mirror of
https://git.gfz-potsdam.de/naaice/model-training.git
synced 2025-12-13 12:18:22 +01:00
661 lines
23 KiB
Python
661 lines
23 KiB
Python
import keras
|
||
from keras.layers import Dense, Dropout, Input, BatchNormalization, LeakyReLU
|
||
import tensorflow as tf
|
||
import h5py
|
||
import numpy as np
|
||
import pandas as pd
|
||
import time
|
||
import sklearn.model_selection as sk
|
||
import matplotlib.pyplot as plt
|
||
from sklearn.cluster import KMeans
|
||
from sklearn.pipeline import Pipeline, make_pipeline
|
||
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
||
from imblearn.over_sampling import SMOTE
|
||
from imblearn.under_sampling import RandomUnderSampler
|
||
from imblearn.over_sampling import RandomOverSampler
|
||
from collections import Counter
|
||
import os
|
||
from preprocessing import *
|
||
from sklearn import set_config
|
||
from importlib import reload
|
||
|
||
set_config(transform_output="pandas")
|
||
|
||
|
||
def model_definition(architecture):
|
||
"""Definition of the respective AI model. Three models are currently being analysed, which are labelled ‘small’, ‘large’ or ‘paper’.
|
||
|
||
Args:
|
||
architecture (String): Choose between 'small', 'large' or 'paper'.
|
||
Returns:
|
||
keras model: Returns the respective model.
|
||
"""
|
||
dtype = "float32"
|
||
|
||
if architecture == "small":
|
||
model = keras.Sequential(
|
||
[
|
||
keras.Input(shape=(8,), dtype=dtype),
|
||
keras.layers.Dense(units=128, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
# Dropout(0.2),
|
||
keras.layers.Dense(units=128, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(units=8, dtype=dtype),
|
||
]
|
||
)
|
||
|
||
elif architecture == "large":
|
||
model = keras.Sequential(
|
||
[
|
||
keras.layers.Input(shape=(8,), dtype=dtype),
|
||
keras.layers.Dense(512, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(1024, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(512, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(8, dtype=dtype),
|
||
]
|
||
)
|
||
|
||
elif architecture == "paper":
|
||
model = keras.Sequential(
|
||
[
|
||
keras.layers.Input(shape=(8,), dtype=dtype),
|
||
keras.layers.Dense(128, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(256, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(512, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(256, dtype=dtype),
|
||
LeakyReLU(negative_slope=0.01),
|
||
keras.layers.Dense(8, dtype=dtype),
|
||
]
|
||
)
|
||
|
||
else:
|
||
raise Exception(
|
||
"No valid architecture found."
|
||
+ "Choose between 'small', 'large' or 'paper'."
|
||
)
|
||
|
||
return model
|
||
|
||
|
||
@keras.saving.register_keras_serializable()
|
||
def custom_loss(
|
||
preprocess,
|
||
column_dict,
|
||
h1,
|
||
h2,
|
||
h3,
|
||
scaler_type="minmax",
|
||
loss_variant="huber",
|
||
delta=1.0,
|
||
):
|
||
"""
|
||
Custom tensorflow loss function to combine Huber Loss with mass balance.
|
||
This is inspired by PINN (Physics Informed Neural Networks) where the loss function is a combination of the physics-based loss and the data-driven loss.
|
||
The mass balance is a physics-based loss that ensures the conservation of mass in the system.
|
||
A tensorflow loss function accepts only the two arguments y_true and y_pred. Therefore, a nested function is used to pass the additional arguments.
|
||
|
||
Args:
|
||
preprocess: preprocessing object
|
||
column_dict: dictionary with the column names as keys and the corresponding index as values.
|
||
(i.e {'H': 0, 'O': 1, 'Ba': 2, 'Cl': 3, 'S': 4, 'Sr': 5, 'Barite': 6, 'Celestite': 7})
|
||
h1: hyperparameter for the importance of the huber loss
|
||
h2: hyperparameter for the importance of the Barium mass balance term
|
||
h3: hyperparameter for the importance of the Strontium mass balance term
|
||
scaler_type: Normalization approach. Choose between "standard" and "minmax". Defaults to "minmax".
