update training

This commit is contained in:
Hannes Signer 2025-02-17 18:13:57 +01:00
parent d27e9e9c5d
commit 986191f72c
2 changed files with 473 additions and 260 deletions

File diff suppressed because one or more lines are too long

225
optuna_runs.py Normal file
View File

@ -0,0 +1,225 @@
import keras
from keras.layers import Dense, Dropout, Input,BatchNormalization
import tensorflow as tf
import h5py
import numpy as np
import pandas as pd
import time
import sklearn.model_selection as sk
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
from collections import Counter
import os
from preprocessing import *
from sklearn import set_config
from importlib import reload
set_config(transform_output = "pandas")
dtype = "float32"
activation = "relu"
lr = 0.001
batch_size = 512
epochs = 50 # default 400 epochs
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=lr,
decay_steps=2000,
decay_rate=0.9,
staircase=True
)
optimizer_simple = keras.optimizers.Adam(learning_rate=lr_schedule)
optimizer_large = keras.optimizers.Adam(learning_rate=lr_schedule)
optimizer_paper = keras.optimizers.Adam(learning_rate=lr_schedule)
sample_fraction = 0.8
# small model
model_simple = keras.Sequential(
[
keras.Input(shape = (9,), dtype = "float32"),
keras.layers.Dense(units = 128, activation = "linear", dtype = "float32"),
# Dropout(0.2),
keras.layers.Dense(units = 128, activation = "elu", dtype = "float32"),
keras.layers.Dense(units = 9, dtype = "float32")
]
)
def Safelog(val):
# get range of vector
if val > 0:
return np.log10(val)
elif val < 0:
return -np.log10(-val)
else:
return 0
def Safeexp(val):
if val > 0:
return -10 ** -val
elif val < 0:
return 10 ** val
else:
return 0
# ? Why does the charge is using another logarithm than the other species
func_dict_in = {
"H" : np.log1p,
"O" : np.log1p,
"Charge" : Safelog,
"H_0_" : np.log1p,
"O_0_" : np.log1p,
"Ba" : np.log1p,
"Cl" : np.log1p,
"S_2_" : np.log1p,
"S_6_" : np.log1p,
"Sr" : np.log1p,
"Barite" : np.log1p,
"Celestite" : np.log1p,
}
func_dict_out = {
"H" : np.expm1,
"O" : np.expm1,
"Charge" : Safeexp,
"H_0_" : np.expm1,
"O_0_" : np.expm1,
"Ba" : np.expm1,
"Cl" : np.expm1,
"S_2_" : np.expm1,
"S_6_" : np.expm1,
"Sr" : np.expm1,
"Barite" : np.expm1,
"Celestite" : np.expm1,
}
# os.chdir('/mnt/beegfs/home/signer/projects/model-training')
data_file = h5py.File("barite_50_4_corner.h5")
design = data_file["design"]
results = data_file["result"]
df_design = pd.DataFrame(np.array(design["data"]).transpose(), columns = np.array(design["names"].asstr()))
df_results = pd.DataFrame(np.array(results["data"]).transpose(), columns = np.array(results["names"].asstr()))
data_file.close()
species_columns = ['H', 'O', 'Charge', 'Ba', 'Cl', 'S', 'Sr', 'Barite', 'Celestite']
preprocess = preprocessing(func_dict_in=func_dict_in, func_dict_out=func_dict_out)
X, y = preprocess.cluster(df_design[species_columns], df_results[species_columns])
# X, y = preprocess.funcTranform(X, y)
X_train, X_test, y_train, y_test = preprocess.split(X, y, ratio = 0.2)
X_train, y_train = preprocess.balancer(X_train, y_train, strategy = "over")
preprocess.scale_fit(X_train, y_train, scaling = "individual")
X_train, X_test, y_train, y_test = preprocess.scale_transform(X_train, X_test, y_train, y_test)
X_train, X_val, y_train, y_val = preprocess.split(X_train, y_train, ratio = 0.1)
column_dict = {"Ba": X.columns.get_loc("Ba"), "Barite":X.columns.get_loc("Barite"), "Sr":X.columns.get_loc("Sr"), "Celestite":X.columns.get_loc("Celestite"), "H":X.columns.get_loc("H"), "H":X.columns.get_loc("H"), "O":X.columns.get_loc("O")}
