Merge branch 'log-scale-error' into 'loss-experiment'

Solve scaling error with min max scaling and restructure notebook as well as preprocessing functions

See merge request naaice/model-training!3
This commit is contained in:
Hannes Martin Signer 2025-02-27 11:42:05 +01:00
commit 5fee700eae
2 changed files with 1004 additions and 1348 deletions

File diff suppressed because one or more lines are too long

View File

@ -1,5 +1,5 @@
import keras
from keras.layers import Dense, Dropout, Input,BatchNormalization, LeakyReLU
from keras.layers import Dense, Dropout, Input, BatchNormalization, LeakyReLU
import tensorflow as tf
import h5py
import numpy as np
@ -18,46 +18,33 @@ import os
from preprocessing import *
from sklearn import set_config
from importlib import reload
set_config(transform_output = "pandas")
# preprocessing pipeline
#
set_config(transform_output="pandas")
def Safelog(val):
# get range of vector
if val > 0:
return np.log10(val)
elif val < 0:
return -np.log10(-val)
else:
return 0
def Safeexp(val):
if val > 0:
return -10 ** -val
elif val < 0:
return 10 ** val
else:
return 0
def model_definition(architecture):
"""Definition of the respective AI model. Three models are currently being analysed, which are labelled small, large or paper.
Args:
architecture (String): Choose between 'small', 'large' or 'paper'.
Returns:
keras model: Returns the respective model.
"""
dtype = "float32"
if architecture == "small":
model = keras.Sequential(
[
keras.Input(shape=(8,), dtype="float32"),
keras.layers.Dense(units=128, dtype="float32"),
keras.Input(shape=(8,), dtype=dtype),
keras.layers.Dense(units=128, dtype=dtype),
LeakyReLU(negative_slope=0.01),
# Dropout(0.2),
keras.layers.Dense(units=128, dtype="float32"),
keras.layers.Dense(units=128, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(units=8, dtype="float32")
keras.layers.Dense(units=8, dtype=dtype),
]
)
elif architecture == "large":
model = keras.Sequential(
[
@ -68,316 +55,606 @@ def model_definition(architecture):
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(512, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(8, dtype=dtype)
keras.layers.Dense(8, dtype=dtype),
]
)
elif architecture == "paper":
model = keras.Sequential(
[keras.layers.Input(shape=(8,), dtype=dtype),
keras.layers.Dense(128, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(256, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(512, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(256, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(8, dtype=dtype)
])
[
keras.layers.Input(shape=(8,), dtype=dtype),
keras.layers.Dense(128, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(256, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(512, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(256, dtype=dtype),
LeakyReLU(negative_slope=0.01),
keras.layers.Dense(8, dtype=dtype),
]
)
else:
raise Exception(
"No valid architecture found."
+ "Choose between 'small', 'large' or 'paper'."
)
return model
@keras.saving.register_keras_serializable()
def custom_loss(preprocess, column_dict, h1, h2, h3, scaler_type="minmax", loss_variant="huber", delta=1.0):
# extract the scaling parameters
if scaler_type == "minmax":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
min_X = tf.convert_to_tensor(preprocess.scaler_X.min_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
min_y = tf.convert_to_tensor(preprocess.scaler_y.min_, dtype=tf.float32)
elif scaler_type == "standard":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
mean_X = tf.convert_to_tensor(preprocess.scaler_X.mean_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
mean_y = tf.convert_to_tensor(preprocess.scaler_y.mean_, dtype=tf.float32)
def custom_loss(
preprocess,
column_dict,
h1,
h2,
h3,
scaler_type="minmax",
loss_variant="huber",
delta=1.0,
):
"""
Custom tensorflow loss function to combine Huber Loss with mass balance.
This is inspired by PINN (Physics Informed Neural Networks) where the loss function is a combination of the physics-based loss and the data-driven loss.
The mass balance is a physics-based loss that ensures the conservation of mass in the system.
A tensorflow loss function accepts only the two arguments y_true and y_pred. Therefore, a nested function is used to pass the additional arguments.
Args:
preprocess: preprocessing object
column_dict: dictionary with the column names as keys and the corresponding index as values.
(i.e {'H': 0, 'O': 1, 'Ba': 2, 'Cl': 3, 'S': 4, 'Sr': 5, 'Barite': 6, 'Celestite': 7})
h1: hyperparameter for the importance of the huber loss
h2: hyperparameter for the importance of the Barium mass balance term
h3: hyperparameter for the importance of the Strontium mass balance term
scaler_type: Normalization approach. Choose between "standard" and "minmax". Defaults to "minmax".
loss_variant: Loss function approach. Choose between "huber and "huber_mass_balance". Defaults to "huber".
delta: Hyperparameter for the Huber function threshold. Defaults to 1.0.
