2 + 2 Cl- = PbCl2
|
||
-log_k 1.8
|
||
-delta_h 1.08 kcal
|
||
-Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt
|
||
Pb+2 + 3 Cl- = PbCl3-
|
||
-log_k 1.7
|
||
-delta_h 2.17 kcal
|
||
-Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt
|
||
Pb+2 + 4 Cl- = PbCl4-2
|
||
-log_k 1.38
|
||
-delta_h 3.53 kcal
|
||
-Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt
|
||
Pb+2 + CO3-2 = PbCO3
|
||
-log_k 7.24
|
||
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
|
||
-log_k 10.64
|
||
Pb+2 + HCO3- = PbHCO3+
|
||
-log_k 2.9
|
||
Pb+2 + SO4-2 = PbSO4
|
||
-log_k 2.75
|
||
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
|
||
-log_k 3.47
|
||
Pb+2 + 2 HS- = Pb(HS)2
|
||
-log_k 15.27
|
||
Pb+2 + 3 HS- = Pb(HS)3-
|
||
-log_k 16.57
|
||
3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+
|
||
-log_k -23.88
|
||
-delta_h 26.5 kcal
|
||
Pb+2 + NO3- = PbNO3+
|
||
-log_k 1.17
|
||
Pb+2 + Br- = PbBr+
|
||
-log_k 1.77
|
||
-delta_h 2.88 kcal
|
||
Pb+2 + 2 Br- = PbBr2
|
||
-log_k 1.44
|
||
Pb+2 + F- = PbF+
|
||
-log_k 1.25
|
||
Pb+2 + 2 F- = PbF2
|
||
-log_k 2.56
|
||
Pb+2 + 3 F- = PbF3-
|
||
-log_k 3.42
|
||
Pb+2 + 4 F- = PbF4-2
|
||
-log_k 3.1
|
||
|
||
PHASES
|
||
Calcite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
-log_k -8.48
|
||
-delta_h -2.297 kcal
|
||
-analytic 17.118 -0.046528 -3496 # 0 - 250<35>C, Ellis, 1959, Plummer and Busenberg, 1982
|
||
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
|
||
Aragonite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
-log_k -8.336
|
||
-delta_h -2.589 kcal
|
||
-analytic -171.9773 -0.077993 2903.293 71.595
|
||
-Vm 34.04
|
||
Dolomite
|
||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||
-log_k -17.09
|
||
-delta_h -9.436 kcal
|
||
-analytic 31.283 -0.0898 -6438 # 25<32>C: Hemingway and Robie, 1994; 50<35>175<37>C: B<>n<EFBFBD>zeth et al., 2018, GCA 224, 262-275
|
||
-Vm 64.5
|
||
Siderite
|
||
FeCO3 = Fe+2 + CO3-2
|
||
-log_k -10.89
|
||
-delta_h -2.48 kcal
|
||
-Vm 29.2
|
||
Rhodochrosite
|
||
MnCO3 = Mn+2 + CO3-2
|
||
-log_k -11.13
|
||
-delta_h -1.43 kcal
|
||
-Vm 31.1
|
||
Strontianite
|
||
SrCO3 = Sr+2 + CO3-2
|
||
-log_k -9.271
|
||
-delta_h -0.4 kcal
|
||
-analytic 155.0305 0 -7239.594 -56.58638
|
||
-Vm 39.69
|
||
Witherite
|
||
BaCO3 = Ba+2 + CO3-2
|
||
-log_k -8.562
|
||
-delta_h 0.703 kcal
|
||
-analytic 607.642 0.121098 -20011.25 -236.4948
|
||
-Vm 46
|
||
Gypsum
|
||
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
|
||
-log_k -4.58
|
||
-delta_h -0.109 kcal
|
||
-analytic 68.2401 0 -3221.51 -25.0627
|
||
-analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62
|
||
-Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol)
|
||
Anhydrite
|
||
CaSO4 = Ca+2 + SO4-2
|
||
-log_k -4.36
|
||
-delta_h -1.71 kcal
|
||
-analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323
|
||
-Vm 46.1 # 136.14 / 2.95
|
||
Celestite
|
||
SrSO4 = Sr+2 + SO4-2
|
||
-log_k -6.63
|
||
-delta_h -4.037 kcal
|
||
# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
|
||
-analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464
|
||
-Vm 46.4
|
||
Barite
|
||
BaSO4 = Ba+2 + SO4-2
|
||
-log_k -9.97
|
||
-delta_h 6.35 kcal
|
||
-analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960
|
||
-Vm 52.9
|
||
Arcanite
|
||
K2SO4 = SO4-2 + 2 K+
|
||
log_k -1.776; -delta_h 5 kcal
|
||
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
|
||
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
|
||
-Vm 65.5
|
||
Mirabilite
|
||
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
|
||
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
|
||
Vm 216
|
||
Thenardite
|
||
Na2SO4 = 2 Na+ + SO4-2
|
||
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
|
||
-Vm 52.9
|
||
Epsomite
|
||
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
|
||
log_k -1.74; -delta_h 10.57 kJ
|
||
-analytical_expression -3.59 6.21e-3
|
||
Vm 147
|
||
Hexahydrite
|
||
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
|
||
log_k -1.57; -delta_h 2.35 kJ
|
||
-analytical_expression -1.978 1.38e-3
|
||
Vm 132
