using HDF5 using RData using DataFrames # Load Training Data # train_data = load("Barite_50_Data.rds") # training_h5_name = "Barite_50_Data.h5" # h5open(training_h5_name, "w") do fid # for key in keys(train_data) # group = create_group(fid, key) # group["names"] = names(train_data[key]) # group["data", compress=3] = Matrix(train_data[key]) # # group = create_group(fid, key) # # grou["names"] = coln # end # end # List all .rds files starting with "iter" in a given directory rds_files = filter(x -> startswith(x, "iter"), readdir("barite_out/")) # remove "iter_0.rds" from the list rds_files = rds_files[2:end] big_df_in = DataFrame() big_df_out = DataFrame() for rds_file in rds_files # Load the RDS file data = load("barite_out/$rds_file") # Convert the data to a DataFrame df_T = DataFrame(data["T"]) df_C = DataFrame(data["C"]) # Append the DataFrame to the big DataFrame append!(big_df_in, df_T) append!(big_df_out, df_C) end # remove ID, Barite_p1, Celestite_p1 columns big_df_in = big_df_in[:, Not([:ID, :Barite_p1, :Celestite_p1])] big_df_out = big_df_out[:, Not([:ID, :Barite_p1, :Celestite_p1])] inference_h5_name = "Barite_50_Data_inference.h5" h5open(inference_h5_name, "w") do fid fid["names"] = names(big_df_in) fid["data", compress=9] = Matrix(big_df_in) end training_h5_name = "Barite_50_Data_training.h5" h5open(training_h5_name, "w") do fid group_in = create_group(fid, "design") group_out = create_group(fid, "result") group_in["names"] = names(big_df_in) group_in["data", compress=9] = Matrix(big_df_in) group_out["names"] = names(big_df_out) group_out["data", compress=9] = Matrix(big_df_out) end