Returns:
loss function
"""
# as far as I know tensorflow does not directly support the use of scaler objects
# therefore, the backtransformation is done manually
try:
if scaler_type == "minmax":
scale_X = tf.convert_to_tensor(
preprocess.scaler_X.data_range_, dtype=tf.float32
)
min_X = tf.convert_to_tensor(
preprocess.scaler_X.data_min_, dtype=tf.float32
)
scale_y = tf.convert_to_tensor(
preprocess.scaler_y.data_range_, dtype=tf.float32
)
min_y = tf.convert_to_tensor(
preprocess.scaler_y.data_min_, dtype=tf.float32
)
elif scaler_type == "standard":
scale_X = tf.convert_to_tensor(
preprocess.scaler_X.scale_, dtype=tf.float32)
mean_X = tf.convert_to_tensor(
preprocess.scaler_X.mean_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(
preprocess.scaler_y.scale_, dtype=tf.float32)
mean_y = tf.convert_to_tensor(
preprocess.scaler_y.mean_, dtype=tf.float32)
else:
raise Exception(
"No valid scaler type found. Choose between 'standard' and 'minmax'."
)
except AttributeError:
raise Exception(
"Data normalized with scaler different than specified for the training. Compare the scaling approach on preprocessing and training."
)
def loss(results, predicted):
# inverse min/max scaling
if scaler_type == "minmax":
predicted_inverse = predicted * scale_y + min_y
results_inverse = results * scale_X + min_X
# inverse standard scaling
elif scaler_type == "standard":
predicted_inverse = predicted * scale_y + mean_y
results_inverse = results * scale_X + mean_X
# apply exp1m on the columns of predicted_inverse and results_inverse if log transformation was used
if preprocess.func_dict_out is not None:
predicted_inverse = tf.math.expm1(predicted_inverse)
results_inverse = tf.math.expm1(results_inverse)
# mass balance
# in total no Barium and Strontium should be lost in one simulation step
dBa = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Ba"]] + predicted_inverse[:, column_dict["Barite"]]) -
(results_inverse[:, column_dict["Ba"]] + results_inverse[:, column_dict["Barite"]])
(
predicted_inverse[:, column_dict["Ba"]]
+ predicted_inverse[:, column_dict["Barite"]]
)
- (
results_inverse[:, column_dict["Ba"]]
+ results_inverse[:, column_dict["Barite"]]
)
)
dSr = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Sr"]] + predicted_inverse[:, column_dict["Celestite"]]) -
(results_inverse[:, column_dict["Sr"]] + results_inverse[:, column_dict["Celestite"]])
(
predicted_inverse[:, column_dict["Sr"]]
+ predicted_inverse[:, column_dict["Celestite"]]
)
- (
results_inverse[:, column_dict["Sr"]]
+ results_inverse[:, column_dict["Celestite"]]
)
)
# H/O ratio has to be 2
# h2o_ratio = tf.keras.backend.abs(
# (predicted_inverse[:, column_dict["H"]] / predicted_inverse[:, column_dict["O"]]) - 2
# )
# huber loss
huber_loss = tf.keras.losses.Huber(delta)(results, predicted)
# total loss
if loss_variant == "huber":
total_loss = huber_loss
elif loss_variant == "huber_mass_balance":
total_loss = h1 * huber_loss + h2 * dBa + h3 * dSr
else:
raise Exception(
"No valid loss variant found. Choose between 'huber' and 'huber_mass_balance'."
)
return total_loss
return loss
def mass_balance_metric(preprocess, column_dict, scaler_type="minmax"):
"""Auxilary function to calculate the mass balance during training.
Args:
preprocess: preprocessing object
column_dict: dictionary with the column names as keys and the corresponding index as values
scaler_type: Normalization approach. Choose between "standard" and "minmax". Defaults to "minmax".