|
||
Kieserite
|
||
MgSO4:H2O = Mg+2 + SO4-2 + H2O
|
||
log_k -1.16; -delta_h 9.22 kJ
|
||
-analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5
|
||
Vm 53.8
|
||
Hydroxyapatite
|
||
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
|
||
-log_k -3.421
|
||
-delta_h -36.155 kcal
|
||
-Vm 128.9
|
||
Fluorite
|
||
CaF2 = Ca+2 + 2 F-
|
||
-log_k -10.6
|
||
-delta_h 4.69 kcal
|
||
-analytic 66.348 0 -4298.2 -25.271
|
||
-Vm 15.7
|
||
SiO2(a)
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -2.71
|
||
-delta_h 3.34 kcal
|
||
-analytic -0.26 0 -731
|
||
Chalcedony
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.55
|
||
-delta_h 4.72 kcal
|
||
-analytic -0.09 0 -1032
|
||
-Vm 23.1
|
||
Quartz
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.98
|
||
-delta_h 5.99 kcal
|
||
-analytic 0.41 0 -1309
|
||
-Vm 22.67
|
||
Gibbsite
|
||
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
||
-log_k 8.11
|
||
-delta_h -22.8 kcal
|
||
-Vm 32.22
|
||
Al(OH)3(a)
|
||
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
|
||
-log_k 10.8
|
||
-delta_h -26.5 kcal
|
||
Kaolinite
|
||
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
|
||
-log_k 7.435
|
||
-delta_h -35.3 kcal
|
||
-Vm 99.35
|
||
Albite
|
||
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
|
||
-log_k -18.002
|
||
-delta_h 25.896 kcal
|
||
-Vm 101.31
|
||
Anorthite
|
||
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
|
||
-log_k -19.714
|
||
-delta_h 11.58 kcal
|
||
-Vm 105.05
|
||
K-feldspar
|
||
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
|
||
-log_k -20.573
|
||
-delta_h 30.82 kcal
|
||
-Vm 108.15
|
||
K-mica
|
||
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
|
||
-log_k 12.703
|
||
-delta_h -59.376 kcal
|
||
Chlorite(14A)
|
||
Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O
|
||
-log_k 68.38
|
||
-delta_h -151.494 kcal
|
||
Ca-Montmorillonite
|
||
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
|
||
-log_k -45.027
|
||
-delta_h 58.373 kcal
|
||
-Vm 156.16
|
||
Talc
|
||
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
|
||
-log_k 21.399
|
||
-delta_h -46.352 kcal
|
||
-Vm 68.34
|
||
Illite
|
||
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+
|
||
-log_k -40.267
|
||
-delta_h 54.684 kcal
|
||
-Vm 141.48
|
||
Chrysotile
|
||
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
|
||
-log_k 32.2
|
||
-delta_h -46.8 kcal
|
||
-analytic 13.248 0 10217.1 -6.1894
|
||
-Vm 106.5808 # 277.11/2.60
|
||
Sepiolite
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
|
||
-log_k 15.76
|
||
-delta_h -10.7 kcal
|
||
-Vm 143.765
|
||
Sepiolite(d)
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4
|
||
-log_k 18.66
|
||
Hematite
|
||
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
|
||
-log_k -4.008
|
||
-delta_h -30.845 kcal
|
||
-Vm 30.39
|
||
Goethite
|
||
FeOOH + 3 H+ = Fe+3 + 2 H2O
|
||
-log_k -1
|
||
-delta_h -14.48 kcal
|
||
-Vm 20.84
|
||
Fe(OH)3(a)
|
||
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
|
||
-log_k 4.891
|
||
Pyrite
|
||
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
|
||
-log_k -18.479
|
||
-delta_h 11.3 kcal
|
||
-Vm 23.48
|
||
FeS(ppt)
|
||
FeS + H+ = Fe+2 + HS-
|
||
-log_k -3.915
|
||
Mackinawite
|
||
FeS + H+ = Fe+2 + HS-
|
||
-log_k -4.648
|
||
-Vm 20.45
|
||
Sulfur
|
||
S + 2 H+ + 2 e- = H2S
|
||
-log_k 4.882
|
||
-delta_h -9.5 kcal
|
||
Vivianite
|
||
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
|
||
-log_k -36
|
||
Pyrolusite # H2O added for surface calc's
|
||
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
|
||
-log_k 41.38
|
||
-delta_h -65.11 kcal
|
||
Hausmannite
|
||
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
|
||
-log_k 61.03
|
||
-delta_h -100.64 kcal
|
||
Manganite
|
||
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
|
||
-log_k 25.34
|
||
Pyrochroite
|
||
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
|
||
-log_k 15.2
|
||
Halite
|
||
NaCl = Cl- + Na+
|
||
log_k 1.57
|
||
-delta_h 1.37
|
||
#-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915.