|
||
loss_variant: Loss function approach. Choose between "huber and "huber_mass_balance". Defaults to "huber".
|
||
delta: Hyperparameter for the Huber function threshold. Defaults to 1.0.
|
||
|
||
Returns:
|
||
loss function
|
||
"""
|
||
|
||
# as far as I know tensorflow does not directly support the use of scaler objects
|
||
# therefore, the backtransformation is done manually
|
||
try:
|
||
if scaler_type == "minmax":
|
||
scale_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.data_range_, dtype=tf.float32
|
||
)
|
||
min_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.data_min_, dtype=tf.float32
|
||
)
|
||
scale_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.data_range_, dtype=tf.float32
|
||
)
|
||
min_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.data_min_, dtype=tf.float32
|
||
)
|
||
|
||
elif scaler_type == "standard":
|
||
scale_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.scale_, dtype=tf.float32)
|
||
mean_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.mean_, dtype=tf.float32)
|
||
scale_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.scale_, dtype=tf.float32)
|
||
mean_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.mean_, dtype=tf.float32)
|
||
|
||
else:
|
||
raise Exception(
|
||
"No valid scaler type found. Choose between 'standard' and 'minmax'."
|
||
)
|
||
|
||
except AttributeError:
|
||
raise Exception(
|
||
"Data normalized with scaler different than specified for the training. Compare the scaling approach on preprocessing and training."
|
||
)
|
||
|
||
def loss(results, predicted):
|
||
# inverse min/max scaling
|
||
if scaler_type == "minmax":
|
||
predicted_inverse = predicted * scale_y + min_y
|
||
results_inverse = results * scale_X + min_X
|
||
|
||
# inverse standard scaling
|
||
elif scaler_type == "standard":
|
||
predicted_inverse = predicted * scale_y + mean_y
|
||
results_inverse = results * scale_X + mean_X
|
||
|
||
# apply exp1m on the columns of predicted_inverse and results_inverse if log transformation was used
|
||
if preprocess.func_dict_out is not None:
|
||
predicted_inverse = tf.math.expm1(predicted_inverse)
|
||
results_inverse = tf.math.expm1(results_inverse)
|
||
|
||
# mass balance
|
||
# in total no Barium and Strontium should be lost in one simulation step
|
||
dBa = tf.keras.backend.abs(
|
||
(
|
||
predicted_inverse[:, column_dict["Ba"]]
|
||
+ predicted_inverse[:, column_dict["Barite"]]
|
||
)
|
||
- (
|
||
results_inverse[:, column_dict["Ba"]]
|
||
+ results_inverse[:, column_dict["Barite"]]
|
||
)
|
||
)
|
||
dSr = tf.keras.backend.abs(
|
||
(
|
||
predicted_inverse[:, column_dict["Sr"]]
|
||
+ predicted_inverse[:, column_dict["Celestite"]]
|
||
)
|
||
- (
|
||
results_inverse[:, column_dict["Sr"]]
|
||
+ results_inverse[:, column_dict["Celestite"]]
|
||
)
|
||
)
|
||
|
||
# huber loss
|
||
huber_loss = tf.keras.losses.Huber(delta)(results, predicted)
|
||
|
||
# total loss
|
||
if loss_variant == "huber":
|
||
total_loss = huber_loss
|
||
elif loss_variant == "huber_mass_balance":
|
||
total_loss = h1 * huber_loss + h2 * dBa + h3 * dSr
|
||
else:
|
||
raise Exception(
|
||
"No valid loss variant found. Choose between 'huber' and 'huber_mass_balance'."
|
||
)
|
||
|
||
return total_loss
|
||
|
||
return loss
|
||
|
||
|
||
def mass_balance_metric(preprocess, column_dict, scaler_type="minmax"):
|
||
"""Auxilary function to calculate the mass balance during training.
|
||
|
||
Args:
|
||
preprocess: preprocessing object
|
||
column_dict: dictionary with the column names as keys and the corresponding index as values
|
||
scaler_type: Normalization approach. Choose between "standard" and "minmax". Defaults to "minmax".