Returns:
mean of both mass balance terms
"""
if scaler_type == "minmax":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
min_X = tf.convert_to_tensor(preprocess.scaler_X.min_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
min_y = tf.convert_to_tensor(preprocess.scaler_y.min_, dtype=tf.float32)
scale_X = tf.convert_to_tensor(
preprocess.scaler_X.data_range_, dtype=tf.float32
)
min_X = tf.convert_to_tensor(
preprocess.scaler_X.data_min_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(
preprocess.scaler_y.data_range_, dtype=tf.float32
)
min_y = tf.convert_to_tensor(
preprocess.scaler_y.data_min_, dtype=tf.float32)
elif scaler_type == "standard":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
mean_X = tf.convert_to_tensor(preprocess.scaler_X.mean_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
mean_y = tf.convert_to_tensor(preprocess.scaler_y.mean_, dtype=tf.float32)
scale_X = tf.convert_to_tensor(
preprocess.scaler_X.scale_, dtype=tf.float32)
mean_X = tf.convert_to_tensor(
preprocess.scaler_X.mean_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(
preprocess.scaler_y.scale_, dtype=tf.float32)
mean_y = tf.convert_to_tensor(
preprocess.scaler_y.mean_, dtype=tf.float32)
def mass_balance(results, predicted):
# inverse min/max scaling
if scaler_type == "minmax":
predicted_inverse = predicted * scale_y + min_y
results_inverse = results * scale_X + min_X
elif scaler_type == "standard":
predicted_inverse = predicted * scale_y + mean_y
results_inverse = results * scale_X + mean_X
if preprocess.func_dict_out is not None:
predicted_inverse = tf.math.expm1(predicted_inverse)
results_inverse = tf.math.expm1(results_inverse)
# mass balance
dBa = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Ba"]] + predicted_inverse[:, column_dict["Barite"]]) -
(results_inverse[:, column_dict["Ba"]] + results_inverse[:, column_dict["Barite"]])
(
predicted_inverse[:, column_dict["Ba"]]
+ predicted_inverse[:, column_dict["Barite"]]
)
- (
results_inverse[:, column_dict["Ba"]]
+ results_inverse[:, column_dict["Barite"]]
)
)
dSr = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Sr"]] + predicted_inverse[:, column_dict["Celestite"]]) -
(results_inverse[:, column_dict["Sr"]] + results_inverse[:, column_dict["Celestite"]])
(
predicted_inverse[:, column_dict["Sr"]]
+ predicted_inverse[:, column_dict["Celestite"]]
)
- (
results_inverse[:, column_dict["Sr"]]
+ results_inverse[:, column_dict["Celestite"]]
)
)
return tf.reduce_mean(dBa + dSr)
return mass_balance
def huber_metric(preprocess, scaler_type="minmax", delta=1.0):
if scaler_type == "minmax":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
min_X = tf.convert_to_tensor(preprocess.scaler_X.min_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
min_y = tf.convert_to_tensor(preprocess.scaler_y.min_, dtype=tf.float32)
def huber_metric(delta=1.0):
"""Auxilary function to calculate the Huber loss during training.
Args:
preprocess (_type_): _description_
scaler_type (str, optional): _description_. Defaults to "minmax".
delta (float, optional): _description_. Defaults to 1.0.
"""
elif scaler_type == "standard":
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
mean_X = tf.convert_to_tensor(preprocess.scaler_X.mean_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
mean_y = tf.convert_to_tensor(preprocess.scaler_y.mean_, dtype=tf.float32)
def huber(results, predicted):
if scaler_type == "minmax":
predicted_inverse = predicted * scale_y + min_y
results_inverse = results * scale_X + min_X
elif scaler_type == "standard":
predicted_inverse = predicted * scale_y + mean_y
results_inverse = results * scale_X + mean_X
huber_loss = tf.keras.losses.Huber(delta)(results, predicted)
return huber_loss
return huber
def mass_balance_evaluation(model, X, preprocess):
"""Calculates the mass balance difference for each cell.