|
||
-Vm 27.1
|
||
Sylvite
|
||
KCl = K+ + Cl-
|
||
log_k 0.9
|
||
-delta_h 8.5
|
||
# -analytic 3.984 0.0 -919.55
|
||
Vm 37.5
|
||
# Gases...
|
||
CO2(g)
|
||
CO2 = CO2
|
||
-log_k -1.468
|
||
-delta_h -4.776 kcal
|
||
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
|
||
-T_c 304.2 # critical T, K
|
||
-P_c 72.86 # critical P, atm
|
||
-Omega 0.225 # acentric factor
|
||
H2O(g)
|
||
H2O = H2O
|
||
-log_k 1.506; delta_h -44.03 kJ
|
||
-T_c 647.3; -P_c 217.6; -Omega 0.344
|
||
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
|
||
O2(g)
|
||
O2 = O2
|
||
-log_k -2.8983
|
||
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
|
||
-T_c 154.6; -P_c 49.8; -Omega 0.021
|
||
H2(g)
|
||
H2 = H2
|
||
-log_k -3.105
|
||
-delta_h -4.184 kJ
|
||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||
-T_c 33.2; -P_c 12.8; -Omega -0.225
|
||
N2(g)
|
||
N2 = N2
|
||
-log_k -3.1864
|
||
-analytic -58.453 1.818e-3 3199 17.909 -27460
|
||
-T_c 126.2; -P_c 33.5; -Omega 0.039
|
||
H2S(g)
|
||
H2S = H+ + HS-
|
||
log_k -7.93
|
||
-delta_h 9.1
|
||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||
-T_c 373.2; -P_c 88.2; -Omega 0.1
|
||
CH4(g)
|
||
CH4 = CH4
|
||
-log_k -2.8
|
||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
|
||
-T_c 190.6; -P_c 45.4; -Omega 0.008
|
||
#Amm(g)
|
||
# Amm = Amm
|
||
NH3(g)
|
||
NH3 = NH3
|
||
-log_k 1.7966
|
||
-analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192
|
||
-T_c 405.6; -P_c 111.3; -Omega 0.25
|
||
# redox-uncoupled gases
|
||
Oxg(g)
|
||
Oxg = Oxg
|
||
-analytic -7.5001 7.8981e-3 0 0 2.0027e5
|
||
-T_c 154.6; -P_c 49.8; -Omega 0.021
|
||
Hdg(g)
|
||
Hdg = Hdg
|
||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||
-T_c 33.2; -P_c 12.8; -Omega -0.225
|
||
Ntg(g)
|
||
Ntg = Ntg
|
||
-analytic -58.453 1.818e-3 3199 17.909 -27460
|
||
T_c 126.2; -P_c 33.5; -Omega 0.039
|
||
Mtg(g)
|
||
Mtg = Mtg
|
||
-log_k -2.8
|
||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100<30>C
|
||
-T_c 190.6; -P_c 45.4; -Omega 0.008
|
||
H2Sg(g)
|
||
H2Sg = H+ + HSg-
|
||
log_k -7.93
|
||
-delta_h 9.1
|
||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300<30>C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||
-T_c 373.2; -P_c 88.2; -Omega 0.1
|
||
Melanterite
|
||
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
|
||
-log_k -2.209
|
||
-delta_h 4.91 kcal
|
||
-analytic 1.447 -0.004153 0 0 -214949
|
||
Alunite
|
||
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O
|
||
-log_k -1.4
|
||
-delta_h -50.25 kcal
|
||
Jarosite-K
|
||
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
|
||
-log_k -9.21
|
||
-delta_h -31.28 kcal
|
||
Zn(OH)2(e)