|
||
|
||
Returns:
|
||
mean of both mass balance terms
|
||
"""
|
||
|
||
if scaler_type == "minmax":
|
||
scale_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.data_range_, dtype=tf.float32
|
||
)
|
||
min_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.data_min_, dtype=tf.float32)
|
||
scale_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.data_range_, dtype=tf.float32
|
||
)
|
||
min_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.data_min_, dtype=tf.float32)
|
||
|
||
elif scaler_type == "standard":
|
||
scale_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.scale_, dtype=tf.float32)
|
||
mean_X = tf.convert_to_tensor(
|
||
preprocess.scaler_X.mean_, dtype=tf.float32)
|
||
scale_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.scale_, dtype=tf.float32)
|
||
mean_y = tf.convert_to_tensor(
|
||
preprocess.scaler_y.mean_, dtype=tf.float32)
|
||
|
||
def mass_balance(results, predicted):
|
||
# inverse min/max scaling
|
||
if scaler_type == "minmax":
|
||
predicted_inverse = predicted * scale_y + min_y
|
||
results_inverse = results * scale_X + min_X
|
||
|
||
elif scaler_type == "standard":
|
||
predicted_inverse = predicted * scale_y + mean_y
|
||
results_inverse = results * scale_X + mean_X
|
||
|
||
if preprocess.func_dict_out is not None:
|
||
predicted_inverse = tf.math.expm1(predicted_inverse)
|
||
results_inverse = tf.math.expm1(results_inverse)
|
||
|
||
# mass balance
|
||
dBa = tf.keras.backend.abs(
|
||
(
|
||
predicted_inverse[:, column_dict["Ba"]]
|
||
+ predicted_inverse[:, column_dict["Barite"]]
|
||
)
|
||
- (
|
||
results_inverse[:, column_dict["Ba"]]
|
||
+ results_inverse[:, column_dict["Barite"]]
|
||
)
|
||
)
|
||
dSr = tf.keras.backend.abs(
|
||
(
|
||
predicted_inverse[:, column_dict["Sr"]]
|
||
+ predicted_inverse[:, column_dict["Celestite"]]
|
||
)
|
||
- (
|
||
results_inverse[:, column_dict["Sr"]]
|
||
+ results_inverse[:, column_dict["Celestite"]]
|
||
)
|
||
)
|
||
return tf.reduce_mean(dBa + dSr)
|
||
|
||
return mass_balance
|
||
|
||
|
||
def huber_metric(delta=1.0):
|
||
"""Auxilary function to calculate the Huber loss during training.
|
||
|
||
Args:
|
||
preprocess (_type_): _description_
|
||
scaler_type (str, optional): _description_. Defaults to "minmax".
|
||
delta (float, optional): _description_. Defaults to 1.0.
|
||
"""
|
||
|
||
def huber(results, predicted):
|
||
huber_loss = tf.keras.losses.Huber(delta)(results, predicted)
|
||
return huber_loss
|
||
|
||
return huber
|
||
|
||
|
||
def mass_balance_evaluation(model, X, preprocess):
|
||
"""Calculates the mass balance difference for each cell.