Args:
model: trained model
X: data where the mass balance should be calculated
preprocess: preprocessing object
Returns:
vector with the mass balance difference for each cell
"""
# predict the chemistry
columns = X.iloc[:, X.columns != "Class"].columns
classes = X["Class"]
classes.reset_index(drop=True, inplace=True)
prediction = pd.DataFrame(model.predict(X[columns]), columns=columns)
# backtransform min/max or standard scaler
X = pd.DataFrame(preprocess.scaler_X.inverse_transform(X.iloc[:, X.columns != "Class"]), columns=columns)
prediction = pd.DataFrame(preprocess.scaler_y.inverse_transform(prediction), columns=columns)
X = pd.DataFrame(
preprocess.scaler_X.inverse_transform(X.iloc[:, X.columns != "Class"]),
columns=columns,
)
prediction = pd.DataFrame(
preprocess.scaler_y.inverse_transform(prediction), columns=columns
)
# apply backtransformation if log transformation was applied
if preprocess.func_dict_out is not None:
X = preprocess.funcInverse(X)[0]
prediction = preprocess.funcInverse(prediction)[0]
# calculate mass balance
dBa = np.abs((prediction["Ba"] + prediction["Barite"]) - (X["Ba"] + X["Barite"]))
print(dBa.min())
dSr = np.abs((prediction["Sr"] + prediction["Celestite"]) - (X["Sr"] + X["Celestite"]))
print(dSr.min())
return dBa+dSr
dBa = np.abs(
(prediction["Ba"] + prediction["Barite"]) - (X["Ba"] + X["Barite"]))
dSr = np.abs(
(prediction["Sr"] + prediction["Celestite"]) -
(X["Sr"] + X["Celestite"])
)
mass_balance_result = pd.DataFrame(
{"dBa": dBa, "dSr": dSr, "mass_balance": dBa + dSr, "Class": classes}
)
return mass_balance_result
def mass_balance_ratio(results, threshold=1e-5):
proportion = {}
mass_balance_threshold = results[results["mass_balance"] <= threshold]
overall = len(mass_balance_threshold)
class_0_amount = len(
mass_balance_threshold[mass_balance_threshold["Class"] == 0])
class_1_amount = len(
mass_balance_threshold[mass_balance_threshold["Class"] == 1])
proportion["overall"] = overall / len(results)
proportion["class_0"] = class_0_amount / \
len(results[results["Class"] == 0])
proportion["class_1"] = class_1_amount / \
len(results[results["Class"] == 1])
return proportion
class preprocessing:
"""
A class used to preprocess data for model training.
Attributes
"""
def __init__(self, func_dict_in=None, func_dict_out=None, random_state=42):
"""Initialization of the preprocessing object.
Args:
func_dict_in: function for transformation. Defaults to None.
func_dict_out: function for backtransformation. Defaults to None.
random_state (int, optional): Seed for reproducability. Defaults to 42.
"""
self.random_state = random_state
self.scaler_X = None
self.scaler_y = None
self.func_dict_in = None
self.func_dict_in = func_dict_in if func_dict_in is not None else None
self.func_dict_out = func_dict_out if func_dict_out is not None else None
self.state = {"cluster": False, "log": False, "balance": False, "scale": False}
def funcTranform(self, X, y):
for key in X.keys():
if "Class" not in key:
X[key] = X[key].apply(self.func_dict_in[key])
y[key] = y[key].apply(self.func_dict_in[key])
self.state = {"cluster": False, "log": False,
"balance": False, "scale": False}
def funcTranform(self, *args):
"""Apply the transformation function to the data columnwise.
Returns:
pandas data frame: transformed data
"""
for i in args:
for key in i.keys():
if "Class" not in key:
i[key] = i[key].apply(self.func_dict_in)
self.state["log"] = True
return X, y
def funcInverse(self, X, y):
for key in X.keys():
if "Class" not in key:
X[key] = X[key].apply(self.func_dict_out[key])
y[key] = y[key].apply(self.func_dict_out[key])
return args
def funcInverse(self, *args):
"""Apply the backtransformation function to the data columnwise.
Returns:
pandas data frame: backtransformed data
"""
for i in args:
for key in i.keys():
if "Class" not in key:
i[key] = i[key].apply(self.func_dict_out)
self.state["log"] = False
return X, y
def cluster(self, X, y, species='Barite', n_clusters=2, x_length=50, y_length=50):
return args
def cluster(self, X, y, species="Barite", n_clusters=2, x_length=50, y_length=50):
"""Apply k-means clustering to the data to differentiate betweeen reactive and non-reactive cells.
Args:
X: design data set
y: target data set
species (str, optional): Chemical species to which clustering is be applied. Defaults to "Barite".
n_clusters (int, optional): Number of clusters. Defaults to 2.
x_length: x dimension of the grid. Defaults to 50.
y_length: y dimension of the grid. Defaults to 50.
Returns:
X, y dataframes with an additional column "Class" containing the cluster labels.