|
||
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
|
||
-log_k 11.5
|
||
Smithsonite
|
||
ZnCO3 = Zn+2 + CO3-2
|
||
-log_k -10
|
||
-delta_h -4.36 kcal
|
||
Sphalerite
|
||
ZnS + H+ = Zn+2 + HS-
|
||
-log_k -11.618
|
||
-delta_h 8.25 kcal
|
||
Willemite 289
|
||
Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4
|
||
-log_k 15.33
|
||
-delta_h -33.37 kcal
|
||
Cd(OH)2
|
||
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
|
||
-log_k 13.65
|
||
Otavite 315
|
||
CdCO3 = Cd+2 + CO3-2
|
||
-log_k -12.1
|
||
-delta_h -0.019 kcal
|
||
CdSiO3 328
|
||
CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4
|
||
-log_k 9.06
|
||
-delta_h -16.63 kcal
|
||
CdSO4 329
|
||
CdSO4 = Cd+2 + SO4-2
|
||
-log_k -0.1
|
||
-delta_h -14.74 kcal
|
||
Cerussite 365
|
||
PbCO3 = Pb+2 + CO3-2
|
||
-log_k -13.13
|
||
-delta_h 4.86 kcal
|
||
Anglesite 384
|
||
PbSO4 = Pb+2 + SO4-2
|
||
-log_k -7.79
|
||
-delta_h 2.15 kcal
|
||
Pb(OH)2 389
|
||
Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O
|
||
-log_k 8.15
|
||
-delta_h -13.99 kcal
|
||
|
||
EXCHANGE_MASTER_SPECIES
|
||
X X-
|
||
EXCHANGE_SPECIES
|
||
X- = X-
|
||
-log_k 0
|
||
|
||
Na+ + X- = NaX
|
||
-log_k 0
|
||
-gamma 4.08 0.082
|
||
|
||
K+ + X- = KX
|
||
-log_k 0.7
|
||
-gamma 3.5 0.015
|
||
-delta_h -4.3 # Jardine & Sparks, 1984
|
||
|
||
Li+ + X- = LiX
|
||
-log_k -0.08
|
||
-gamma 6 0
|
||
-delta_h 1.4 # Merriam & Thomas, 1956
|
||
|
||
# !!!!!
|
||
# H+ + X- = HX
|
||
# -log_k 1.0
|
||
# -gamma 9.0 0
|
||
|
||
# AmmH+ + X- = AmmHX
|
||
NH4+ + X- = NH4X
|
||
-log_k 0.6
|
||
-gamma 2.5 0
|
||
-delta_h -2.4 # Laudelout et al., 1968
|
||
|
||
Ca+2 + 2 X- = CaX2
|
||
-log_k 0.8
|
||
-gamma 5 0.165
|
||
-delta_h 7.2 # Van Bladel & Gheyl, 1980
|
||
|
||
Mg+2 + 2 X- = MgX2
|
||
-log_k 0.6
|
||
-gamma 5.5 0.2
|
||
-delta_h 7.4 # Laudelout et al., 1968
|
||
|
||
Sr+2 + 2 X- = SrX2
|
||
-log_k 0.91
|
||
-gamma 5.26 0.121
|
||
-delta_h 5.5 # Laudelout et al., 1968
|
||
|
||
Ba+2 + 2 X- = BaX2
|
||
-log_k 0.91
|
||
-gamma 4 0.153
|
||
-delta_h 4.5 # Laudelout et al., 1968
|
||
|
||
Mn+2 + 2 X- = MnX2
|
||
-log_k 0.52
|
||
-gamma 6 0
|
||
|
||
Fe+2 + 2 X- = FeX2
|
||
-log_k 0.44
|
||
-gamma 6 0
|
||
|
||
Cu+2 + 2 X- = CuX2
|
||
-log_k 0.6
|
||
-gamma 6 0
|
||
|
||
Zn+2 + 2 X- = ZnX2
|
||
-log_k 0.8
|
||
-gamma 5 0
|
||
|
||
Cd+2 + 2 X- = CdX2
|
||
-log_k 0.8
|
||
-gamma 0 0
|
||
|
||
Pb+2 + 2 X- = PbX2
|
||
-log_k 1.05
|
||
-gamma 0 0
|
||
|
||
Al+3 + 3 X- = AlX3
|
||
-log_k 0.41
|
||
-gamma 9 0
|
||
|
||
AlOH+2 + 2 X- = AlOHX2
|
||
-log_k 0.89
|
||
-gamma 0 0
|
||
|
||
SURFACE_MASTER_SPECIES
|
||
Hfo_s Hfo_sOH
|
||
Hfo_w Hfo_wOH
|
||
SURFACE_SPECIES
|
||
# All surface data from
|
||
# Dzombak and Morel, 1990
|
||
#
|
||
#
|
||
# Acid-base data from table 5.7
|
||
#
|
||
# strong binding site--Hfo_s,
|
||
|
||
Hfo_sOH = Hfo_sOH
|
||
-log_k 0
|
||
|
||
Hfo_sOH + H+ = Hfo_sOH2+
|
||
-log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_sOH = Hfo_sO- + H+
|
||
-log_k -8.93 # = -pKa2,int
|
||
|
||
# weak binding site--Hfo_w
|
||
|
||
Hfo_wOH = Hfo_wOH
|
||
-log_k 0
|
||
|
||
Hfo_wOH + H+ = Hfo_wOH2+
|
||
-log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_wOH = Hfo_wO- + H+
|
||
-log_k -8.93 # = -pKa2,int
|
||
###############################################
|
||
# CATIONS #
|
||
###############################################
|
||
#
|
||
# Cations from table 10.1 or 10.5
|
||
#
|
||
# Calcium
|
||
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
|
||
-log_k 4.97
|
||
|
||
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
|
||
-log_k -5.85
|
||
# Strontium
|
||
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
|
||
-log_k 5.01