|
||
|
||
Args:
|
||
model: trained model
|
||
X: data where the mass balance should be calculated
|
||
preprocess: preprocessing object
|
||
|
||
Returns:
|
||
vector with the mass balance difference for each cell
|
||
"""
|
||
|
||
# predict the chemistry
|
||
columns = X.iloc[:, X.columns != "Class"].columns
|
||
classes = X["Class"]
|
||
classes.reset_index(drop=True, inplace=True)
|
||
prediction = pd.DataFrame(model.predict(X[columns]), columns=columns)
|
||
# backtransform min/max or standard scaler
|
||
X = pd.DataFrame(
|
||
preprocess.scaler_X.inverse_transform(X.iloc[:, X.columns != "Class"]),
|
||
columns=columns,
|
||
)
|
||
prediction = pd.DataFrame(
|
||
preprocess.scaler_y.inverse_transform(prediction), columns=columns
|
||
)
|
||
|
||
# apply backtransformation if log transformation was applied
|
||
if preprocess.func_dict_out is not None:
|
||
X = preprocess.funcInverse(X)[0]
|
||
prediction = preprocess.funcInverse(prediction)[0]
|
||
|
||
# calculate mass balance
|
||
dBa = np.abs(
|
||
(prediction["Ba"] + prediction["Barite"]) - (X["Ba"] + X["Barite"]))
|
||
dSr = np.abs(
|
||
(prediction["Sr"] + prediction["Celestite"]) -
|
||
(X["Sr"] + X["Celestite"])
|
||
)
|
||
|
||
mass_balance_result = pd.DataFrame(
|
||
{"dBa": dBa, "dSr": dSr, "mass_balance": dBa + dSr, "Class": classes}
|
||
)
|
||
|
||
return mass_balance_result
|
||
|
||
|
||
def mass_balance_ratio(results, threshold=1e-5):
|
||
proportion = {}
|
||
|
||
mass_balance_threshold = results[results["mass_balance"] <= threshold]
|
||
|
||
overall = len(mass_balance_threshold)
|
||
class_0_amount = len(
|
||
mass_balance_threshold[mass_balance_threshold["Class"] == 0])
|
||
class_1_amount = len(
|
||
mass_balance_threshold[mass_balance_threshold["Class"] == 1])
|
||
|
||
proportion["overall"] = overall / len(results)
|
||
proportion["class_0"] = class_0_amount / \
|
||
len(results[results["Class"] == 0])
|
||
proportion["class_1"] = class_1_amount / \
|
||
len(results[results["Class"] == 1])
|
||
|
||
return proportion
|
||
|
||
|
||
class preprocessing:
|
||
"""
|
||
A class used to preprocess data for model training.
|
||
Attributes
|
||
"""
|
||
|
||
def __init__(self, func_dict_in=None, func_dict_out=None, random_state=42):
|
||
"""Initialization of the preprocessing object.
|
||
|
||
Args:
|
||
func_dict_in: function for transformation. Defaults to None.
|
||
func_dict_out: function for backtransformation. Defaults to None.
|
||
random_state (int, optional): Seed for reproducability. Defaults to 42.
|
||
"""
|
||
self.random_state = random_state
|
||
self.scaler_X = None
|
||
self.scaler_y = None
|
||
self.func_dict_in = func_dict_in if func_dict_in is not None else None
|
||
self.func_dict_out = func_dict_out if func_dict_out is not None else None
|
||
self.state = {"cluster": False, "log": False,
|
||
"balance": False, "scale": False}
|
||
|
||
def funcTranform(self, *args):
|
||
"""Apply the transformation function to the data columnwise.
|
||
|
||
Returns:
|
||
pandas data frame: transformed data
|
||
"""
|
||
for i in args:
|
||
for key in i.keys():
|
||
if "Class" not in key:
|
||
i[key] = i[key].apply(self.func_dict_in)
|
||
self.state["log"] = True
|
||
return args
|
||
|
||
def funcInverse(self, *args):
|
||
"""Apply the backtransformation function to the data columnwise.
|
||
|
||
Returns:
|
||
pandas data frame: backtransformed data
|
||
"""
|
||
for i in args:
|
||
for key in i.keys():
|
||
if "Class" not in key:
|
||
i[key] = i[key].apply(self.func_dict_out)
|
||
self.state["log"] = False
|
||
return args
|
||
|
||
def cluster(self, X, y, species="Barite", n_clusters=2, x_length=50, y_length=50):
|
||
"""Apply k-means clustering to the data to differentiate betweeen reactive and non-reactive cells.
|
||
|
||
Args:
|
||
X: design data set
|
||
y: target data set
|
||
species (str, optional): Chemical species to which clustering is be applied. Defaults to "Barite".
|
||
n_clusters (int, optional): Number of clusters. Defaults to 2.
|
||
x_length: x dimension of the grid. Defaults to 50.
|
||
y_length: y dimension of the grid. Defaults to 50.
|
||
|
||
Returns:
|
||
X, y dataframes with an additional column "Class" containing the cluster labels.