"""
class_labels = np.array([])
grid_length = x_length * y_length
iterations = int(len(X) / grid_length)
# calculate the cluster for each chemical iteration step
for i in range(0, iterations):
field = np.array(X[species][(i*grid_length):(i*grid_length+grid_length)]
).reshape(x_length, y_length)
kmeans = KMeans(n_clusters=n_clusters, random_state=self.random_state).fit(field.reshape(-1, 1))
field = np.array(
X[species][(i * grid_length): (i * grid_length + grid_length)]
).reshape(x_length, y_length)
kmeans = KMeans(n_clusters=n_clusters, random_state=self.random_state).fit(
field.reshape(-1, 1)
)
class_labels = np.append(class_labels.astype(int), kmeans.labels_)
if ("Class" in X.columns and "Class" in y.columns):
if "Class" in X.columns and "Class" in y.columns:
print("Class column already exists")
else:
class_labels_df = pd.DataFrame(class_labels, columns=['Class'])
class_labels_df = pd.DataFrame(class_labels, columns=["Class"])
X = pd.concat([X, class_labels_df], axis=1)
y = pd.concat([y, class_labels_df], axis=1)
self.state["cluster"] = True
return X, y
def balancer(self, X, y, strategy, sample_fraction=0.5):
"""Apply sampling strategies to balance the dataset.
Args:
X: design dataset (before the simulation)
y: target dataset (after the simulation)
strategy: Sampling strategy. Choose between "smote" (Synthetic Minority Oversampling Technique), "over" (Oversampling) and "under" (Undersampling).
sample_fraction (float, optional): Define balancer target. Specifies the target fraction of the minority class after the balancing step. Defaults to 0.5.
Returns:
X, y: resampled datasets
"""
number_features = (X.columns != "Class").sum()
if("Class" not in X.columns):
if("Class" in y.columns):
classes = y['Class']
if "Class" not in X.columns:
if "Class" in y.columns:
classes = y["Class"]
else:
raise Exception("No class column found")
else:
classes = X['Class']
classes = X["Class"]
counter = classes.value_counts()
print("Amount class 0 before:", counter[0] / (counter[0] + counter[1]) )
print("Amount class 1 before:", counter[1] / (counter[0] + counter[1]) )
df = pd.concat([X.loc[:,X.columns != "Class"], y.loc[:, y.columns != "Class"], classes], axis=1)
print("Amount class 0 before:",
counter[0] / (counter[0] + counter[1]))
print("Amount class 1 before:",
counter[1] / (counter[0] + counter[1]))
df = pd.concat(
[
X.loc[:, X.columns != "Class"],
y.loc[:, y.columns != "Class"],
classes,
],
axis=1,
)
if strategy == 'smote':
if strategy == "smote":
print("Using SMOTE strategy")
smote = SMOTE(sampling_strategy=sample_fraction)
df_resampled, classes_resampled = smote.fit_resample(df.loc[:, df.columns != "Class"], df.loc[:, df. columns == "Class"])
df_resampled, classes_resampled = smote.fit_resample(
df.loc[:, df.columns != "Class"], df.loc[:,
df.columns == "Class"]
)
elif strategy == 'over':
elif strategy == "over":
print("Using Oversampling")
over = RandomOverSampler()
df_resampled, classes_resampled = over.fit_resample(df.loc[:, df.columns != "Class"], df.loc[:, df. columns == "Class"])
df_resampled, classes_resampled = over.fit_resample(
df.loc[:, df.columns != "Class"], df.loc[:,
df.columns == "Class"]
)
elif strategy == 'under':
elif strategy == "under":
print("Using Undersampling")
under = RandomUnderSampler()
df_resampled, classes_resampled = under.fit_resample(df.loc[:, df.columns != "Class"], df.loc[:, df. columns == "Class"])
df_resampled, classes_resampled = under.fit_resample(
df.loc[:, df.columns != "Class"], df.loc[:,
df.columns == "Class"]
)
else:
print("No sampling selected. Output equals input.")
return X, y
counter = classes_resampled["Class"].value_counts()
print("Amount class 0 after:", counter[0] / (counter[0] + counter[1]) )
print("Amount class 1 after:", counter[1] / (counter[0] + counter[1]) )
print("Amount class 0 after:", counter[0] / (counter[0] + counter[1]))
print("Amount class 1 after:", counter[1] / (counter[0] + counter[1]))
design_resampled = pd.concat([df_resampled.iloc[:,0:number_features], classes_resampled], axis=1)
target_resampled = pd.concat([df_resampled.iloc[:,number_features:], classes_resampled], axis=1)
design_resampled = pd.concat(
[df_resampled.iloc[:, 0:number_features], classes_resampled], axis=1
)
target_resampled = pd.concat(
[df_resampled.iloc[:, number_features:], classes_resampled], axis=1
)
self.state['balance'] = True
self.state["balance"] = True
return design_resampled, target_resampled
def scale_fit(self, X, y, scaling, type='Standard'):
if type == 'minmax':
def scale_fit(self, X, y, scaling, type="Standard"):
"""Fit a scaler for data preprocessing.