|
||
|
||
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
|
||
-log_k -6.58
|
||
|
||
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+
|
||
-log_k -17.6
|
||
# Barium
|
||
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
|
||
-log_k 5.46
|
||
|
||
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
||
-log_k -7.2 # table 10.5
|
||
#
|
||
# Cations from table 10.2
|
||
#
|
||
# Cadmium
|
||
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
|
||
-log_k 0.47
|
||
|
||
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
|
||
-log_k -2.91
|
||
# Zinc
|
||
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
|
||
-log_k 0.99
|
||
|
||
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
|
||
-log_k -1.99
|
||
# Copper
|
||
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
|
||
-log_k 2.89
|
||
|
||
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
|
||
-log_k 0.6 # table 10.5
|
||
# Lead
|
||
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
|
||
-log_k 4.65
|
||
|
||
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
|
||
-log_k 0.3 # table 10.5
|
||
#
|
||
# Derived constants table 10.5
|
||
#
|
||
# Magnesium
|
||
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
|
||
-log_k -4.6
|
||
# Manganese
|
||
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
||
-log_k -0.4 # table 10.5
|
||
|
||
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
||
-log_k -3.5 # table 10.5
|
||
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
|
||
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||
-log_k -0.95
|
||
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
||
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||
-log_k -2.98
|
||
|
||
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+
|
||
-log_k -11.55
|
||
###############################################
|
||
# ANIONS #
|
||
###############################################
|
||
#
|
||
# Anions from table 10.6
|
||
#
|
||
# Phosphate
|
||
Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O
|
||
-log_k 31.29
|
||
|
||
Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O
|
||
-log_k 25.39
|
||
|
||
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
|
||
-log_k 17.72
|
||
#
|
||
# Anions from table 10.7
|
||
#
|
||
# Borate
|
||
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
|
||
-log_k 0.62
|
||
#
|
||
# Anions from table 10.8
|
||
#
|
||
# Sulfate
|
||
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
|
||
-log_k 7.78
|
||
|
||
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
|
||
-log_k 0.79
|
||
#
|
||
# Derived constants table 10.10
|
||
#
|
||
Hfo_wOH + F- + H+ = Hfo_wF + H2O
|
||
-log_k 8.7
|
||
|
||
Hfo_wOH + F- = Hfo_wOHF-
|
||
-log_k 1.6
|
||
#
|
||
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
|
||
#
|
||
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
|
||
-log_k 12.56
|
||
|
||
Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O
|
||
-log_k 20.62
|
||
#
|
||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||
#
|
||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22
|
||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69
|
||
|
||
MEAN_GAMMAS
|
||
CaCl2 Ca+2 1 Cl- 2
|
||
CaSO4 Ca+2 1 SO4-2 1
|
||
CaCO3 Ca+2 1 CO3-2 1
|
||
Ca(OH)2 Ca+2 1 OH- 2
|
||
MgCl2 Mg+2 1 Cl- 2
|
||
MgSO4 Mg+2 1 SO4-2 1
|
||
MgCO3 Mg+2 1 CO3-2 1
|
||
Mg(OH)2 Mg+2 1 OH- 2
|
||
NaCl Na+ 1 Cl- 1
|
||
Na2SO4 Na+ 2 SO4-2 1
|
||
NaHCO3 Na+ 1 HCO3- 1
|
||
Na2CO3 Na+ 2 CO3-2 1
|
||
NaOH Na+ 1 OH- 1
|
||
KCl K+ 1 Cl- 1
|
||
K2SO4 K+ 2 SO4-2 1
|
||
HCO3 K+ 1 HCO3- 1
|
||
K2CO3 K+ 2 CO3-2 1
|
||
KOH K+ 1 OH- 1
|
||
HCl H+ 1 Cl- 1
|
||
H2SO4 H+ 2 SO4-2 1
|
||