def custom_loss(preprocess, column_dict, h1, h2, h3, h4):
# extract the scaling parameters
scale_X = tf.convert_to_tensor(preprocess.scaler_X.scale_, dtype=tf.float32)
min_X = tf.convert_to_tensor(preprocess.scaler_X.min_, dtype=tf.float32)
scale_y = tf.convert_to_tensor(preprocess.scaler_y.scale_, dtype=tf.float32)
min_y = tf.convert_to_tensor(preprocess.scaler_y.min_, dtype=tf.float32)
def loss(results, predicted):
# inverse min/max scaling
predicted_inverse = predicted * scale_X + min_X
results_inverse = results * scale_y + min_y
# mass balance
dBa = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Ba"]] + predicted_inverse[:, column_dict["Barite"]]) -
(results_inverse[:, column_dict["Ba"]] + results_inverse[:, column_dict["Barite"]])
)
dSr = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["Sr"]] + predicted_inverse[:, column_dict["Celestite"]]) -
(results_inverse[:, column_dict["Sr"]] + results_inverse[:, column_dict["Celestite"]])
)
# H/O ratio has to be 2
h2o_ratio = tf.keras.backend.abs(
(predicted_inverse[:, column_dict["H"]] / predicted_inverse[:, column_dict["O"]]) - 2
)
# huber loss
huber_loss = tf.keras.losses.Huber()(results, predicted)
# total loss
total_loss = h1 * huber_loss + h2 * dBa**2 + h3 * dSr**2 #+ h4 * h2o_ratio**2
return total_loss
return loss
def mass_balance(model, X, preprocess):
# predict the chemistry
columns = X.iloc[:, X.columns != "Class"].columns
prediction = pd.DataFrame(model.predict(X[columns]), columns=columns)
# backtransform min/max
X = pd.DataFrame(preprocess.scaler_X.inverse_transform(X.iloc[:, X.columns != "Class"]), columns=columns)
prediction = pd.DataFrame(preprocess.scaler_y.inverse_transform(prediction), columns=columns)
# calculate mass balance dBa = np.abs((prediction["Ba"] + prediction["Barite"]) - (X["Ba"] + X["Barite"]))
dSr = np.abs((prediction["Sr"] + prediction["Celestite"]) - (X["Sr"] + X["Celestite"]))
return dBa + dSr
import optuna
def create_model(model, preprocess, h1, h2, h3, h4):
model.compile(optimizer=optimizer_simple, loss=custom_loss(preprocess, column_dict, h1, h2, h3, h4))
return model
def objective(trial, preprocess, X_train, y_train, X_val, y_val, X_test, y_test):
h1 = trial.suggest_float("h1", 0.1, 10)
h2 = trial.suggest_float("h2", 0.1, 10)
h3 = trial.suggest_float("h3", 0.1, 10)
h4 = trial.suggest_float("h4", 0.1, 10)
model = create_model(model_simple, preprocess, h1, h2, h3, h4)
callback = keras.callbacks.EarlyStopping(monitor='loss', patience=3)
history = model.fit(X_train.loc[:, X_train.columns != "Class"],
y_train.loc[:, y_train.columns != "Class"],
batch_size=batch_size,
epochs=50,
validation_data=(X_val.loc[:, X_val.columns != "Class"], y_val.loc[:, y_val.columns != "Class"]),
callbacks=[callback])
prediction_loss = model.evaluate(X_test.loc[:, X_test.columns != "Class"], y_test.loc[:, y_test.columns != "Class"])
mass_balance_results = mass_balance(model, X_test, preprocess)
mass_balance_ratio = len(mass_balance_results[mass_balance_results < 1e-5]) / len(mass_balance_results)
return prediction_loss, mass_balance_ratio
if __name__ == "__main__":
study = optuna.create_study(storage="sqlite:///model_optimization.db", study_name="model_optimization", directions=["minimize", "maximize"])
study.optimize(lambda trial: objective(trial, preprocess, X_train, y_train, X_val, y_val, X_test, y_test), n_trials=1000)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))