|
||
"""
|
||
class_labels = np.array([])
|
||
grid_length = x_length * y_length
|
||
iterations = int(len(X) / grid_length)
|
||
|
||
# calculate the cluster for each chemical iteration step
|
||
for i in range(0, iterations):
|
||
field = np.array(
|
||
X[species][(i * grid_length): (i * grid_length + grid_length)]
|
||
).reshape(x_length, y_length)
|
||
kmeans = KMeans(n_clusters=n_clusters, random_state=self.random_state).fit(
|
||
field.reshape(-1, 1)
|
||
)
|
||
class_labels = np.append(class_labels.astype(int), kmeans.labels_)
|
||
|
||
if "Class" in X.columns and "Class" in y.columns:
|
||
print("Class column already exists")
|
||
else:
|
||
class_labels_df = pd.DataFrame(class_labels, columns=["Class"])
|
||
X = pd.concat([X, class_labels_df], axis=1)
|
||
y = pd.concat([y, class_labels_df], axis=1)
|
||
self.state["cluster"] = True
|
||
|
||
return X, y
|
||
|
||
def balancer(self, X, y, strategy, sample_fraction=0.5):
|
||
"""Apply sampling strategies to balance the dataset.
|
||
|
||
Args:
|
||
X: design dataset (before the simulation)
|
||
y: target dataset (after the simulation)
|
||
strategy: Sampling strategy. Choose between "smote" (Synthetic Minority Oversampling Technique), "over" (Oversampling) and "under" (Undersampling).
|
||
sample_fraction (float, optional): Define balancer target. Specifies the target fraction of the minority class after the balancing step. Defaults to 0.5.
|
||
|
||
Returns:
|
||
X, y: resampled datasets
|
||
"""
|
||
number_features = (X.columns != "Class").sum()
|
||
if "Class" not in X.columns:
|
||
if "Class" in y.columns:
|
||
classes = y["Class"]
|
||
else:
|
||
raise Exception("No class column found")
|
||
else:
|
||
classes = X["Class"]
|
||
counter = classes.value_counts()
|
||
print("Amount class 0 before:",
|
||
counter[0] / (counter[0] + counter[1]))
|
||
print("Amount class 1 before:",
|
||
counter[1] / (counter[0] + counter[1]))
|
||
df = pd.concat(
|
||
[
|
||
X.loc[:, X.columns != "Class"],
|
||
y.loc[:, y.columns != "Class"],
|
||
classes,
|
||
],
|
||
axis=1,
|
||
)
|
||
|
||
if strategy == "smote":
|
||
print("Using SMOTE strategy")
|
||
smote = SMOTE(sampling_strategy=sample_fraction)
|
||
df_resampled, classes_resampled = smote.fit_resample(
|
||
df.loc[:, df.columns != "Class"], df.loc[:,
|
||
df.columns == "Class"]
|
||
)
|
||
|
||
elif strategy == "over":
|
||
print("Using Oversampling")
|
||
over = RandomOverSampler()
|
||
df_resampled, classes_resampled = over.fit_resample(
|
||
df.loc[:, df.columns != "Class"], df.loc[:,
|
||
df.columns == "Class"]
|
||
)
|
||
|
||
elif strategy == "under":
|
||
print("Using Undersampling")
|
||
under = RandomUnderSampler()
|
||
df_resampled, classes_resampled = under.fit_resample(
|
||
df.loc[:, df.columns != "Class"], df.loc[:,
|
||
df.columns == "Class"]
|
||
)
|
||
|
||
else:
|
||
print("No sampling selected. Output equals input.")
|
||
return X, y
|
||
|
||
counter = classes_resampled["Class"].value_counts()
|
||
print("Amount class 0 after:", counter[0] / (counter[0] + counter[1]))
|
||
print("Amount class 1 after:", counter[1] / (counter[0] + counter[1]))
|
||
|
||
design_resampled = pd.concat(
|
||
[df_resampled.iloc[:, 0:number_features], classes_resampled], axis=1
|
||
)
|
||
target_resampled = pd.concat(
|
||
[df_resampled.iloc[:, number_features:], classes_resampled], axis=1
|
||
)
|
||
|
||
self.state["balance"] = True
|
||
return design_resampled, target_resampled
|
||
|
||
def scale_fit(self, X, y, scaling, type="Standard"):
|
||
"""Fit a scaler for data preprocessing.
|
||
|
||
Args:
|
||
X: design dataset
|
||
y: target dataset
|
||
scaling: learn individual scaler for X and y when "individual" is selected or one global scaler on all data in X and y if "global" is selected (scaler_X and scaler_y are equal)
|
||
type (str, optional): Using MinMax Scaling or Standarization. Defaults to "Standard".