HBr H+ 1 Br- 1
|
||
|
||
RATES
|
||
|
||
###########
|
||
#Quartz
|
||
###########
|
||
#
|
||
#######
|
||
# Example of quartz kinetic rates block:
|
||
# KINETICS
|
||
# Quartz
|
||
# -m0 158.8 # 90 % Qu
|
||
# -parms 0.146 1.5
|
||
# -step 3.1536e8 in 10
|
||
# -tol 1e-12
|
||
|
||
Quartz
|
||
-start
|
||
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
|
||
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
|
||
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
|
||
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
|
||
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
|
||
|
||
10 dif_temp = 1/TK - 1/298
|
||
20 pk_w = 13.7 + 4700.4 * dif_temp
|
||
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
|
||
# Integrate...
|
||
50 SAVE moles * TIME
|
||
-end
|
||
|
||
###########
|
||
#K-feldspar
|
||
###########
|
||
#
|
||
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
||
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
||
# vol. 31, p. 485-541.
|
||
#
|
||
# As described in:
|
||
# Appelo and Postma, 2005, Geochemistry, groundwater
|
||
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
||
# p. 162-163 and 395-399.
|
||
#
|
||
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
|
||
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
|
||
# GFW Kspar 0.278 kg/mol
|
||
#
|
||
# Moles of Kspar per liter pore space calculation:
|
||
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
||
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
|
||
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
|
||
#
|
||
# Specific area calculation:
|
||
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
|
||
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
|
||
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
|
||
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
||
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
|
||
#
|
||
#
|
||
# Example of KINETICS data block for K-feldspar rate:
|
||
# KINETICS 1
|
||
# K-feldspar
|
||
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
|
||
# -m 2.18 # Moles per L pore space
|
||
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
|
||
# -time 1.5 year in 40
|
||
|
||
K-feldspar
|
||
-start
|
||
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
||
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
|
||
3 REM PARM(2) = Adjusts lab rate to field rate
|
||
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
||
5 REM K-Feldspar parameters
|
||
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
|
||
20 RESTORE 10
|
||
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
||
40 DATA 3500, 2000, 2500, 2000
|
||
50 RESTORE 40
|
||
60 READ e_H, e_H2O, e_OH, e_CO2
|
||
70 pk_CO2 = 13
|
||
80 n_CO2 = 0.6
|
||
100 REM Generic rate follows
|
||
110 dif_temp = 1/TK - 1/281
|
||
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||
130 REM rate by H+
|
||
140 pk_H = pk_H + e_H * dif_temp
|
||
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
||
160 REM rate by hydrolysis
|
||
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
||
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
||
190 REM rate by OH-
|
||
200 pk_OH = pk_OH + e_OH * dif_temp
|
||
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
||
220 REM rate by CO2
|
||
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
||
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
||
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
||
260 area = PARM(1) * M0 *(M/M0)^0.67
|
||
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
|
||
280 moles = rate * TIME
|
||
290 SAVE moles
|
||
-end
|
||
|
||
|
||
###########
|
||
#Albite