Args:
X: design dataset
y: target dataset
scaling: learn individual scaler for X and y when "individual" is selected or one global scaler on all data in X and y if "global" is selected (scaler_X and scaler_y are equal)
type (str, optional): Using MinMax Scaling or Standarization. Defaults to "Standard".
"""
if type == "minmax":
self.scaler_X = MinMaxScaler()
self.scaler_y = MinMaxScaler()
elif type == 'standard':
elif type == "standard":
self.scaler_X = StandardScaler()
self.scaler_y = StandardScaler()
else:
raise Exception("No valid scaler type found")
if scaling == 'individual':
if scaling == "individual":
self.scaler_X.fit(X.iloc[:, X.columns != "Class"])
self.scaler_y.fit(y.iloc[:, y.columns != "Class"])
elif scaling == 'global':
self.scaler_X.fit(pd.concat([X.iloc[:, X.columns != "Class"], y.iloc[:, y.columns != "Class"]], axis=0))
elif scaling == "global":
self.scaler_X.fit(
pd.concat(
[X.iloc[:, X.columns != "Class"],
y.iloc[:, y.columns != "Class"]],
axis=0,
)
)
self.scaler_y = self.scaler_X
self.state['scale'] = True
self.state["scale"] = True
def scale_transform(self, X_train, X_test, y_train, y_test):
X_train = pd.concat([self.scaler_X.transform(X_train.loc[:, X_train.columns != "Class"]), X_train.loc[:, "Class"]], axis=1)
X_test = pd.concat([self.scaler_X.transform(X_test.loc[:, X_test.columns != "Class"]), X_test.loc[:, "Class"]], axis=1)
"""Apply learned scaler on datasets.
Args:
X_train: design training data
X_test: test training data
y_train: target training data
y_test: test target data
Returns:
transformed dataframes
"""
X_train = pd.concat(
[
self.scaler_X.transform(
X_train.loc[:, X_train.columns != "Class"]),
X_train.loc[:, "Class"],
],
axis=1,
)
X_test = pd.concat(
[
self.scaler_X.transform(
X_test.loc[:, X_test.columns != "Class"]),
X_test.loc[:, "Class"],
],
axis=1,
)
y_train = pd.concat(
[
self.scaler_y.transform(
y_train.loc[:, y_train.columns != "Class"]),
y_train.loc[:, "Class"],
],
axis=1,
)
y_test = pd.concat(
[
self.scaler_y.transform(
y_test.loc[:, y_test.columns != "Class"]),
y_test.loc[:, "Class"],
],
axis=1,
)
y_train = pd.concat([self.scaler_y.transform(y_train.loc[:, y_train.columns != "Class"]), y_train.loc[:, "Class"]], axis=1)
y_test = pd.concat([self.scaler_y.transform(y_test.loc[:, y_test.columns != "Class"]), y_test.loc[:, "Class"]], axis=1)
return X_train, X_test, y_train, y_test
def scale_inverse(self, X):
if("Class" in X.columns):
X = pd.concat([self.scaler_X.inverse_transform(X.loc[:, X.columns != "Class"]), X.loc[:, "Class"]], axis=1)
else:
X = self.scaler_X.inverse_transform(X)
return X
def scale_inverse(self, *args):
"""Backtransform the dataset
Returns:
Backtransformed data frames
"""
result = []
for i in args:
if "Class" in i.columns:
inversed = pd.DataFrame(
self.scaler_X.inverse_transform(
i.loc[:, i.columns != "Class"]),
columns=i.columns[:-1],
)
class_column = i.loc[:, "Class"].reset_index(drop=True)
i = pd.concat([inversed, class_column], axis=1)
else:
i = pd.DataFrame(
self.scaler_X.inverse_transform(i), columns=i.columns)
result.append(i)
return result
def split(self, X, y, ratio=0.8):
X_train, y_train, X_test, y_test = sk.train_test_split(X, y, test_size = ratio, random_state=self.random_state)
X_train, y_train, X_test, y_test = sk.train_test_split(
X, y, test_size=ratio, random_state=self.random_state
)
return X_train, y_train, X_test, y_test
def class_selection(self, *args, class_label=0):
"""Select only rows with specific class label
Args:
Dataframes where rows with specific label should be selected. Defaults to 0.
Returns:
Elements with selected class label.
"""
for i in args:
i = i[i["Class"] == class_label]
return args