|
||
"""
|
||
|
||
if type == "minmax":
|
||
self.scaler_X = MinMaxScaler()
|
||
self.scaler_y = MinMaxScaler()
|
||
elif type == "standard":
|
||
self.scaler_X = StandardScaler()
|
||
self.scaler_y = StandardScaler()
|
||
|
||
else:
|
||
raise Exception("No valid scaler type found")
|
||
|
||
if scaling == "individual":
|
||
self.scaler_X.fit(X.iloc[:, X.columns != "Class"])
|
||
self.scaler_y.fit(y.iloc[:, y.columns != "Class"])
|
||
|
||
elif scaling == "global":
|
||
self.scaler_X.fit(
|
||
pd.concat(
|
||
[X.iloc[:, X.columns != "Class"],
|
||
y.iloc[:, y.columns != "Class"]],
|
||
axis=0,
|
||
)
|
||
)
|
||
self.scaler_y = self.scaler_X
|
||
|
||
self.state["scale"] = True
|
||
|
||
def scale_transform(self, X_train, X_test, y_train, y_test):
|
||
"""Apply learned scaler on datasets.
|
||
|
||
Args:
|
||
X_train: design training data
|
||
X_test: test training data
|
||
y_train: target training data
|
||
y_test: test target data
|
||
|
||
Returns:
|
||
transformed dataframes
|
||
"""
|
||
|
||
X_train = pd.concat(
|
||
[
|
||
self.scaler_X.transform(
|
||
X_train.loc[:, X_train.columns != "Class"]),
|
||
X_train.loc[:, "Class"],
|
||
],
|
||
axis=1,
|
||
)
|
||
|
||
X_test = pd.concat(
|
||
[
|
||
self.scaler_X.transform(
|
||
X_test.loc[:, X_test.columns != "Class"]),
|
||
X_test.loc[:, "Class"],
|
||
],
|
||
axis=1,
|
||
)
|
||
|
||
y_train = pd.concat(
|
||
[
|
||
self.scaler_y.transform(
|
||
y_train.loc[:, y_train.columns != "Class"]),
|
||
y_train.loc[:, "Class"],
|
||
],
|
||
axis=1,
|
||
)
|
||
|
||
y_test = pd.concat(
|
||
[
|
||
self.scaler_y.transform(
|
||
y_test.loc[:, y_test.columns != "Class"]),
|
||
y_test.loc[:, "Class"],
|
||
],
|
||
axis=1,
|
||
)
|
||
|
||
return X_train, X_test, y_train, y_test
|
||
|
||
def scale_inverse(self, *args):
|
||
"""Backtransform the dataset
|
||
|
||
Returns:
|
||
Backtransformed data frames
|
||
"""
|
||
|
||
result = []
|
||
for i in args:
|
||
if "Class" in i.columns:
|
||
inversed = pd.DataFrame(
|
||
self.scaler_X.inverse_transform(
|
||
i.loc[:, i.columns != "Class"]),
|
||
columns=i.columns[:-1],
|
||
)
|
||
class_column = i.loc[:, "Class"].reset_index(drop=True)
|
||
i = pd.concat([inversed, class_column], axis=1)
|
||
else:
|
||
i = pd.DataFrame(
|
||
self.scaler_X.inverse_transform(i), columns=i.columns)
|
||
result.append(i)
|
||
return result
|
||
|
||
def split(self, X, y, ratio=0.8):
|
||
X_train, y_train, X_test, y_test = sk.train_test_split(
|
||
X, y, test_size=ratio, random_state=self.random_state
|
||
)
|
||
|
||
return X_train, y_train, X_test, y_test
|
||
|
||
def class_selection(self, *args, class_label=0):
|
||
"""Select only rows with specific class label
|
||
|
||
Args:
|
||
Dataframes where rows with specific label should be selected. Defaults to 0.
|
||
|
||
Returns:
|
||
Elements with selected class label.
|
||
"""
|
||
for i in args:
|
||
i = i[i["Class"] == class_label]
|
||
|
||
return args
|