|
||
###########
|
||
#
|
||
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
||
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
||
# vol. 31, p. 485-541.
|
||
#
|
||
# As described in:
|
||
# Appelo and Postma, 2005, Geochemistry, groundwater
|
||
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
||
# p. 162-163 and 395-399.
|
||
#
|
||
# Example of KINETICS data block for Albite rate:
|
||
# KINETICS 1
|
||
# Albite
|
||
# -m0 0.46 # 2% Albite, 0.1 mm cubes
|
||
# -m 0.46 # Moles per L pore space
|
||
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
|
||
# -time 1.5 year in 40
|
||
#
|
||
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
|
||
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
|
||
# GFW Albite 0.262 kg/mol
|
||
#
|
||
# Moles of Albite per liter pore space calculation:
|
||
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
||
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
|
||
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
|
||
#
|
||
# Specific area calculation:
|
||
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
|
||
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
|
||
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
|
||
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
||
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
|
||
|
||
Albite
|
||
-start
|
||
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
||
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
|
||
3 REM PARM(2) = Adjusts lab rate to field rate
|
||
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
||
5 REM Albite parameters
|
||
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
|
||
20 RESTORE 10
|
||
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
||
40 DATA 3500, 2000, 2500, 2000
|
||
50 RESTORE 40
|
||
60 READ e_H, e_H2O, e_OH, e_CO2
|
||
70 pk_CO2 = 13
|
||
80 n_CO2 = 0.6
|
||
100 REM Generic rate follows
|
||
110 dif_temp = 1/TK - 1/281
|
||
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||
130 REM rate by H+
|
||
140 pk_H = pk_H + e_H * dif_temp
|
||
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
||
160 REM rate by hydrolysis
|
||
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
||
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
||
190 REM rate by OH-
|
||
200 pk_OH = pk_OH + e_OH * dif_temp
|
||
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
||
220 REM rate by CO2
|
||
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
||
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
||
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
||
260 area = PARM(1) * M0 *(M/M0)^0.67
|
||
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
|
||
280 moles = rate * TIME
|
||
290 SAVE moles
|
||
-end
|
||
|
||
########
|
||
#Calcite
|
||
########
|
||
# Example of KINETICS data block for calcite rate,
|
||
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257
|
||
# KINETICS 1
|
||
# Calcite
|
||
# -tol 1e-8
|
||
# -m0 3.e-3
|
||
# -m 3.e-3
|
||
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
|
||
# -time 1 day
|
||
|
||
Calcite
|
||
-start
|
||
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
|
||
2 REM PARM(2) = exponent for M/M0
|
||
|
||
10 si_cc = SI("Calcite")
|
||
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
|
||
30 k1 = 10^(0.198 - 444 / TK )
|
||
40 k2 = 10^(2.84 - 2177 /TK )
|
||
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK)
|
||
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK )
|
||
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
|
||
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
|
||
120 rate = rate * (1 - 10^(2/3*si_cc))
|
||
130 moles = rate * 0.001 * TIME # convert from mmol to mol
|
||
200 SAVE moles
|
||
-end
|
||
|
||
#######
|
||
#Pyrite
|
||
#######
|
||
#
|
||
# Williamson, M.A. and Rimstidt, J.D., 1994,
|
||
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
|
||
# rate equation is mol m^-2 s^-1.
|
||
#
|
||
# Example of KINETICS data block for pyrite rate:
|
||
# KINETICS 1
|
||
# Pyrite
|
||
# -tol 1e-8
|
||
# -m0 5.e-4
|
||
# -m 5.e-4
|
||
# -parms 0.3 0.67 .5 -0.11
|
||
# -time 1 day in 10
|
||
Pyrite
|
||
-start
|
||
1 REM Williamson and Rimstidt, 1994
|
||
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
|
||
3 REM PARM(2) = exp for (M/M0)
|
||
4 REM PARM(3) = exp for O2
|
||
5 REM PARM(4) = exp for H+
|
||
|
||
10 REM Dissolution in presence of DO
|
||
20 if (M <= 0) THEN GOTO 200
|
||
30 if (SI("Pyrite") >= 0) THEN GOTO 200
|
||
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
|
||
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
|
||
60 moles = 10^(log_area + log_rate) * TIME
|
||
200 SAVE moles
|
||
-end
|
||
|
||
##########
|
||
#Organic_C
|
||
##########
|
||
#
|
||
# Example of KINETICS data block for SOC (sediment organic carbon):
|
||
# KINETICS 1
|
||
# Organic_C
|
||
# -formula C
|
||
# -tol 1e-8
|
||
# -m 5e-3 # SOC in mol
|
||
# -time 30 year in 15
|
||
Organic_C
|
||
-start
|
||
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
|
||
2 REM Electron acceptors: O2, NO3, and SO4
|
||
|
||
10 if (M <= 0) THEN GOTO 200
|
||
20 mO2 = MOL("O2")
|
||
30 mNO3 = TOT("N(5)")
|
||
40 mSO4 = TOT("S(6)")
|
||
50 k_O2 = 1.57e-9 # 1/sec
|
||
60 k_NO3 = 1.67e-11 # 1/sec
|
||
70 k_SO4 = 1.e-13 # 1/sec
|
||
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
|
||
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
|
||
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
|
||
110 moles = rate * M * (M/M0) * TIME
|
||
200 SAVE moles
|
||
-end
|
||
|
||
###########
|
||
#Pyrolusite
|
||
###########
|
||
#
|
||
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
|
||
# Rate equation given as mol L^-1 s^-1
|
||
#
|
||
# Example of KINETICS data block for Pyrolusite
|
||
# KINETICS 1-12
|
||
# Pyrolusite
|
||
# -tol 1.e-7
|
||
# -m0 0.1
|
||
# -m 0.1
|
||
# -time 0.5 day in 10
|
||
Pyrolusite
|
||
-start
|
||
10 if (M <= 0) THEN GOTO 200
|
||
20 sr_pl = SR("Pyrolusite")
|
||
30 if (sr_pl > 1) THEN GOTO 100
|
||
40 REM sr_pl <= 1, undersaturated
|
||
50 Fe_t = TOT("Fe(2)")
|
||
60 if Fe_t < 1e-8 then goto 200
|
||
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
|
||
80 GOTO 200
|
||
100 REM sr_pl > 1, supersaturated
|
||
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
|
||
200 SAVE moles * SOLN_VOL
|
||
-end
|
||
|
||
END
|
||
# =============================================================================================
|
||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
|
||
#precipitated, indicates an initial precipitate that is less crystalline.
|
||
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
|
||
# =============================================================================================
|
||
# For the reaction aA + bB = cC + dD,
|
||
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
|
||
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
|
||
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
|
||
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
|
||
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
|
||
# hard-coded in calc_PR():
|
||
# kij CH4 CO2 H2S N2
|
||
# H2O 0.49 0.19 0.19 0.49
|
||
# =============================================================================================
|
||
# The molar volumes of solids are entered with
|
||
# -Vm vm cm3/mol
|
||
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
|
||
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
|
||
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
|
||
# --------------------
|
||
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
|
||
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
|
||
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
|
||
# The volume (cm3/mol) is
|
||
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
|
||
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
|
||
# + z^2 / 2 * Av * f(I^0.5)
|
||
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
|
||
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
|
||
# 41.84 transforms cal/bar/mol into cm3/mol.
|
||
# pb is pressure in bar.
|
||
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
|
||
# W is fitted on measured solution densities.
|
||
# z is charge of the solute species.
|
||
# Av is the Debye-H<>ckel limiting slope (DH_AV in PHREEQC basic).
|
||
# a0 is the ion-size parameter in the extended Debye-H<>ckel equation:
|
||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||
# a0 = -gamma x for cations, = 0 for anions.
|
||
# For details, consult ref. 1.
|
||
# =============================================================================================
|
||
# The viscosity is calculated with a (modified) Jones-Dole equation:
|
||
# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i)
|
||
# Parameters are for calculating the B and D terms:
|
||
# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0
|
||
# # b0 b1 b2 d1 d2 d3 tan
|
||
# z_i is absolute charge number, m_i is molality of i
|
||
# B_i = b0 + b1 exp(-b2 * tc)
|
||
# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions
|
||
# D_i = d1 + exp(-d2 tc)
|
||
# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 <20> m_i)d^3 / (2 + fI), fI is an ionic strength term.
|
||
# For details, consult ref. 4.
|
||
#
|
||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49<34>67.
|
||
# ref. 2: Procedures from ref. 1 using data compiled by Lalibert<72>, 2009, J. Chem. Eng. Data 54, 1725.
|
||
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||
# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp
|
||
#
|
||
# =============================================================================================
|
||
# It remains the responsibility of the user to check the calculated results, for example with
|
||
# measured solubilities as a function of (P, T).
|